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Abstract—Analysis of buckling of anisotropic 
plates within small deformation theory of 
elasticity is considered. Kirchhoff’s vertical 
displacement as a face variable introduced in our 
recently published monograph, ’Poisson Theory 
of Elastic Plates’ is used here for the analysis of 
onset of buckling of anisotropic plates.  Due to 
coupling of extension problems subjected to in-
plane compressive loads, the analysis is 
presented here in terms of polynomial functions 
as used in the above cited monograph. Due to 
difficulty in generating the software for the higher 
order polynomial functions, Fourier Sinusoidal 
series for higher order corrections of six stress 
components is suggested for proper estimation 
of buckling loads. 
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I.  Introduction  
  
     In extension problems, in-plane stresses in 
terms of Airy’s stress function are independent 
of material constants. The displacements are, 
however, dependent on material constants and 
solutions for displacements are through 
satisfying the compatibility conditions (three in 
the interior and three on the boundary).  Analysis 
is confined, here, to displacement-based theories. 
Initial displacement variables [u, v]0 in extension 
problems and transverse shear stresses in the 
auxiliary bending problems are independent of 
thickness-wise coordinate (z). Kirchhoff 
displacement w0 is generally a domain variable 
in the reported two-dimensional theories. In-
plane displacements [u, v]0 are domain variables 
and solutions for them remain same for both 

static and z-integrated equilibrium equations. 
Kirchhoff’s w0 is treated as a face variable in our 
recently published monograph [1] in resolving 
seventeen-decade old Poisson-Kirchhoff 
boundary conditions paradox. Its utility as a face 
variable is initiated here in the analysis of 
buckling problems. 
  
II  PRELIMINARIES 
  
For simplicity in presentation, a square 
anisotropic plate bounded within 0 ≤ X, Y ≤ a, 
Z= ± h planes with reference to Cartesian co-
ordinate system (X, Y, Z) is considered. 
Coordinates x= X/a, y=Y/a, z=Z/h, 
displacements (u, v, w) = (U, V, W)/h, and half- 
thickness ratio α = (h/a) in non-dimensional form 
are used. Equilibrium equations in stress 
components are (with 3-D stress components as 
functions of coordinates x, y, and z) 
  
 α (σx,x + τxy,y) + τxz,z = 0      (1a)                          
α (σy,y + τxy,x) + τyz,z =  0     (1b) 
α (τxz,x + τyz,y) + σz,z = 0       (2)                             
 
in which suffix after ',' denotes partial derivative 
operator. 
  
Stress-Strain and Strain-Displacement 
Relations 
  
   In displacement-based models, stress 
components are expressed in terms of 
displacements, via, six stress-strain constitutive 
relations, and six strain-displacement relations. 
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In the present study, these relations are confined 
to the classical small deformation theory of 
elasticity. 
  In a recent monograph [1], preliminary 
solutions of transverse stresses in bending are 
governed by Poisson equation. They become 
dependent on material constants through the 
solution of in-plane equilibrium equations in 
terms of displacements. Here, it is convenient to 
denote displacements [u, v, w] as [ui], (i = 1, 2, 
3), in-plane stresses [σx, σy, τxy] and transverse 
stresses [τxz, τyz, σz] as [σi], [σ3+i], (i = 1, 2, 3), 
respectively. With the corresponding notation for 
strains, strain-displacement relations are 
 
[ε1, ε2, ε3] = α [u,x, v,y, u,y + v,x]    (3)                   
[ε4, ε5, ε6] = [u,z + α w,x, v,z + α w,y , w,z] 
    (4) 
           
  The material of the plate is homogeneous and 
anisotropic with monoclinic symmetry. Strain-
stress relations are in terms of compliances [Sij] 
with the usual summation convention of repeated 
suffix denoting summation over specified integer 
values: 
  
εi = Sij σj (i, j = 1, 2, 3, 6)   (5) 
εr = Srs σs (r, s = 4, 5)    (6) 
            
   From semi-inverted above relations, Stress-
strain relations with [Qij] are 
  
σi = Qij [εj – Sj6 σz] (i, j = 1, 2. 3)  (7)                             
σr = Qrs εs  (r, s = 4, 5)     (8)                           
                                
 With σi in equations (7), equations (1) in terms 
of strains become 
  
α [Q1j(εj – Sj6 σz),x + Q3j(εj – Sj6 σz),y] +τxz,z = 0
    (9a)          
α [Q2j (εj – Sj6 σz),y + Q3j (εj – Sj6 σz),x] +τyz,z =0 
    (9b)              
  
 

Note that σ60 (i.e., σz0) does not participate in the 
equilibrium equations but ε60 (i.e, εz) is required 
to nullify errors later in the transverse shear 
strain-displacement relations due to w1 = z εz0.           
   Thickness-wise (z-) polynomial distribution 
functions fn(z) are generated through recurrence 
relations with f0 = 1, f2n+!,z = f2n , f 2n+2,z  = − f 

2n+1 such that f2n+2 (±1) = 0. They are up to n = 3 
  
[fn] = [z, ½(1 – z2), ½z(1 – z2/3)] (10) 
                    
 Displacements [u, v, w] are expressed as 
 
[u, v, w] = fn (z) [un, vn, wn], n = 0, 1.,.(11)                      
  To keep associated 2-D variable as a free 
variable, it is necessary to replace f 2i+1 by f*2i+1, 
with β2i+1 = [f 2i+1(1) / f 2i-1(1)] so that f*2i+1(±1) 
= 0. given by 
  
f*2i+1 = f 2i+1 – β2i+1 f 2i-1, i = 1, 2, ..... (12) 
 
   At the onset of buckling, in-plane 
displacements [u, v] are even functions of z and 
Kirchhoff displacement w0(x, y) in bending is 
kept as a face variable. 
                                    
III   Analysis of Buckling problems 
  
   In-plane displacements [u, v] = z [u1, v1] in 
bending deformation are considered in the on-set 
of buckling of a plate with corresponding in-
plane distribution of strains in face parallel 
planes are (εx, εy)1 = α (u1,x , v1,y). Additional 
term due to large deflection of a plate in 
bending, from von Karman’s theory [2], is 
  
(u1 + v1)

2 / 2 = [(u1
2 + v1

2) / 2 + u1 v1] (13) 
               
so that additional terms in strain-displacement 
relations are εx = u1

2 / 2, ϵy = v1
2 / 2, γxy = u1 v1. 

Above mentioned additional term is from z-
integration of (- z) = c - z2 / 2 such that it is zero 
at z = ±1 so that c = 1/2. Hence, second degree 
terms from von Karman theory are zero along 
the faces of the plate. It implies that the term 
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containing z2 corresponds to f2(z)w2(x, y) in 
normal shear deformation theory [4, 5]. 
 
Onset of Buckling (New Analysis) 
  
   In the classical theory based on Kirchhoff’s 
assumptions, the lateral deflection w0 (x, y) is a 
domain variable.  In a recent article [3] on 
fundamental Theories of Aeronautics/ 
Mechanical structures, past and present Reddy’s 
work is extensively referred in the analysis of 
beams, plates, and shells. Reddy’s third order 
shear deformation theory of plate in buckling is 
based on the following bending displacements 
along with [u, v]0 of stretching problem 
  
u = u0(x, y) + z (1 – z2/3)w2,x – (z3/3) αw0,x    
     (14)    
v = v0(x, y) + z (1 – z2/3)w2,y – (z3/3)αw0,y    
              (15)                                                                                                                                  
                                                                                                                                     
Above bending displacements differ from 
Reissner [4] and Ambartsumian [5] theories in 
which coefficient of each gradient of w0 
corresponds to Kirchhoff’s theory (note that z 
can be replaced by any asymmetric function f(z) 
with [f,z ]z=1 = 1, but (z3 /3) is not a good 
replacement of z.  Each gradient of w2 is from 
thickness-wise integration ∫(1 – z2)dz of normal 
shear deformation theory. It may be useful in the 
analysis of post buckling behavior of the plate 
but not necessary for the onset of buckling. 
   Here, a theory based on our monograph [1] is 
proposed with Kirchhoff w0 (x, y) as a face 
variable. In-plane displacements and strains of 
stretching and flexure problems are assumed at 
the onset of buckling in the form along with 
nonlinear term due to von Karman’s theory 
  
ε1 = α u0,x + α2 {(zψ1 + f3(z)ζ1),xx +  z ζ 1,x

2/2}
          (16a)     
ε2 = α v0,y + α2 {(zψ1 + f3(z) ζ1),yy +  z ζ 1,y

2/2}
          (16b)     
ε3 = α (u0,y + v0,x) + α2 {[(zψ1 + f3(z)ζ1),xy + z ζ 

1,x ζ1,y]           (17)           

ε3+i = [0, 0, S66 σ60], i = 1,2,3      (18)                               
             
    With in-plane stresses of extension problem, 
onset of buckling is due to critical in-plane stress 
resultants λ [Nx ,  Ny ,  Nxy] = λ∫[σx , σy , τxy] dz 
through thickness of the plate (In fact, it is 
possible to consider, in general, scale factors 
λ[α1 , α2 , α3] with  each of αi varying from 0 to 1 
with at least one of them is 1). In the classical 
theory, in-plane stresses are independent of z. 
They normally over estimate critical buckling 
load if one considers exact solutions of these 
stresses. In fact, one can use the solutions of 
linear problems of extension and bending of 
plates from the monograph [1] with initial strains 
  
ε1 = α u0,x + α2 z Ψ1,xx    (19a)  
ε2 = α v0,y + α2 z Ψ1,yy    (19b)           
ε3 = α (u0,y + v0,x) + 2 α2 z Ψ1,xy   (20)                      

Note that governing equations of primary 
bending problem consist of a fourth order 
equation in Ψ1 and a second order equation in 
φ1(x, y).  
 
With known Ψ1, onset of buckling is from 
solution of gradients of ζ 1 from nonlinear 
equations 
  
(ζ1,x)

2/2 = Ψ1,x    (21a)                               
(ζ1,y)

2/2] = Ψ1,y     (21b)                              
                                         
 In the increased nonlinear term due to [ζ1 + δ 1] 
is [ζ1,x

2 + δ 1,x
2]/2 + [ζ1,x δζ1,x] in Eq.(21a) and 

similar expression in Eq. (21b). Neglecting 
squared terms, we get ζ1, = Ψ1 in the in the 
interior of the plate. 
  
Polynomial fk(z) Series solutions for stresses 
and strains [6] 
 
   In a primary extension problem, the plate is 
subjected to symmetric normal stress σz0 = q0(x, 
y)/2, asymmetric shear stresses [τxz, τyz] = ± 
[Txz(x, y), Tyz(x, y)] at the faces of the plate. Due 
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to the out-off plane equilibrium equation, 
prescribed face shears [Txz, Tyz] have to be 
gradients of a harmonic function ψ 1 so that [Txz, 
Tyz] = − α [ ψ1,x, ψ1,y]. Transverse shear stresses 
and normal stress satisfying face conditions are 
  
[τxz, τyz] = −α z [ ψ1,x, ψ1,y], σz0 = q0(x, y)/2 
    (22) 
                                                                                                                                                                       
Above transverse stresses are independent of 
material constants and remain the same within 
the plate.  One should note here that σz0 does not 
participate in the equilibrium equations but 
contributes to the in-plane constitutive relations. 
[τxz, τyz] in the above equation are related to in-
plane displacements [u0, v0] through equilibrium 
equations (1). From constitutive relation,  
  
εz0 = S6j σj0 + S66 q0/2 (j = 1, 2, 3)  (23)                  
                                                                 
Correspondingly, vertical deflection w is linear 
in z and cannot be prescribed to be zero along 
the edge of the plate due to S6j σj0 even if the 
faces are free of transverse stresses. 
 
 Preliminary analysis 
 
   In-plane equilibrium equations in the    
preliminary analysis with [u, v] = [u0(x, y), v0(x, 
y)] are 
  
α [Q1j (εj0 – Sj6 σz0),x + Q3j (εj0 – Sj6 σz0),y] = 
αψ1,x     (24a)  
α [Q2j (εj0 – Sj6 σz0),y + Q3j (εj0 – Sj6 σz0),x] = 
αψ1,y     (24b) 
  
subjected to suitable edge conditions along x 
(and y) constant edges. 
  
 Effect of w = z εz0 

  
   We consider higher-order in-plane 
displacement terms f2(z) [u2, v2] which induce 
transverse shear stresses z [τxz1, τyz1], f2(z) σz2 
from constitutive relations, and z w1(x, y) (other 

than the known z εz0) due to strain-displacement 
relations in the domain of the plate. 
    In-plane displacements [u2, v2] are related 
from transverse shear-strain relations and 
constitutive relations to [τxz1, τyz1], even in the 
absence of induced w1, in the form 
  
τxz1 = − [Q44 (u2– α εz0,x) + Q45 (v2 – α εz0,y)] 
    (25a) 
τyz1 = − [Q55 (v2– α εz0,y) + Q45 (u2 α εz0,x)] 
    (25b) 
 
Displacements consistent with shear stresses 
[τxz1, τyz1] are  
  
w = z (εz0 + w1), u = (u0 + f2 u2), v = (v0 + f2v2)
     (26) 
 
and vertical stress σz = σz0 + f2 σz2. 
    In the vertical deflection w, w1(x, y) is added 
to facilitate determination of [u2, v2] from 
satisfying both static and z-integrated 
equilibrium equations.                               
   In extending Poisson theory to extension 
problems, transverse stresses have to be 
independent of vertical displacement. Hence, [u2, 
v2] are modified as 
  
[u2, v2]* = {[u2 − α (εz0 + w1),x ,  
                     v2 − α (εz0 + w1),y]} (27)  
                
so that transverse shear stresses from strain-
displacement relations and constitutive relations 
are 
  
[τxz1, τyz1* = − [(Q44 u2 + Q45 v2), (Q55 v2 +  
                                           +Q45 u2)] (28)             
  
Normal stress σz2 from static equilibrium 
equation is 
  
σz2* = − α [(Q44 u2 + Q45 v2),x + (Q55 v2 +  
                                           +Q45 u2),y]  (29)                   
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To keep [τxz3, τyz3] as free variables in the 
integrated equilibrium equations, f3(z) is 
modified with β1 = 1/3 as f*3(z) = f3(z) − β1z so 
that 
  
[τxz, τyz]** = z [τxz1*, τyz1*] + f3 [τxz3, τyz3] 
    (30)    
with τxz1* = (τxz1 − β1τxz3) and  
τyz1* = (τyz1− β1τyz3)].      
  
  From static equilibrium equation of transverse 
stresses, α [τxz1,x +  τyz1,y ]*= σz2* and α [τxz3,x +  
τyz3,y ] = σz4 so that σz2** = σz2* − β1 σz4 from 
which one gets (from coefficient of z)  
  
α [(Q44 u2 + Q45 v2),x + (Q55 v2 + Q45 u2),y]  + 
β1σz4 = 0     (31)                                                         
  
Strain-displacement relations from equations 
(27) give 
  
εx2* = εx2 – α2 (εz0 + w1),xx     (32a)                          
εy2* = εy2 – α2 (εz0 + w1),yy       (32b)                       
γxy2* = γxy2 – 2α2 (εz0 + w1),xy      (33)  
                                                      
    Here also, [u2, v2] are expressed in terms of 
gradients of two functions [ψ2, φ2], like in 
bending problems, in the form 
  
[u2, v2] = − α [(ψ2,x + φ2,y), (ψ2,y − φ2,x)] 
  
Note that contribution of w1 is the same as ψ2 in 
[u2, v2]* in the integration of equilibrium 
equations since contributions of f1 and f2,z are of 
opposite sign in strain-displacement relations 
whereas the corresponding contribution of f1 and 
z-integrated f2,z are of the same sign. In-plane 
strains become, with εi2* (i= 1, 2, 3) denoted by 
εx2*, εy2*, γxy2*, respectively,   
  
εx2* = − α2 (2ψ2,xx + φ2,yx + α2εz0,xx)   (34a)                 
εy2* = − α2 (2ψ2,yy + φ2,yx + α2εz0,yy)  (34b)      
γxy2* =−α2 (4ψ2,xy + φ2,xx – φ2,yy + 2εz0,xy 
    (34c) 
 Corresponding in-plane stresses are 
  

σi2* = Qij (εj2* − S6j σz0) (i, j = 1, 2, 3) (35)       
 
From the integration of equilibrium equations, 
reactive transverse stresses are 
  
τ xz3* = α [σ1,x + σ3,y]2*    (36a)                    
τ yz3* = α [σ2,y + σ3,x]2*    (36b)                         
σz4 = α (τxz3,x + τyz3,y)* (coefficient of f3) 
    (37)        
 Noting that σz4 from equation (31) is negative of 
the one from equation (37) due to (f3 + f1) = 0 at 
the faces of the plate, the equation governing in-
plane displacements (u2, v2) is 
  
αβ1(τxz3,x + τyz3,y)* = α[(Q44 u2+Q45 v2),x+ 
+(Q55v2    +Q45 u2),y]    (38) 
                                                                        
The above equation is a fourth-order equation in 
ψ2 to be solved along with harmonic function φ2 

with three conditions along x = constant edges 
(with analogue conditions along y = constant 
edges). 
  
(i)     u2* = 0 or σx2* = 0       (39a)    
(ii)    v2* = 0 or τxy2* = 0      (39b) 
 (iii)  φ2 = 0 or τxz3* = 0   (39c) 
  
Concerning solution of a 3-D problem, above 
analysis in the determination of [u2, v2, εz2] is in 
error in the transverse strain-displacement 
relations due to [τxz, τyz] = f3(z) [τxz3, τyz3], and in 
the constitutive relations due to f4(z) σz4. 
    With prescribed [w, τxz, τyz] = ± [w, τxz, τyz]1 
along z = ± 1 faces, induced or reactive σz2 is 
parabolic from equilibrium equation of 
transverse stresses whereas in-plane 
displacements (u, v) or corresponding stresses 
are induced or prescribed parabolic distributions 
to be determined from z-integrated equilibrium 
equations. 
  
Iterative Method: Higher-order corrections 
          
τ*xz2n+1 = (τxz2n+1 – β2n-1τxz2n-1)  (40a)  
τ*yz2n+1 = (τyz2n+1 – β2n-1τyz2n-1)  (40b)  
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σ*z2n+2 = σz2n+2 – β2n-1 σz2n   (41) 
                                 
   At the nth stage of iteration (n ≥ 1), transverse 
stresses [τxz, τyz]2n-1, and w2n-1 are known in the 
preceding stage.        Concerning in-plane 
displacements, one should include additional 
terms such that they are consistent with known 
stresses [τxz, τyz]2n-1 and are free to obtain 
stresses [τxz, τyz]2n+1, σz2n+2 and w2n+1. We have 
from constitutive relations, 
  
γxz2n-1= S44 τxz2n-1 + S45 τyz2n-1   (42a)  
γyz2n-1= S55 τyz2n-1 + S45 τxz2n-1   (42b) 

           
   Modified displacements and the corresponding 
derived quantities denoted with * are with w2n-1 

as correction to εz2n-2 due to [u, v]2n 
  
u*2n = u2n – α (εz2n-2 + w2n-1),x + γxz2n-1(43a)  
v*2n = v2n – α (εz2n-2 + w2n-1),y + γyz2n1(43b) 
                     
 Strain-displacement relations give 
  
ε*x2n = εx2n − α2(εz2n-2 + w2n-1),xx +  

+α γxz2n-1,x    (44a) 
ε*y2n = εy2n − α2(εz2n-2 + w2n-1),yy +  

+ α γyz2n-1,y   (44b) 
γ*xy2n = γxy2n−2α2(εz2n-2+ w2n-1),xy+  

+ α(γxz,y +γyz,x)2n-1  (44c) 
γ*xz2n-1 = γxz2n-1 – (u2n-2 + u2n)  (45a) 
γ*yz2n-1 = γyz2n-1 – (v2n-2 + v2n)  (45b) 

  
In-plane stresses and transverse shear stresses 
from constitutive relations are 
                                            
[σ*i]2n = [Qij ε*j]2n (i, j = 1, 2, 3) (46) 
τ*xz2n-1 = τxz2n-1 – (Q44 u + Q45 v)2n (47a) 
τ*yz2n-1 = τyz2n-1 – (Q55 v + Q45 u)2n  (47b) 

  
One gets from equations (1, 2, 40, 41) noting 
that σz2n* = (σz2n – β2n-1 σz2n+2) 
  
α[(Q44u2n+Q45 v2n),x+(Q54u2n+Q55v2n),y]+  
                                 +β2n-1σz2n+2 = 0  (48)        
  

(Note that w2n-1 is not present in the above 
equation) 
  
For the use of [u*, v*]2n in the integration of 
equilibrium equations, displacements [u, v]2n are 
expressed in the form 
  
[u, v]2n = − α [ψ2n,x, ψ2n,y]   (49) 
        
 Contributions of ψ2n and w2n-1 in [u*, v*]2n are 
the same in giving corrections to w (x, y, z) and 
transverse stresses (in fact, the contribution of 
w2n-1 is through strain-displacement relations in 
static equilibrium equations, and through 
constitutive relations in through-thickness 
integration of equilibrium equations). Hence, 
w2n-1 in [u*, v*]2n is replaced by ψ2n (to be 
independent of w2n-1 used in strain-displacement 
relations) so that [u*, v*, ε*x, ε*y, γ*xy]2n are 
  
u*2n = (2 u2n + γxz2n-1– α εz2n-2,x)  (50a) 
v*2n = (2 v2n + γyz2n-1– α εz2n-2,y)  (50b)  
ε*x2n = (2 εx2n + α γxz2n-1,x – α2εz2n-2,xx)   
    (51a)    
ε*y2n = (2 εy2n + α γyz2n-1,y – α2εz2n-2,yy) 
    (51b)           
γ*xy2n=[2γxy2n+α(γxz2n-1,y+γyz2n-1,x)– 
−2α2εz2n-2,xy]      (51c)   
       
(Note that the role of w2n-1 is in its contribution 
to the integrated equilibrium equations.)  
                                                  
   From the integration of equilibrium equations 
using the strains in equations (50), reactive 
transverse stresses are 
  
τ*xz2n+1=α[Q1j(ε*j–Sj6σz),x+ Q3j(ε*j –−Sj6σz),y]2n  
(j=1, 2, 3)   (52a)                                     
τ*yz2n+1=α[Q2j(ε*j–Sj6σz),y+ Q3j(ε*j –−Sj6σz),x]2n     
(j=1, 2, 3)   (52b)                                                 
σz2n+2 = − α (τ*xz,x + τ*yz,y)2n+1)  (53)                          

         

   One equation governing in-plane 
displacements (u, v)2n, noting that σz2n+2 from 
equation (48) is negative of the one from 
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equation (53) due to (f2n+1,zz + f2n-1) = 0, is given 
by 

  
α β2n-1 (τ*xz,x+ τ*yz,y)2n+1 = α [(Q44 u + 
+Q45 v),x+(Q54u+Q55v),y]2n    (54)                                     
                                                                                                                    
 With the second equation v2n,x = u2n,y, the above 
equation becomes a fourth-order equation in ψ2n 
to be solved along with harmonic function φ2n 
with three conditions along constant x = constant 
edges (with analogous conditions along y = 
constant edge) 
  

(i) (u2n or σ2n)* = 0,  (55a) 
(ii) (v2n or τxy2n)* = 0,  (55b) 
(iii) τxz2n+1* = 0   (55c) 

 
   In principle, one may continue the iterative 
procedure until specified accuracy is achieved. 
However, it is not easy to develop software for 
the generation of polynomial f(z) functions 
involved in the evaluation of necessary β2n-1 to 
keep face shears as free variables. 
  
Use of Sinusoidal series 
  
It is convenient for generation of higher order 
polynomial z-distribution terms to express the 
basic function z in Fourier sine series in the form 
with λ2n−1 = 2/[(2n-1) π], 
  
z = ∑ A2n-1 sin (z/λ2n-1) (sum on n) (56)               
 
in which A2n-1 = ∫ sin (z/λ 2n-1) z dz = λ2n-1 

2. 
  
One gets each polynomial fk(z) function (k = 1, 
2, 3…..) from successive integrations 
  
f2k-1(z) = ∑ λ2n-1 

2k sin (z/λ2n-1) (sum on n)  
    (57a)  
f2k(z) = ∑ λ2n-1 

2k+1 cos (z/λ2n-1) (sum on n)  
    (57b)  
 One should note that replacing z with one term   
approximation [λ1 

2 sin (z/λ1)] is an 
approximation but better than replacing with z3/3 
in Reddy’s third order shear deformation theory.  

    Above each polynomial fk(z) function in 
infinite series of sinusoidal functions can be used 
to overcome difficulty of generating software 
with polynomial functions in the above 
presented iterative method. (However, two-term 
polynomial solutions may be adequate for design 
purposes.) The required analysis was presented 
earlier for isotropic plate [7, 8] and can be 
extended for anisotropic plates. 
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