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Abstract—The formulation of the analog system 
design process was carried out based on the 
application of control theory. This approach 
generalizes the design process and produces 
different design trajectories inside the same 
optimization procedure. The problem of 
constructing an optimal speed algorithm is defined 
as the problem of minimizing a functional in 
control theory. The governing equations for the 
proposed design methodology have been 
developed, which provide a set of different design 
strategies within this approach. An analysis of the 
evaluation of the number of operations of some 
new strategies is given. The numerical results of 
designing some electronic circuits demonstrate the 
effectiveness of the proposed approach. These 
examples show that the traditional design strategy 
is not time-optimal, and the potential computer 
time gain of the optimal strategy over the 
traditional one increases with system size and 
complexity. 

Keywords—System design; optimal control 
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I. INTRODUCTION 

One of the main problems of a large system design 
is the excessive computer time that is necessary to 
achieve the final point of the design process. The 
traditional design strategy for the topology defined 
analog system includes two main parts as a rule: a 
model of the system and a parametric optimization 
procedure that achieves the objective function 
optimum point. In this case, optimization is carried out 
in the space of independent parameters, and 
dependent parameters are determined as a result of 
the analysis of the system model. Besides the 
traditionally used ideas of sparse matrix techniques 
and decomposition techniques [1-5] some another 
ways were proposed to reduce the total computer 
design time. To overcome these problems some 
special methods were developed. For example, a 
method that determines initial point of the optimization 
process by centering [6], geometric programming 
methods [7] that guarantee the convergence to a 
global minimum, but, on the other hand,  this require a 
special formulation of the design equations to which 
additional difficulties accompany. Another approach 
based on the idea of a space mapping method [8-9] 

may also provide a completely satisfactory solution 
with the necessary accuracy. 

 Some alternative stochastic search algorithms, 
especially evolutionary computation algorithms, can 
solve the problem of finding the global minimum and 
have been developed in recent years. An analysis of 
various stochastic algorithms for system optimization 
allowed select some groups: simulated annealing 
method [10-12], evolutionary computing techniques 
that produce some different approaches as 
evolutionary algorithms [13-16] particle swarm 
optimization (PSO) method, GA, differential evolution, 
genetic programming. A PSO technique [17-19] is one 
of the evolutionary algorithms that competes with 
genetic algorithms. This method has been 
successfully used to solve electromagnetic problems 
and to optimize microwave systems. 

However, the design idea can be changed by 
connecting both parts, the system model and the 
parametric optimization procedure, provided that all 
system parameters are independent. In this case the 
objective function of the optimization procedure 
includes additional penalty functions that simulate the 
model of the physical system. On the other hand it is 
possible to re-determine the total design problem, to 
generalize it, to obtain a set of the different design 
strategies. A general formulation of the circuit 
optimization problem was developed on a heuristic 
level some decades ago [20]. With this approach, we 
can ignore the Kirchhoff laws for all or part of the 
chain in the optimization process. The practical 
aspects of this idea were developed in works [21]-[22] 
in an extreme case where all the equations of the 
circuit were not solved during the optimization 
process. 

From the computer time viewpoint the optimal 
design strategy can be defined as the strategy that 
achieves the optimum point of the objective function of 
the design process for the minimum CPU time. The 
generalized approach for the analog system design on 
the basis of control theory formulation was elaborated 
in some previous works, for example [23]. 

 

 The idea of using control theory was developed on 
a continuous form in [24]. In this paper, this idea is 
presented in a discrete form more familiar to system 
design problems. This approach generalizes the 
design problem and can reduce the overall system 
design time by finding the best optimization strategy. 
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 II. PROBLEM FORMULATION 
 
The design process for any analog system design 

can be defined as the problem of the objective 

function  XC  minimization for 
NRX   with the 

system of constraints. It is assumed that the minimum 
of the objective function corresponds to the 
achievement of all design goals, and the system of 
constraints is a mathematical model of a physical 
system. It is supposed also that the topology of the 
physical system is done and the model can be 
described as the system of nonlinear algebraic 
equations: 

  0Xg j  , Mj ,...,2,1 ,             (1) 
 

where M is the number of dependent variables. The 

vector X can be separated in two parts:  XXX  , , 

where the vector KRX   is the vector of independent 
variables, K is the number of independent variables 

and the vector  MRX   is the vector of dependent 
variables (N=K+M). This separation is very 
conditional, because any variable can be defined as 
independent or dependent parameter.  
 

 The parametric optimization process for minimizing 

the objective function  XC  for a two-step procedure 

is generally determined by the following vector 
equation: 
 

s

s

ss HtXX 1 ,        (2) 
 

with constraints (1), where  s  is the iterations number, 

st is the iteration parameter, 1Rts  , H is the 

operator that defines the direction of the objective 

function  XC  decreasing. The vector H is the 

function of  XC . This is a typical formulation for the 

constrained optimization problem. This problem is 
transformed to the unconstrained optimization 
problem for K variables if the system (1) is solved for 
M dependent components of the vector X. In this 
case, the design problem is defined as the traditional 
design strategy (TDS) in the space of independent 

variables 
KR : 

 

s

s

s1s HtXX   ,        (3) 
 

with the system  (1) which is solved at each step of 
the optimization procedure. 
 

 The specific character of the design process at 
least for the electronic systems consists in the fact 
that it is not necessary to fulfill the conditions (1) for all 
steps of the optimization process. The fulfillment of 
these conditions is quite sufficient for the end point of 
the design process. 
 

The problem (1), (3) can be re-defined in the form 
when there is no difference between independent and 
dependent variables. This is the main idea for the 
penalty function method application. In this case the 
vector function H is the function of the objective 

function  XC  and the additional penalty function 

 Xψ . The structure of the penalty function must 

include all equations of system (1) and can be 
defined, for example, in the following form: 

 

   



M

1j

s2

j

s Xg
1

Xψ


,        (4) 

 

where δ is the adjusting parameter.  
In this case we define the design problem as the 

unconstrained optimization in the space 
NR  without 

any additional system but for the other type of the 

objective function  XF . This function is defined for 

example as an additive function: 

     XψXCXF          (5) 
 

In this case, it is necessary to achieve the 

minimum of the initial objective function  XC  and to 

comply with system (1) at the end point of the 
optimization process by minimizing the function 

 XF . This is a modified traditional design strategy 

(MTDS) and it produces another design trajectory line 

in the space NR . On the other hand, the idea of 
using an additional penalty function can be 
generalized if the penalty function is composed only 
as part of system (1), and the other part of this system 
is specified as constraints. In this case the penalty 
function includes first Z items only, 

   



Z

1i

s2

i

s Xg
1

Xψ


, where  M0,Z  and M-Z 

equations make up one modification of the system (1): 
 

   0Xg j  , M2,...,Z1,Zj         (6) 
 

It is clear that each new value of the parameter Z 
produces a new design strategy and a new trajectory 
line. This idea can be generalized more in case when 

the penalty function  Xψ  includes Z arbitrary 

equations from the system (1). The total number of 

different design strategies in this case is equal to 
M2  

if the parameter Z can have all values of the region 

 M0, . These strategies form the structural basis of 

the set of different design strategies. All these 
strategies exist inside the same optimization 
procedure. The optimization procedure is realized in 

the space ZKR  . 

The number of the dependent variables M 
increases with the system complexity increasing and 
the number of different design strategies increases 
exponentially. These strategies have various 
computer times because they have different operation 
number. It is appropriate in this case to define the 
problem of the optimal design strategy search that has 
a minimal computer time. Here and further the 
optimality of the design process is defined as the 
computer time minimization. 

 III. OPERATIONS NUMBER EVALUATION 
 
 It is very useful to evaluate the operations number 
to compare the different kinds of design strategies. Let 
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us define the operator H by means of the gradient 
method of optimization. In case when the number of 
independent parameters is variable and equal to K+Z 
the following two systems are used: 
 

i

i

xd

F(X)d
b

dt

dx
 , ZK1,2,...,j        (7) 

   0Xg j  , M2,...,Z1,Zj         (8) 

where         Xg
1

XCXF
Z

1j

2

j





. 

 

In this case the total operations number No for the 

solution of the systems (7)-(8) can be evaluated as: 
 

Z)P]}}(MP)(1Z)(MZ)S[(M

1)Z(PZ){CK(1ZL{KN

23

0




             (9)  

 
when the Newton's method is used for the solution of 
the system (6). Formula (9) gives the operations 
number for the traditional design strategy when Z=0 
and for the modified traditional design strategy when 
Z=M. Sometimes the necessary operation number C  
for the cost function C(X) calculation do not has 
dependency from the independent parameters 
number K+Z, but for the majority of electronic systems 
is in proportion to the sum K+Z (C=c(K+Z)). Formula 
(9) in this case is transformed into following 
expression: 
 

Z)P]}}(MP)(1Z)(MZ)S[(M

1)Z(PZ)Z){c(KK(1ZL{K(Z)N

23

0




   (10) 

 
Analysis of the number of operations N as a function 
of Z by formula (10) gives the conditions for the 
minimum computer time. In the case when system (6) 
is linear, this general design strategy has practically 
no preference in computer time, as shown in [1]. 
Formula (10) gives the optimum point Zopt that is 
within the region (0, M) for the nonlinear system (6). 
 

 In more general case, when the system's model 
can be separate on two parts as linear and nonlinear 
we have the following two systems: 
a) nonlinear part is given by 
 

  0Xg j  ,  YM1,2,...,j        (11)
          

b) linear part is given by 
 

A X  =  B        (12) 
 

where  0,1 ; A and B are matrices of the order  

   ZM1   . In this case, the formula for estimating 

the number of operations has the following form:  
 

 

   

     

     

   P]}}YM1P

YMYM[SY1PZ

1MZ]1[MZ1M{C

ZYK1ZY{KLZY,N

23

3

0













    (13)    

An analysis of this formula shows that for most 
practical problems it is true that the optimum point of 
the function N0(Y,Z) is inside the given area. This 
optimal point exists for various optimization methods, 
both for the gradient method and for the Newton 
method or the Davidon-Fletcher-Powell method.  
 Optimization of the dimension of the space of 
independent variables leads to a reduction in the total 
number of operations and, consequently, to a 
reduction in the total computing time when designing 
an electronic system. An analysis of the design 
process of various electronic systems shows that the 
optimal dimensions of the space of independent 
parameters can reduce the total CPU time from 100 to 
n*1000 times. This optimal space dimension has 
dependency from electronic system size and topology. 
In this paper, the problem of finding the optimal space 
dimension is solved by a more general approach 
based on the theory of optimal control. The total 
computer time serves as an objective function of 
finding the optimal strategy. 

 IV. CONTROL THEORY APPLICATION 
 
 The design process of any analog system can be 
defined in discrete form as the problem of minimizing 

the generalized objective function  UX,F  by means 

of the system (14) with constraints (15):   
 

  UX,ftxx is

s

i

1s

i  , N1,2,...,i  ,    (14)            

 

     01  Xgu jj
, Mj ,...,2,1 .     (15) 

 

 The functions  UX,fi
 are defined by the 

optimization method and give the direction of the 

generalized cost function  UX,F  decreasing. U is the 

vector of the special control functions 

 m21 u,...,u,uU  , where Ωu j  ;  0;1Ω  . The 

functions  UX,fi
 for example for the gradient 

method are defined as: 

   UX,F
δx

δ
UX,f

i

i  , K1,2,...,i   

          (16) 

   

 
  Xηx

t

u1

UX,F
δx

δ
uUX,f

i

s

i

s

Ki

i

Kii












, N2,...,K 1,Ki   

where the operator ix /  hear and below means 

 
   

i

p
MK

1Kp pii x

x

x

X

x

X
X

δx

δ












 





 , 
s

ix  is equal 

to  dttx i  ;  Xηi
 is the implicit function 

(  Xηx ii  ) that is determined by the system (15). 

The generalized objective function  UX,F  is defined 

as:  
 

      UX,ψXCUX,F        (17) 
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and now has a dependence on the vector U. The 

penalty function  UX,ψ  is defined as: 
 

    



M

1j

2

jj Xgu
1

UX,ψ


.      (18)  

 
 This formulation of the problem of the design 
process allows you to redistribute the cost of 
computer time between solving problems (14)-(18). 
The control vector U is the main tool for the 
redistribution process in this case. Practically an 
infinite number of the different design strategies are 
produced because the vector U depends on the 
optimization procedure current step. The problem of 
finding an optimal design strategy is now formulated 
as a typical problem of minimizing a functional in 
control theory. The functional that needs to minimize 
is the total CPU time T of the design process. This 
functional depends directly on the operations number 
and on the design strategy that has been realized. 
The main difficulty of this definition lies in the unknown 

optimal dependencies of all control functions ju .  

 The idea of setting the system design problem as a 
problem of minimizing the control theory functional 
does not depend on the optimization method and can 
be incorporated into any optimization procedure. In 
this work, the gradient method is used, but any 
optimization method can be used, as shown in [23]. 
 

 Now the process for analog circuit design is 
formulated as a dynamic controllable system. The 
minimal-time design process can be defined as the 
dynamic system with the minimal transition time in this 
case. 

 V. LYAPUNOV FUNCTION OF DESIGN PROCESS 
 

 The presence of many different design strategies 
leads to the need to define some function or functions 
that could characterize the properties and distinctive 
features of each individual strategy. It is required to 
determine a special criterion that allows implementing 
an optimal or quasi-optimal algorithm by analyzing 
according to this criterion. 
 

 We need to define a special criterion that permits 
to realize the optimal or quasi-optimal algorithm by 
means of the optimal switch points searching. A 
Lyapunov function of dynamic system serves as a 
very informative object to any system analysis in the 
control theory. It is proposed to use the Lyapunov 
function of the design process to identify the optimal 
structure of the algorithm. 
 

 There is freedom in choosing the Lyapunov 
function due to the ambiguity of the form of this 
function. We can use any form of the Lyapunov 
function. Let us define the Lyapunov function of the 
design process (14)-(18) by the following expression: 
 

     
i

2

ii axXV        (19) 

 

where 
ia  is the  stationary value  of  the  coordinate 

ix ,  in  other words the set of all the coefficients 
ia  is 

the main objective of the design process. The function 
(19) satisfies all of the conditions of the standard 
Lyapunov function definition for the variables 

iii axy  . Inconvenience of the formula (19) is an 

unknown point  N21 a,...,a,aA  , because this 

point can be reached at the end of the design process 
only. We can use this form of the Lyapunov function if 
we already found the design solution someway. On 
the other hand, it is very important to control the 
stability of the design process during the optimization 
procedure. In this case we need to construct other 
form of the Lyapunov function that doesn’t depend on 
the unknown stationary point. Let us define two new 
forms of the Lyapunov function by formulas: 
 

     rUX,FUX,V        (20) 

 

  
 

 















i

2

ix

UX,F
UX,V       (21) 

 

where F(X,U) is the generalized cost function of the 
design process. The formula (20) can be used when 
the general objective function is non-negative and has 
zero value at the stationary point A. Other formula can 

be used always because all derivatives ixF/  are 

equal to zero in the stationary point A.  
 

  We can define now the design process as a 
transition process for controllable dynamic system 
that can provide the stationary point (optimal point of 
the design procedure) during some time. The problem 
of the time-optimal design algorithm construction can 
be formulated now as the problem of the transition 
process searching with the minimal transition time. 
There is a well-known idea [25-26] to minimize the 
transition time by means of a special selection of the 
right part of the main system of equations, in our 

case, these are functions  UX,f i
. It is necessary to 

change the functions  UX,f i
 by means of the 

control vector U election to obtain the maximum 
speed of the Lyapunov function decreasing (the 
maximum absolute value of the Lyapunov function 
time derivative dV/dt). Normally the time derivative of 
Lyapunov function is non-positive for the stable 
processes. In this case we can compare the different 
design strategies by means of the function V(t) 
behavior. 

 VI. NUMERICAL RESULTS 
 
 The optimization procedure was analyzed for some 
non-linear circuits. 

A. Example 1 

Let us design the nonlinear circuit shown in Fig. 1. 
Consider a simple non-linear voltage divider circuit. A 
non-linear element has the following dependency: 
yn=a+b(V1-V2)

2
. The admittances y1, y2, y3 are positive 

and compose a set of independent circuit parameters 
(K=3). 

http://www.jmest.org/
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Fig. 1. Two-node nonlinear passive circuit. 

 
The node voltages V1, V2 are the dependent 

parameters (M=2). Vector X consists of the following 
five components: (x1, x2, x3, x4, x5), where x1

2
 =y1, x2

2
 

=y2, x3
2
 =y3, x4 =V1, x5 =V2. By defining the 

components x1, x2, x3 using the above formulas, we 
can automatically obtain positive values of the 
conductance, which eliminates the issue of positive 
definiteness for each conductance and allows us to 
perform optimization in the full space of the values of 
these variables without any restrictions. 

 

The model of this circuit includes two equations 
corresponding to Kirchhoff’s laws. The objective 
function C(X) is determined by the formula C(X)=(x5-
m1)

2
+((x4-x5)-m2)

2
, where m1 and m2 are 

predetermined values of the divider voltages. This 
circuit is characterised by two (M=2) dependent 
parameters (x4, x5), and three (K=3) independent 
parameters (x1, x2, x3). The control vector has the next 
structure: U=(u1,u2). The structural basis of the various 
strategies includes four strategies with the following 
control vectors: (00), (01), (10), and (11). The 
mathematical model of the circuit is determined by the 
following equations: 

 

0xx))xb(x)(ax(x)xx(1(X)g 2

24

2

5454

2

141   

         (22) 

0xx))xb(x)(ax(x(X)g 2

25

2

54542   
  

It is from the solution of system (15) that the values 
of the dependent variables x4, x5 can be determined 
and then the value of the objective function C(X) can 
be calculated. In the case of the transformation of the 
two dependent variables x4, x5 (or at least one of 
them) into independent ones, it is necessary to form a 
generalized objective function F(X,U) according to the 
following formula: 

 

        /δXguXguXCUX,F 2

22

2

11      (23) 

Consider the optimization problem for the circuit 
shown in Fig. 1. Let a=1, b=1, m1=0.25, and m2=0.35. 
We define the accuracy of the design process as 10

-7
. 

This means that we need to reduce the V(t) function to 
this value. In this case, the solution of the design 
problem gives the following results: x1=1.807, 
x2=1.233, x3=1.255, x4=0.600, x5=0.250. These results 
were obtained using four different strategies defined 
by four control vector structures (00), (01), (10), and 
(11). All strategies have the same final result, but 
different number of iterations and CPU time. The 
number of iterations and the total computing time for 
these strategies are shown in Table 1 with an 

accuracy of ε=10
-7

. This accuracy corresponds to the 
value of the Lyapunov function calculated by formula 
(20) with the parameter r=0.5. 

 

TABLE 1. ITERATIONS NUMBER AND CPU TIME FOR FOUR STRATEGIES 

OF STRUCTURAL BASIS. 
___________________________________________ 

N    Control     Iterations       Total CPU 
     vector       number          time (s) 

_____________________________________________________ 

1      (00)            6881               0.371 
2      (01)            4832               0.232 
3      (10)            7266               0.342 

  4      (11)            1102               0.057 
_____________________________________________________ 

 

 We see that TDS with control vector (00) has more 
CPU time than other strategies. The best strategy is 
MTDS with the control vector (11) having a time gain 
of 6.5 times compared to TDS. 
 

 Projections of four trajectories corresponding to 
four strategies are shown in Fig. 2. 
 As we can see, all trajectories have the same start 
S and final F points, but they have very different 
iterations number and CPU time. It can be seen that 
all strategies are divided into two groups. The first 
group includes TDS with control vector (00) and 
strategy (10). To the second - MTDS, with a control 
vector (11) and a strategy (01). 
 

 The Lyapunov function dependence on the 
number of iterations is shown in Fig. 3. 

 
Fig. 2. Projections x3 – x5 of trajectories with the control 

vector (00), (01), (10) and (11) in the phase space. 

  

 
Fig. 3. Dependence of the Lyapunov function for all 

strategies of the structural basis. 
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It can be seen from this figure that the strategy with 
a higher Lyapunov function decrease rate has a 
smaller number of iterations. This idea can serve as 
the basis for the formation of some hypothesis 
regarding the relationship between the behaviour of 
the Lyapunov function of an arbitrary design strategy 
and the processor time corresponding to this strategy. 

B. Example 2 

The last example corresponds to the single-stage 
transistor amplifier in Fig. 4. 

 

The conductivities y1, y2, y3 are positive and 
compose the set of non-dependent parameters of the 
circuit (K=3). The Ebers-Moll static model of the 
transistor has been used. Nodal voltages V1, V2, V3 for 
nodes 1, 2 and 3 are the dependent parameters 
(M=3). Let's define a vector of variables X ϵ R

6
, 

including six components (x1, x2, x3, x4, x5, x6): x1
2
=y1, 

x2
2
=y2, x3

2
=y3, x4=V1, x5=V2, x6=V3. A static Ebers-Moll 

model of transistor was used [27]. 
 

The objective function C(X) of the optimization 
process was determined as the sum of the squares of 
the differences between the previously specified and 
current values of the nodal voltages and corresponds 
to formula (24): 
 

   


 
M

1i

2

i0iK VxXC ,      (24) 

 
where V10,V20,V30 are the before-defined values of 
nodal voltages. 

The circuit model is defined by Kirchhoff's laws as: 
 

    0xxEIXg 2

140B1   

  0xxIXg 5

2

2E2       (25) 

    0xxEIXg 2

361C3   
 

where IB, IE, IC – are the base, emitter and collector 
currents, respectively. This system serves as a 
system of constraints for minimizing the objective 
function C(X). The control vector U consists of three 
components, U=(u1,u2,u3).  

Using the generalized approach, we transform 
system (25) into system (26). 

 

    0Xgu1 jj  ,  j=1,2,3.     (26) 

 

 
 

Fig. 4. Single-stage transistor amplifier. 

The generalized objective function F is now 
defined as follows: 

 

     Xgu
ε

1
XCUX,F

3

1j

2

jj


      (27) 

  
 The results of the analysis for a full structural basis 
of the design strategies are shown in Table 2 and 
Table 3 for the precision ε=10

-2
 and ε=10

-3
 

respectively. 
 

Table 3 shows that there are three strategies 
(011), (101) and (111) that solve the design problem 
in significantly less computer time than the other five. 
The best strategy (111) gives a time gain of 32827 
times compared to the TDS with the control vector 
(000). Strategies (011) and (101) have a gain in 
computer time of 2000 or more. This comparison was 
made with a rather low accuracy of solving the 
problem (ε=10

-2
). In the case of increasing the 

accuracy of solving the problem to ε=10
-3

, only these 
three strategies solve the problem, since other 
strategies do not allow achieving such accuracy of the 
solution, as can be seen from Table 4. Experiments 
were carried out with an increase in the possible 
number of iterations up to 10

8
 (in this case, the 

computer time was more than an hour for each 
strategy), and yet the remaining five strategies did not 
reach the established accuracy of the solution ε=10

-3
. 

 
TABLE 2. DATA OF THE FULL STRUCTURAL BASIS OF OPTIMIZATION 

STRATEGIES FOR ε =10
-2

 FOR THE CIRCUIT SHOWN IN FIG.4. 

___________________________________ 
          N      Control     Iterations         Total CPU 

     vector      number            time (s) 
___________________________________ 

 1 (000)        6026364            196.966 
 2 (001)          324881    12.952 
 3 (010)          441166    12.317 
 4 (011)              3092     0.099 
 5 (100)          648640    20.536 
 6 (101)              3168        0.089 
 7 (110)          470755    14.842 
 8 (111)                308     0.006 

___________________________________ 
 

 
TABLE 3. DATA OF THE FULL STRUCTURAL BASIS OF OPTIMIZATION 

STRATEGIES FOR ε =10
-3

 FOR THE CIRCUIT SHOWN IN FIG.4. 

___________________________________ 
          N    Control     Iterations       Total CPU 

    vector      number         time (sec) 
___________________________________ 

 1      (000)            -     - 
 2      (001)            -     - 
 3      (010)            -     - 
 4      (011)         3838         0.123 
 5      (100)            -     - 
 6      (101)         4197         0.118 
 7      (110)            -     - 
 8      (111)           383         0.007 

___________________________________ 
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Studies have shown that the ultimate accuracy of 
the solution for the strategy (011) is 7.7·10

-5
 and is 

achieved in 89000 iterations. Two strategies (101) and 
(111) allow us to solve the problem with an accuracy 
of 1.1·10

-8
. In this case the number of iterations for 

strategy (101) is 2203105, and for strategy (111) it is 
220533. Apparently, the results for the other five 
possible strategies are related to the problem of 
getting into local minima of the objective function, from 
which these strategies are not able to get out. At the 
same time, strategies (101) and (111) make it 
possible to find the global minimum of the objective 
function. 

 

 Projections of eight trajectories corresponding to 
the design strategies are shown in Fig. 5. All 
strategies have the same initial S and final F points. 
Again, we can state that all strategies are divided into 
two groups. The first group includes CDS with control 
vector (000) and strategies (010), (100) and (110). To 
the second - MTDS, with the control vector (111) and 
strategies (001), (011) and (101). It can also be seen 
that the strategies of the first group have a much 
shorter execution time and higher accuracy than the 
strategies of the second group. 
 

 The behavior of the functions V(t) during the 
design process is shown in Fig. 6. 
 

 
 

Fig. 5. Projections x3 – x6 of trajectories in the phase space 
for eight strategies. 

 
 

 
 

Fig. 6. Dependence of the Lyapunov function for all design 
strategies of the structural basis. 

 We see that the TDS with the control vector (000) 
has the largest processor time of all strategies of the 
structural basis and, at the same time, the minimum 
rate of decrease of the Lyapunov function. The 
Lyapunov function was calculated by formula (20) for 
r=0.5. As we can see from Fig. 9 the function V(t) give 
an exhaustive explanation for the design process 
characteristics. First of all we can conclude that the 
speed of decreasing of the Lyapunov function is 
inversely proportional to the design time. 
 

 We see that all the curves are very well ordered 
both in terms of the time required to design the circuit 
and in terms of the rate of decrease of the Lyapunov 
function. There is a correlation between the 
behaviour of the Lyapunov function and computing 
time. A strategy that has a shorter execution time, at 
the same time, has a faster decrease in the function 
V(t). We can analyze the behaviour of the function 
V(t) for the initial time interval by parallel computing 
for different strategies, and based on this analysis, 
we can predict the strategies that have the minimum 
total machine time to develop. 

 V. CONCLUSION 
 

 The problem of the minimal-time design algorithm 
construction can be solved adequately on the basis of 
the control theory. The design process in this case is 
formulated as the controllable dynamic system. The 
Lyapunov function and its time derivative include the 
sufficient information to select more perspective 
design strategies from infinite set of the different 
design strategies that exist into the general design 
methodology. The Lyapunov function V(t) was 
proposed to compare the different design strategies 
and to predict the strategy that has a minimal design 
time. The successful solution of this problem allows 
choosing promising strategies for designing electronic 
circuits with minimal computing time. 
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