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Abstract— Heat and mass transfers around a 
rotating cone immersed in air with respect to its 
axis of revolution are numerically investigated by 
using a model based on the heat and mass 
transfer's equations, on the continuity equation 
and the Navies-Stokes equations. An implicit finite 
difference scheme was used to discretize the 
equations of the mathematical model. The 
discretized equations were solved by Thomas's 
algorithm associated with the boundary conditions. 
A numerical code was developed. The profiles of 
the dimensionless values relating to the meridian, 
azimuthal and normal components of the velocity, 
of the temperature and of the mass concentration 
distributions in the boundary layer as well as the 
numbers of Nusselt, Sherwood and mass 
diffusion rate with relative humidity have been 
presented.  In addition, the influence of angular 
velocity on the local Nusselt number, Sherwood 
number and mass diffusion is analyzed. A 
dimensionless correlation of the Nusselt and 
Sherwood number by the least squares method 
based on curves of Nusselt and Sherwood as a 
function of the meridian coordinate has been 
established. 

 

Keywords—modeling; heat transfer; mass 
transfer; rotating; cone of revolution 

 

I.  INTRODUCTION 

         The problem of heat and mass transfer around 
rotationally symmetric bodies has become of practical 
importance in the design of many types of industrial 
equipment. Convection around a cone of revolution 
has been a subject of research for several authors. 
Further, Himasekhar et al. [1] have studied an 
analytical the mixed rotational and natural convection 
around a vertical cone. Their study is based on the 
influence of Prandtl (Pr) number for 0.1 ≤ Pr ≤ 1000 
on the fluid flow and heat transfer. They have 
determined the predominance of the flow for           
0.01 ≤ Richardson number ≤ 100. Their results have 

shown that the normal and azimuthal components of 
velocity increase with Prandtl number while the 
tangential component and temperature decrease. The 
heat transfer rate is an increasing function of 
Richardson number. Similarly, the heat exchange is 
more important for a large value of Prandtl number. 
They have proposed correlations of the local Nusselt 
number for the three types of convection 
preponderance. On the other hand, Wang et al. [2] 
have also studied mixed convection from a rotating 
cone with variable surface temperature. They have 
shown that the maximum of the meridian velocity 
approaches the wall when the natural phenomenon is 
less dominant. It rises with increasing cone speed. 
The gradient of the dimensionless temperature at the 
wall increases uniformly with increasing cone speed. 
In an early work, Hering and Grosh [3] presented a 
numerically study mixed natural and rotational 
convection around a rotating vertical cone for Prandtl 
(Pr) number Pr = 0.7. They have examined the 
Richardson number to determine a zone where each 
convection is dominant. They have made it clear in 
their study that the predominance of convection is 
dependent on the value of Richardson number. Malik 
et al. [4] have studied a mixed convection dissipative 
viscous fluid flow over a rotating cone by way of 
variable viscosity and thermal conductivity. Increasing 
the Richardson number increases the meridian 
component of the velocity. The temperature of the 
fluid decreases with increasing Richardson number 
but increases with increasing Eckert number. The 
heat transfer and the friction coefficient increase with 
increasing Richardson number. Besides, Anilkumar 
and Roy [5]   have made study about an unsteady 
mixed convection around a rotating cone immersed in 
a rotating fluid coupled with mass transfer. Increasing 
Prandtl and Schmidt numbers causes the thermal and 
mass boundary layer thicknesses to decrease 
respectively. The increase in buoyancy number 
promotes fluid adhesion and amplifies the heat and 
mass transfer rates. More recently, Saleem [6] has 
studied a heat and mass transfer around a rotating 
cone by mixed natural and forced convection. He has 
shown that the friction coefficients increase with 
increasing buoyancy ratio number. The Nusselt and 
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Sherwood numbers vary in the same way and 
increase with increasing buoyancy ratio. Recently, 
Sharma and Konwar [7] have studied heat and mass 
transfers around a rotating vertical cone with a 
permeable wall. They have presented the influence of 
thermal radiation and chemical reaction on heat and 
mass transfer respectively. They have shown that the 
tangential velocity and temperature of the fluid reduce 
as the value of the radiation parameter is increased 
while its concentration increases. Furthermore, Patil 
and Pop [8] fixed their mind closely upon the effects of 
surface mass transfer on unsteady mixed convection 
flow over a vertical cone with chemical reaction. The 
magnitudes of the velocity overshoot increase with the 
buoyancy assisting parameter, while it reduces as 
Prandtl number increases. The magnitude of the 
concentration profiles increases when the chemical 
reaction parameter is increased. The concentration 
boundary layer decreases as Schmidt number 
increases. Moreover, Ching [9]   has swotted a free 
convection heat transfer from a non-isothermal 
permeable cone with suction and temperature 
dependent viscosity. The temperature of the fluid 
decreases as the dynamic viscosity decreases while 
the velocity increases. In addition, the heat transfer 
rate increases with decreasing dynamic viscosity. In 
addition, Srinivasa and Eswara [10] have investigated 
the unsteady free convection flow and heat transfer 
from an isothermal truncated cone with variable 
viscosity. Results have shown that the effect of 
variable fluid properties is to decrease both friction 
coefficient and Nusselt number as compared to the 
constant fluid properties. Velocity increases sharply 
near the wall whereas temperature decreases, with 
increase of viscosity variation parameter. Again, 
Bapuji et al. [11] have developed the unsteady laminar 
natural convection flow past an isothermal vertical 
cone. The tangential component of buoyancy force 
reduces as the semi vertical angle increases. The 
temperature increase with increasing semi vertical 
angle. Local skin friction and local Nusselt number 
decrease with increasing semi vertical angle. Kumari 
et al. [12] have treated the problem of combined free 
and forced convection flow along an isothermal 
vertical cone. Results have shown that friction 
coefficient and Nusselt number have increased when 
natural convection has predominated. On top of that, 
Bapuji and Chamkha [13] have presented numerical 
solutions of unsteady laminar free convection from a 
vertical cone with non uniform surface heat flux. The 
temperature value and thermal boundary layer 
thickness increase on increasing the values of semi 
vertical angle of the cone. Local skin-friction 
decreases with increasing the values of semi vertical 
angle of the cone. Local Nusselt number values 
decrease with increasing the values of semi vertical 
angle of the cone as temperature distribution 
increases with the values of semi vertical angle of the 
cone. Increasing the values of semi vertical angle of 
the cone to decrease the impulsive force along the 
cone surface. Another point is Azad et al. [14] have 
considered the natural convection flow along the 

vertical wavy cone in case of uniform surface heat flux 
where viscosity is an exponential function of 
temperature. Increases of viscosity variation 
parameter decrease the tangential velocity inside the 
boundary layer. The temperature inside the boundary 
layer at any fixed point enhanced with viscosity 
variation parameter. The skin friction increases vary 
rapidly when viscosity variation parameter increases. 
In a recent study, Sharaban et al. [15] have studied a 
natural convection along a vertical cone with uniform 
surface heat flux for temperature dependent thermal 
conductivity. Results have shown that the increasing 
the value of thermal conductivity variation parameter 
affect isotherm and leads to thicker thermal boundary 
layer. Bapuji et al. [16] have analyzed the unsteady 
laminar free convection from a vertical cone with 
uniform surface heat flux. The tangential component 
of buoyancy force reduces as the semi vertical angle 
increases. The temperature and boundary layer 
thickness increase with increasing the values of semi 
vertical angle of the cone. Local Nusselt number 
values decrease with increasing semi vertical angle. 
Apart from that, Lin [17] has studied the laminar free 
convection from a vertical cone with uniform surface 
heat flux. He has determined the dimensionless wall 
temperature distribution and wall skin friction 
distribution for 0.5≤ Prandtl number ≤100. Results 
have shown that the wall temperature decrease with 
increasing the values of Prandtl number. The skin 
friction decreases with increasing Prandtl number. 
Increasing Prandtl number increase a detachment of 
the boundary layer. In addition to what we have juste 
said, Kumari and Pop [18] have investigated the free 
convection heat flux. 

      This study focuses on the modeling of heat and 
mass transfers around a rotating cone of revolution. 
Heat and mass transfers within boundary layers as 
well as pulse transfer have been considered.  The 
Couette effect caused by the rotation of the cone that 
created heat and mass transfers is highlighted.  
Authors determine the distribution of velocity, 
temperature and concentration by solving systems of 
conservation algebraic equations using Thomas' 
algorithm. A detailed study of the mesh effect is 
undertaken resulted the selection of the most suitable 
mesh for this study. One analyzed the influence of the 
angular velocity of heat and mass transfer. 

II. METHODOLOGY 

A. Physical Model  

         Consider a fluid flowing in the vicinity of a cone 
of revolution rotating uniformly at angular velocity ω 
around its axis of revolution, completely immersed in a 
Newtonian fluid, in this case air initially at rest (Fig.1). 
The temperature and mass concentration of the fluid 
outside the thermal boundary layer are set to T∞ and 
C∞ respectively. Its wall is maintained at a uniform and 
constant temperature TP and mass concentration C0 
and greater than the temperature T∞ and 
concentration C∞ of the fluid away from the surface.  
Let's associate with this cone a relative cartesian 
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coordinate system Oxyz whose origin O is placed at 
its summit.  The abscissa x is counted positively away 
from the vertex and the ordinate y is perpendicular to 
the x axis.  The axis of symmetry (Δ) is vertical and 
oriented in the opposite direction to the gravitational 
field. It is assumed that the system is initially in 
thermodynamic equilibrium. The rotation of the cone 
causes the temperature gradient between the fluid 
and the wall due to its dynamic viscosity. The heat 
gained by the fluid particles causes their temperature 
to rise. Fluid flow coupled with heat and mass transfer 
is created by the Couette effect. Thermal and mass 
external rotary convection then takes place in the fluid 
to re-establish thermodynamic equilibrium between 
the wall and the fluid. 
 
 
 

 
 
 

Fig.1. Diagram of the physical model and coordinate system 

 
 

B. Mathematical Formulation 

       To model mathematically the phenomenon, the 
following assumptions are made: 

 The flow is in a stationary laminar regime 

 The flow is uniform away from the wall 

 The fluid is Newtonian and incompressible 

 The fluid is air, whose physical properties are 
constant . 

 Radiation, viscous dissipation and the pressure 
term are neglected in the heat equation 

 No other heat sources 

 Heat and mass transfers occur exclusively in 
the boundary layers 

 Species diffusion is mass based 

 Force of gravity  and force of pressure are zero  

 The pressure inside the boundary layer is 
constant 

 The cone wall is isothermal  and impermeable 

C. Dimensionless Equations 

 Dimensionless variables 

The dimensionless variables are defined as 
follows: 

x+ =  
x

L
 ,  y+ =

y

L
√Reω  , r+ =  

r

L
                            (1) 

Vx
+ =  

Vx

Lω
Reω

1

4  , Vy
+ =  

Vy

Lω
Reω

3

4  , Vφ
+ =

Vφ

Lω
Reω

1

4            (2) 

T+ =  
T−T∞

(
L2ω2

2Cp
)
  , C+ =  

C−C∞

C0−C∞
                                   (3) 

      The dimensionless from of the governing equations 
are as following: 

 Dimensionless continuity equation 
 

∂Vx
+

∂x+ +
∂Vy

+

∂y+ +
Vx

+

r+

dr+

dx+ = 0                                           (4) 

 Dimensionless momentum equations 

VX
+ ∂VX

+

∂x+ +  Vy
+ ∂VX

+

∂y+ − 
Vφ

+ 2

r+ = Reω

1

4 ∂2VX
+

∂y+2                        (5) 

 

VX
+ ∂Vφ

+

∂x+ + Vy
+ ∂Vφ

+

∂y+ + 
VX  

+ Vφ
+

r+ = Reω

1

4 ∂2Vφ
+

∂y+2                     (6) 

 Dimensionless heat transfer equation 
 

VX
+ ∂T+

∂x+ + Vy
+ ∂T+

∂y+ =
1

Pr
Reω

1

4 ∂2T+

∂y+2                                (7) 

 Dimensionless mass transfer equation 

VX
+ ∂C+

∂x+ + Vy
+ ∂C+

∂y+ =
1

Sc
Reω

1

4 ∂2C+

∂y+2                                (8) 

        The dimensionless parameters in these 
equations are defined respectively as Schmidt 
number, Reynolds number and Prandlt number: 

Sc =  
μ

ρD
 , Reω =  

L2 ω

ν
 , Pr =  

μCp

λ
                      (9) 

      The dimensionless boundary conditions are 
specified as follow:  

y+ = 0, VX
+ = 0 , Vy

+ = 0 , Vφ
+ =  r+ Reω

1

4            (10.a) 

   T+ = 1, C+ = 1                                             (10.b) 

y+ → ∞ , T+ = 0 , C+ = 0, VX
+

= 0, Vφ
+

= 0            (10.c) 

 

The dimensionless variables are defined as: 

Eckert number:  Ec =  
(Lω)2

Cp ΔT   
                                  (11) 

Nusselt number:  2
Nu

Ec √Reω
= − (

∂T+

∂y+)
y+=0

        (12) 

 

Sherwood number:     
Sh 

 √Reω
= − (

∂C
+

∂y
+)

y+=0
          (13) 
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Longitudinal and azimuthal parietal friction coefficients 
are defined by: 

1

2
Cfu Reω

3

4 =  (
∂Vx

+

∂y+)
y+=0

, 
1

2
Cfw Reω

3

4 =  (
∂Vφ

+

∂y+ )
y+=0

 (14) 

Mass diffusion rate at the wall is deduced from Fick's 

law: 

VDf =  −
Df

L
 
(C0− C∞)

C0
√Reω (

∂C+

∂y+)
y+=0

               (15) 

The concentration of water vapor at the wall:  

v
0

atm v

0,622P
C =

P -0,378P
                                                 

(16) 

 
Pv and Patm: partial pressure of water vapor and 
atmospheric pressure. 
 
Hr relative humidity of the air 

vP =Hr Pvs(Tp)                                                      
(17) 

Saturation vapor pressure at temperature Tp 

10

vs

2790
17,442- 3,868Log (Tp)

TpP (Tp)= 10 


x 101325       (18) 

 
Df : diffusion coefficient (m

2
 s

-1
) 

1,88

5 0
f

P T
2,17.10

P 273,15
D   

  
                               

(19) 

 
P0: fluid pressure at T=273,15K     

III. NUMERICAL METHODS 

A. Discretisation and Algorithm 

     The conservation equations associated with the 
boundary conditions have discretized using an implicit 
finite difference method by considering  meshes  of 
250 x 450 knots with Δy

+
 = 0.1. After arrangement, the 

discretized (5) to (8) can be respectively put into the 
following forms: 
 

AujVXj−1

+ + BujVXj

+ + CujVXj+1

+ = Duj                  (20.a) 

AwjVφj−1
+ + BwjVφj

+ + CwjVφj+1
+ = Dwj             (20.b) 

AtjTj−1
+ + BtjTj

+ + CtjTj+1
+ = Dtj                       (20.c) 

AcjCj−1
+ + BcjCj

+ + CcjCj+1
+ = Dcj                    (20.d) 

 

The system of algebraic equations (20.a) through 
(20.d) associated with the discretized boundary 
conditions can be solved by the Thomas algorithm. 

 

Aj Xj−1
i+1 + Bj Xj

i+1 + CjXj+1
i+1 = Dj                        (21) 

 

with 2 ≤ j ≤ Jmax , X represents the quantities (VX
+, Vφ

+
, 

T
+
, C

+
) and Jmax characterizes the thickness of the 

boundary layer. 
      The convergence of the iterative process within 
the boundary layer is assumed to be achieved when 
the following criterion is simultaneously verified 

on   VX
+, Vφ

+, T
+
, C

+
 is:                      

|
max(Xn+1− Xn)

max(Xn)
| ≤  10−3                                 (22) 

with n is iteration number, X = (VX
+, Vφ

+, T
+
, C

+
) 

        The normal component Vy
+ is calculated from the 

discretized continuity equation: 

Vy
+ (i+1

j+1
) = Vy

+ (i+1
j

) − ∆y+ [
VX

+(i+1
j )−VX

+(i
j)

∆x+   

+
VX

+(i+1
j )

∆x+
(1 −

r+(i)

r+(i+1)
)]                                  (23) 

        Partial derivatives of the expressions of Nusselt, 
Sherwood and friction coefficients are approached by 
three points discretization:  

2
Nu

Ec √Reω
= −

3T+(i+1
j+1)−4T+(i+1

j )+T+(i+1
j−1)

2∆y+               (24) 

  

Sh

√Reω
= −

3C+(i+1
j+1)−4C+(i+1

j )+C+(i+1
j−1)

2∆y+                      (25) 

 

1

2
Cfu Reω

3

4 =  
3VX

+(i+1
j+1)−4VX

+(i+1
j )+VX

+(i+1
j−1)

2∆y+               (26) 

1

2
Cfw Reω

3

4 =  
3Vφ

+ (i+1
j+1)−4Vφ

+ (i+1
j )+Vφ

+ (i+1
j−1)

2∆y+              (27) 

 

B. Meshes Effect 

 
       Table I gives the values of the Nusselt number for 
several mesh values. It shows that the number of 
Nusselt increases with the number of points following 
the meridian. But we see that it is independent of the 
number of points according to the normal.   

 

TABLE I.  VALUES OF THE NUSSELT NUMBER FOR           

DIFFERENT MESHES VALUES  

 

Mesh 

x
+
 

0.4 0.5 0.6 

Nu 

100 x 150 0.7850361 0.841595 0.8820879 

150 x 250 0.8820863 0.837242 0.977429 

250 x 400 1.0035023 1.060603 1.1092288 

250 x 450 1.0035023 1.060603 1.1092288 

400 x 450 1.1268802 1.189732 1.2432423 

450 x 500 1.1596996 1.224075 1.2788707 

 

         In order to ensure mesh independence on the 
obtained results, we have considered different 
meshes 100 x 150, 150 x 250, 250 x 400, 250 x 450, 
400 x 450 and 450 x 500 for Δy

+
 = 0.1, ω = 15 rad/s 

and θ0 = 20. The influence of the mesh on the Nu is 
presented in Table I. The results of our simulation 
show that the 250 x 400 mesh size is sufficient. This 
study of the effect of the mesh size allowed us to 
choose the 250 x 450 mesh size as a fine mesh size 
for the present study. 
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C. Validation 

      Our calculation code was validated on a natural 
and rotary mixed convection problem around a vertical 
cone. We have compared our results with those 
obtained by Hering and Grosh [3], Himasekhar et 
al.[1] and Anilkumar and Roy [5]. The comparison is 
about the gradient of azimuthal component parietal for 
the Richardson numbers Ri = 0 and angular velocity  
ω = 50π. The analysis in Table II shows that our 
results are in perfect agreement with the results 
available in the literature, the relative difference not 
exceeding 1%. 

 

TABLE II.  THE GRADIENT OF THE AZIMUTHAL                   

COMPONENT PARIETAL  

 

 
Hering 

[3]   
Himasekhar 

[1]   
Anilkumar 

[5]   
Present  
model 

− (
∂Vφ

+

∂y+
)

y+=0
  0.6159 0.6158 

 
0.6160 0. 61584 

Absolute 
relative gap 

0.00006 0.00004    0.00016  

 

IV. RESULTS AND DISCUSSION 

            Numerical results are obtained for values of: 
Pr = 0.71,Sc = 0.62, Ec= 0.0025, Δy

+
= 0.1and θ0 = 20.  

        Fig. 2 shows the profile of the dimensionless 
meridian velocity Vx

+ 
as a function of y

+
 for several 

values of x
+
. The creation of this non zero value of the 

meridional component is due to the impulse caused 
by the rotation of the cone, which propagates in this 
direction. We observe a longitudinal upward 
movement of the fluid, so the fluid particles climb the 
wall.  The fluid inside the thermal boundary layer is 
accelerated more than outside. This maximum of Vx

+ 

corresponds to the change in behaviour from real fluid 
to free fluid. We can see that the maximum value of 
Vx

+ 
rises along the wall and is an increasing function 

of the meridian abscissa. 

 
           Due to the Couette effect, the fluid particles in 
the immediate vicinity of the wall are entrained by the 
movement, which gives rise to the azimuthal 

component V
+
. Its variation as a function of y

+
 for 

several values of x
+
 is shown in Fig. 3. It is maximum 

at the wall, decreasing along the normal and tending 
towards zero at infinity. We can see that the 
adimensional azimuthal velocity increases as we 
move in the meridian direction but decreases along 
the normal. Furthermore, as we move up the wall of 
the cone, the radius of the circles parallel to the 
surface of the base and perpendicular to the axis of 
revolution increase, so the azimuthal component also 
increases. 

 
 
 

 
Fig. 2. Reduced VX

+ 
according to y

+
 for several values of x

+
. 

 

 

 

Fig.3. Reduced V
+
 according to y

+ 
for several values of x

+
. 

 

           The Couette effect also creates the normal 
component, the variation of which is shown in Fig. 4. It 
shows that the velocity component Vy

+
 decreases in 

the boundary layer with y
+
. It takes on a negative 

value, which means that the fluid particles are sucked 
towards the axis of rotation of the cone, i.e., towards 
the wall.  The suction effect is stronger than outside 
the dynamic boundary layer and increases along the 
wall. 

 
 

Fig. 4. Reduced Vy
+ 

according to y
+ 

for several values of x
+ 

 

    Fig. 5 shows the variation in temperature as a 
function of y

+
. The heat is localized near the wall of 

the cone. So, the fluid near the wall is hotter. The 
dimensionless temperature decreases because the 
Prandtl number is less than one. It decreases along 
the normal and the temperature gradient is very 
strong inside the thermal boundary layer. Fluid 
temperatures decrease along the cone wall because 
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the thickness of the thermal boundary layer is a 
decreasing function of the meridian abscissa. 

 
Fig.5. Reduced temperature according to y

+ 
for several 

values of x
+
 

    Fig. 6 represents the variations of the 
dimensionless mass concentration as a function of y

+
 

for several values of x
+
. The difference in 

concentration at the wall and to infinity creates a mass 
transfer.  It shows that C

+ 
decreases with x

+
 and the 

thickness of the mass boundary layer decreases 
along the wall. The mass is transferred from more 
concentrated regions to less concentrated regions. 

 
Fig. 6.Reduced concentration mass according to y

+
for 

several values of x
+ 

        Fig. 7 represents the variations of the Nusselt 
number as a function of x

+
 for several values of ω. It 

shows that the intensity of the heat transfer between 
the wall and the fluid increases as one traverses the 
cone from the bottom to the top because of the 
gradually increasing difference in their temperatures. 

Moreover,
2 Nu

Ec Re

 it is a decreasing function of ω, 

that is to say that the higher the rotation, the less the 
heat transfer by convection has no time to be 
established and therefore less important. 
 
     Fig. 8 illustrates the evolution of the number of 
local Sherwood for different values of ω as a function 
of x

+
, the number of Sherwood characterize the 

transfer of mass. The mass transfer between the wall 
and the fluid increases along the wall. The 

dimensionless quantity 
Sh

Re

decreases with 

increasing of the velocity.  

 
Fig.7. Evolution of the Nusselt number as a function of x

+
 for 

several values of ω 

 
Fig.8. Evolution of the Sherwood number as a function of   x

+
 

for several values of ω 

 
Table III gives the values of the longitudinal and 

azimuthal dimensional friction coefficients for several 
values of x

+
 with Δy

+
 = 0.1, ω = 15 rad/s and θ0 = 20. It 

shows that the values of   
1

2
CfuReω   

3

4 are positive while 

those of  
1

2
CfwReω

3

4   are negative. This means that the 

fluid adheres longitudinally and there is azimuthal 
detachment of the dynamic boundary layer. 

 

TABLE III.  THE VALUES  OF LONGITUDINAL AND AZIMUTHAL                    

PARIETAL FRICTION COEFFICIENTS  

x
+
 

𝟏

𝟐
𝐂𝐟𝐮𝐑𝐞𝛚

𝟑

𝟒  
𝟏

𝟐
𝐂𝐟𝐰𝐑𝐞𝛚

𝟑

𝟒  

0.01 0.01815 - 0.03709 

0.1 0.10858 - 0.67055 

0.2 0.17474 - 1.5957 

0.3 0.22533 - 2.6366 

0.4 0.26729 - 3.7581 

0.5 0.30348 - 4.942 

0.6 0.33543 - 6.1773 

0.7 0.36409 - 7.456 

0.8 0.39007 - 8.7727 

0.9 0.41383 - 10.123 

1 0.43359 - 11.364 

       

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

C
+

y
+

 x
+
 = 0.3

 x
+
 = 0.4

 x
+
 = 0.5

 x
+
 = 0.6

 x
+
 = 0.7

= 15 rad/s
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         The variation of the mass diffusion rate as a 
function of x

+
 for several values of ω is shown in     

Fig. 9. Increasing the rotational speed increases the 
mass diffusion rate because the gradient of the fluid 
concentration is an increasing function of the angular 
velocity. 

         Fig. 10 shows the variation of the mass diffusion 
rate as a function of x

+ 
for several values of Hr. Air 

vapor saturation increases with relative humidity. The 
mass diffusion rate increases with increasing of the 
relative humidity because the saturation vapor 
pressure increases with increasing relative humidity 

 
 

Fig. 9.  Variation of the mass diffusion rate as a 
function of x

+
 for several values of ω (Hr =65%) 

 
Fig. 10.  Variation of the mass diffusion rate as a 

function of x
+
 for several values of Hr (ω=15rad/s) 

         In rotary convection, the Nusselt and Sherwood 
numbers are function of the rotational Reynolds 
number and the meridian abscissa. The Nusselt and 
Sherwood correlations can be written in the form as 
follow: 

b c dNu(x) a Pr Re (x )  and 
b c dSh(x) aSc Re (x )  

The constants a, b, c, and d are determined by 
smoothing, using the least squares method of the 
curve of Nusselt and Sherwood numbers have a 
function of x

+
, see Figs.11 and 12 below. In our case, 

we get the local correlations of Nusselt and Sherwood 

number according to x 
+
 and of Re  as follow: 

  

 
 

0.21
Nu(x) 0.0016 Re x

Pr





 
  

                               

(28) 

 

 
0.21

Sh(x) 0.52 Re x
Sc





 
  

                                     

(29) 

 

 
 

Fig. 11.  Evolution of the Nusselt number correlation as a 
function of x

+ 
(θ0 = 20, ω=15 rad/s) 

 

 
Fig. 12. Evolution of the Sherwood number correlation as a 
function of x

+
(θ0 = 20, ω=15 rad/s) 

 

V.    CONCLUSION  

 

        Heat and mass transfer around a rotating cone 
have been modeling. Mathematical model based on 
the heat, mass transfer, Navier-Stokes and continuity 
equations coupled implicit finite difference scheme 
technique has been established. THOMAS algorithm 
has been used to solve the algebraic equations 
system associated with boundary conditions to 
determine the distributions of temperature, velocity, 
and mass concentration. 
         One concludes that the rotation of the cone 
around its axis of revolution, by Couette effect, 
creates a meridian velocity component that causes an 
upward flow inside the dynamic boundary layer. The 
normal component takes the negative value so the 
fluid is exposed to suction. In fact, the fluid is returned 
to the wall. As a result, it produces the suction of the 
fluid. It also creates a flow of fluid in which a 
concentration boundary layer develops. Analysis of T

+
 

and C
+ 

variations shows that the thickness of the 
thermal boundary layer is smaller than that of the 
mass boundary layer. The thermal and mass transfer 
rates increase along the wall. At the stopping point, 
there are small Nusselt and Sherwood numbers. In 
the upper meridians, near the point of separation, the 
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Nusselt and Sherwood numbers are considerable. 
The transfer rates evolve in the same direction, as do 
the temperature and the mass concentration. The 
heat transfer rate is greater than the mass transfer 
rate. Heat transfer is more dominant than mass 
transfer. The angular velocity of the cone positively 
influences heat and mass transfer. An increase in 
relative humidity increases the mass diffusion rate. It 
shows us that the importance of mass diffusion is at 
the same direction as that of the relative humidity of 
the air. The correlations of Nusselt and Sherwood 
numbers for a given opening of the cone have been 
proposed. 
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