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Abstract— Using a Deep Neural Networks’
architecture, a novel wind turbine controller
addon element is presented. The aim is to
optimize wind power generation and at the same
time minimize power losses, operational costs
and structural fatigue thus extending wind
turbines operational lifetime. The scheme was
based on data collected from the field using a
50kW small scale wind turbine.
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I.  INTRODUCTION

According to United Nations in order to prevent the
severe effects of climate change, emissions must be
cut by nearly half by 2030 and reach net-zero by
2050. Renewable energy sources are, accessible,
sustainable, and dependable alternative sources and
reduce world’s dependency on fossil fuels [1]. Wind
power is one of the least expensive and fastest-
growing electricity sources, and it is expected to
continue increasing quickly. In 2022, wind-generated
power demonstrated the second-highest growth with
more than 2100 TWh, an all-time high rise of 265 TWh
(up 14%) [2,3]. Although there are tremendous
technological advances in the wind power generation
industry in recent years, there is always the drive for
production optimization. Research is currently
concentrating its efforts on ways to increase wind
energy capture efficiency and wind turbine reliability.
Both of these elements are influenced by the
stochastic nature of the wind flow, which directly
affects the performance of the Wind Turbine (WT), the
mechanical loads it receives (thus its maintenance
costs and lifetime) and the quality of the generated
energy supplied to the grid [4].

Vasilis Papatsiros
Eunice

Athens, Greece
VPapatsiros@eunice-group.com

Olivier Maudhuit
Eunice
Athens, Greece

Wind speed and direction demonstrate spatial and
more importantly temporal changes during the day
and the seasons. A turbine's output is determined by
the cube of wind speed, a nonlinear relationship that
magnifies the impact of even tiny variations in wind
speed [5]. Yaw misalignment is a phenomenon that
occurs when the inflow wind direction and the turbine
nacelle orientation are not aligned, resulting in a
deviation of the yaw angle from the optimal position
(see Fig. 1). For the best possible power output, the
WT blades must be perpendicular to the incoming
wind, and so the yaw error is 0 degrees. Wind turbine
yaw system aims to keep the nacelle aligned with the
direction of the wind when the wind direction changes.

Power production variation is proportional to the
square of cosine of the angle ¢ of misalignment [6,7]
thus making yaw controller very crucial for WT power
generating efficiency and overall performance. Both
static and dynamic yaw misalignment can negatively
impact the power output of a WT. Published research
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Fig. 1. Yaw Misalignment

report that over 50% of turbines operate with more
than 6° of static yaw misalignment [8].

Www.jmest.org

JMESTN42354284

16426



Journal of Multidisciplinary Engineerimg Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 10 Issue 10, October - 2023

The inaccuracy in wind turbine alignment results in
fatigue loads [9] (thus increasing maintenance costs),
ultimately shortening the wind turbine's service life
[10] reducing the amount and the quality of the
produced power [11].

Under typical operating conditions, the rotor torque
variations brought on by yawing movements can
seriously fatigue the turbine's structure. Yaw system is
the second most frequent mechanical part that affects
a turbine's total failure rate, which is determined by
how many turbines break in a year [12] To ensure the
safe operation of a wind turbine, these variations and
the problems caused by steady-state and transient-
state yaw misalignment must be considered and
addressed [13].

In a typical WT the yaw controller is equipped
with a wind direction and speed sensor positioned at
the rear of the nacelle. This approach is low cost but
not optimal since the sensors are under disturbed air
flow due to their position behind the rotor blades and
not sensing the same air flow that the rotor utilizes.

Most production level WTs utilize traditional
control approaches for yaw control based on wind
vane sensors in conjunction to rotor speed and
produced power [14]. Other control approaches take
into account load variations of the flap and edgewise
moments [15] or use analytical models to consider the
wake effects and the power sensitivity to yaw error
[16]. For large wind farms a state-of-the-art approach
to the problem is the addition of advanced measuring
devices such as Laser Imaging Detection and
Ranging [17]. Lidar devices can be used to measure
the wind speed and direction ahead of the turbine by
sending laser beams into the air ahead of the turbine.
This solution though is not always justified for large-
scale deployment due to the very high costs involved
[17]. For the same reason, in small WTs (those below
50KW) the use of lidars is prohibited.

The objective of the present short paper is to
propose a state of the art, high performing low-cost
solution to predict the yaw misalignment in real-time
using machine learning methods that was developed
under project PARALOS"2.

II. EXPERIMENTAL SETUP

For the purposes of the project the wind turbine of
interest is a stall-controlled 50kW small scale wind
turbine, according to the IEC 61400-12-1 [18], the hub
height is 22m and the rotor diameter is 16m. The
terrain of installation is complex and of type C, for this
reason, a meteorological mast has been erected at a
distance of 2.5 Diameters from the wind turbine, to
perform the site calibration [18].

Two datasets of 1-minute averaged wind data
recorded from the meteorological mast and the wind
turbine have been analyzed and used for this work.
The wind data available consists of wind speed and
wind direction from the nacelle and the met mast,
power production, and yaw misalignment.
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Fig. 2. A time-varying plot of a) Wind Direction (Top),
Wind Speed (Middle) and Yaw Error (Bottom), for a 3
day sample from the dataset.

III. DATA ANALYSIS

Following the two data collection campaigns
from the field, the datasets were preprocessed.
Missing values, outliers, and inconsistencies where
examined addressed at this stage. Since the data are
in the form of time-series additional processing was
performed regarding data seasonality (repeating
patterns) and trends (long-term changes). Techniques
such as seasonal decomposition, differencing, and
detrending were applied.

After the filtering process of the data, the
reference mast measurements have been compared
to the wind turbine ones. The scatter plot of the vanes
data is shown in Fig. 2.

As can be noted, there are two areas of the
plot with disturbances. The more scattered data
between 90 and 135 degrees are due to the shadow
of the wind turbine on the met mast, and scattered
data between- 60 and -90 degrees are due to the met
mast shadow on its vane.

The reference mast can be considered to be a
reliable reference for the wind direction measurement,
especially because its vane is not affected by the rotor
and the nacelle geometry. The accuracy between the
two vanes resulted in an R2=0.93
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IV. DEEP LEARNING MODEL FOR YAW MISALIGNMENT
PREDICTION

Recurrent Neural Networks (RNNs) are artificial
neural networks designed for processing sequences
of data and are particularly good for tasks where the
order and context of the data are important, such as
time series analysis, natural language processing and
speech recognition, [19]. RNNs due to their
architecture have the ability to maintain some form of
memory about the previous inputs, making them able
to capture sequential patterns more easily than other
Neural Networks’ architectures.

The idea that makes RNNs work well with
sequential data is that they use the same weights and
biases for each step in a sequence so the way they
process data is consistent and doesn't change as they
move through the sequence, ensuring that the
network applies the same Ilearned parameters
consistently throughout. This shared parameterization
is instrumental in enabling RNNs to grasp and encode
sequential dependencies.

Crucial to the RNN's operation is its hidden state.
At each step in the sequence, the RNN takes the
current input and combines it with the hidden state
from the previous step, resulting in a new hidden
state. This hidden state acts as a memory, preserving
information and insights from the network's previous
calculations updating the internal state allowing the
RNN to adapt to the changing context and
dependencies within the sequence.

Hidden layer

Input layer X Output layer
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Fig4. General Representation of RNN

Where the variables used are as follows:
Xi=Input for the current iteration i
h;= State of hidden layer at the iteration i
h;.1=State of previous iteration i-1
Y;=Qutput for the current iteration i

For the purposes of the current short paper a
RNN following the Long Short-Term Memory type was
developed. As inputs were used measurenments
from the wind speed and wind direction sensors.
Output was the Yaw Misalignment (yaw error). The
dataset was split in training, validation and test
subsets.
The evaluation of the model performance used the
Root Mean Square Error metric:

RMSE = \/Ei& Ib'(iL— ﬁ(:')uz’

where:
N is the number of data points,
y(i) is the i-th measurement for a specific set of
inptuts,
y~ (i) is model output/prediction for the same inputs.

The proposed model achieved and
RMSE=4.737 degrees of Yaw Misalignment.
Fig. 5 presents a time-series plot of a subset from the
test dataset overlaid by the model predictions for the
same period. As it can be seen the model was able to
capture the yaw error dynamics for the small wind
turbine in the specific complex terrain of installation.

V. CONCLUSIONS

A Deep Learning model for a small wind turbine
yaw misalignment prediction was presented. Yaw
misalignment has a tremendous effect on the wind
turbine's ability to capture energy, the quality of its
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Fig 5. A time-varying plot depicting model performance: in blue is the actual measured data found in the test set
and in red are the deep learning model predictions.

output, and its structural fatigue. However, the
majority of current sensing or detection techniques
provide suboptimal performance or call for additional
very expensive sensors, while the intricate operating
conditions of any wind turbine significantly skew the
sensing function. Machine learning techniques offer a
viable solution for optimized WT performance,
increasing producer’'s revenue by minimizing power
loses. At the same time, they reduce operating cost by
minimizing component fatigue and extent the
operational lifetime of the investment. The authors
will present in future publications results from more
machine learning based models that reinforce the idea
that data driven solutions are cost effective and
optimize wind power generation.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial
support of European Regional Development Fund
(ERDF) of the European Union and the Greek national
funds through the Operational Program
‘Competitiveness, Entrepreneurship, and Innovation',
under the Action 'RESEARCH - CREATE -
INNOVATE'. All the effort was done under the scope
of the project name PARALOS"2 and with project
code: T2EDK-01386. For more you could visit
project’'s website: Paralos Project (paralos-project.eu)

References

[1] Renewable energy — powering a safer future.
United Nations.
https://www.un.org/en/climatechange/raising-
ambition/renewable-energy

[2] R. Wiser et al., “Land-Based Wind Market
Report: 2023 Edition,” U.S. Department of Energy.
2023.

[3] Tracking Clean Energy Progress 2023 -
Analysis - International Energy Agency.
https://www.iea.org/reports/tracking-clean-energy-
progress-2023

[4] B. Jing, Z. Qian, Y. Pei, L. Zhang, and T. Yang,
“Improving wind turbine efficiency through detection
and calibration of yaw misalignment,” Renew. Energy,
vol. 160, pp. 1217-1227, Nov. 2020, doi:
10.1016/j.renene.2020.07.063.

[5] Y.-H. Wang et al., “Spatial and temporal
variation of offshore wind power and its value along
the Central California Coast,” Environ. Res. Commun.,
vol. 1, no. 12, p. 121001, Dec. 2019, doi:
10.1088/2515-7620/ab4ee1.

[6] G. S. Stavrakakis and A. Pouliezos, “2.10 -
Electrical Parts, Control Systems and Power
Electronics of Wind Turbines,” in Comprehensive
Renewable Energy (Second Edition), Second Edi., T.
M. Letcher, Ed. Oxford: Elsevier, 2022, pp. 279-352.

[7] Fleming, P.; Annoni, J.; Shah, J.J.; Wang, L.P.;
Ananthan, A.; Zhang, Z.J.; Hutchings, K.; Wang, P.;

WWWw.jmest.org

JMESTN42354284

16429



Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 10 Issue 10, October - 2023

Chen, W.G.; Chen, L. Field test of wake steering at an
offshore wind farm. Sci. Wind Energy 2017, 2, 229—
239.

[8] H. S. Pedersen and E. Gil Marin, “Yaw
Misalignment and Power Curve Analysis.pdf,”
European Wind Energy Association Anal. Oper. Wind
Farms 2016, 2016.

[9] Jeong, M.S., Kim, S.W., Lee, I., Yoo, S.J., Park,
K.C. (2013). The impact of yaw error on aeroelastic
characteristics of a horizontal axis wind turbine blade,
Renewable Energy, vol. 60, pp. 256-268

[10] T. Ekelund, “Yaw control for reduction of
structural dynamic loads in wind turbines,” J. Wind
Eng. Ind. Aerodyn., vol. 85, no. 3, pp. 241-262, Apr.
2000, doi: 10.1016/S0167-6105(99)00128-2.

[11] B. Jing, Z. Qian, Y. Pei, L. Zhang, and T.
Yang, “Improving wind turbine efficiency through
detection and calibration of yaw misalignment,”
Renew. Energy, vol. 160, pp. 1217-1227, Nov. 2020,
doi: 10.1016/j.renene.2020.07.063.

[12] M. G. Kim and P. H. Dalhoff, “Yaw systems for
wind  turbines-Overview of concepts, current
challenges and design methods,” J. Phys. Conf. Ser.,
vol. 524, no. 1, 2014, doi: 10.1088/1742-
6596/524/1/012086.

[13] Wan S, Cheng L, Sheng X. Effects of Yaw
Error on Wind Turbine Running Characteristics Based
on the Equivalent Wind Speed Model. Energies. 2015;
8(7):6286-6301

[14] T. Burton, N. Jenkins, D. Sharpe, and E.
Bossanyi, Wind Energy Handbook. Wiley, 2011.

[15] S. Bartholomay et al., “Towards Active Flow
Control on a Research Scale Wind Turbine Using PID
controlled Trailing Edge Flaps,” Jan. 2018, doi:
10.2514/6.2018-1245.

[16] J. Liew, A. M. Urban, and S. J. Andersen,
“Analytical model for the power--yaw sensitivity of wind
turbines operating in full wake,” Wind Energy Sci., vol.
5, no. 1, pp. 427-437, 2020, doi: 10.5194/wes-5-427-
2020.

[17] R. R. Mathur, J. A. Rice, A. Swift, and J.
Chapman, “Economic analysis of Lidar-based
proactively controlled wind turbines,” Renew. Energy,
vol. 103, pp. 156-170, 2017, doi:
https://doi.org/10.1016/j.renene.2016.10.069.

[18] IEC 61400-12-1:2017 Wind turbines—Part 12-
1:Power performance measurements of electricity-
producing wind turbines.

[19] Goodfellow, I., Bengio, Y.,, Courville, A. (2016).
Deep Learning. MIT Press.

WWW.jmest.org

JMESTN42354284

16430



