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Abstract— Archimedes used the perimeter of 

inscribed and circumscribed regular polygons to 
obtain lower and upper bounds for the number pi. 
He started with two regular hexagons and he 
doubled their sides from 6 to 12, 24, 48, until 96. 
Using the perimeter of a 96-sided regular polygon, 
Archimedes obtained bounds for the number pi: 
3+10/71<pi<3+1/7. His algorithm can be 
implemented as a recurrence formula called the 
Borchardt-Pfaff-Schwab method. Dörrie proposed 
an improvement on this algorithm that produces a 
narrower interval which encapsulates pi. Here a 
linear combination of the bounds is realized to 
obtain an improved accuracy approximation. 

Keywords—area; regular polygons; hexagon; 
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I. INTRODUCTION 

Archimedes developed the first algorithm for the 

approximation of the number pi (). In his work 
entitled “On the Measurements of a Circle” 
Archimedes demonstrated that the perimeter of a 
convex polygon inscribed in a circle is less than the 
circumference of the circle. In a similar way, the 
circumference of the circle is less than the perimeter 
of any circumscribed convex polygon. Using this 
property, he started with inscribed and circumscribed 
regular hexagons as an initial value of the estimation 
process. Their perimeters are readily calculated. He 
then demonstrated how to calculate the perimeters of 
regular polygons of twice as many sides. 
Consequently, he used a series of inscribed and 
circumscribed regular polygons applied to the same 
circle. He used a circle with diameter d=1 (r=1/2) [1,2]. 

The length of its circumference is |C|=. 

 

Fig. 1. An (art) illustration of the Archimedes method 
with an inscribed regular 48-gon. 

His method is a recursive process. Let pk and 
Pk denote the length of the perimeters of regular 
polygons of k sides that are inscribed and 
circumscribed, respectively. Consequently, the 
number pi is bounded by the generated values p and 
P: p<π<P, where  

𝑃2𝑘 =
2𝑝𝑘𝑃𝑘

𝑝𝑘+𝑃𝑘
, 𝑝2𝑘 = √𝑝𝑘𝑃2𝑘. 

Archimedes' recurrence formula realizes the 
Archimedes algorithm. This technique is applied to 
produce successive approximations to the number pi. 
The algorithm is also called the Borchardt-Pfaff-
Schwab (BPS) algorithm. Archimedes showed that 
using the perimeters of 96-sided regular polygons, the 
following estimation for the number pi is obtained: 
S<π<T, where S=3+10/71, and T=3+1/7 [1]. 

 
Fig. 2. Archimedes’ initial hexagons with sides 1/2 and 

√3/3. The circle with diameter d= 1 (r=1/2) and |C|=. 

 

Thus, we have bounds for the number pi: 
𝑆 < 𝜋 < 𝑇; the question is how to combine S and T to 
obtain a better approximation using these bounds. 
Very often, it is suggested to take the arithmetic 
average of these values, i.e., T+(S-T)/2 (=3.14185…). 
Here we propose to determine the parameter x in 
such way that it satisfies the following relation: 

𝜋 = 𝑥 ∗ 𝑆 + (1 − 𝑥) ∗ 𝑇. 

The solution of this equation is 𝑥 =
𝜋−𝑇

𝑆−𝑇
≈ 0.6284511 ⋯ 

[3]. The number x is irrational and non-algebraic as its 
formula is expressed using the number pi. We can 
apply a continued fraction to find the best rational 
approximations for this number [4]. The following 
continued fraction has been generated (9 terms) 
u=[0;1,1,1,2,4,6,1,1,3] to approximate x. Table 1 
presents the corresponding numerators and 
denominators taken for the continued fraction u. The 
table shows the value for the assumed representation: 
x=numerator/denominator (a truncated fraction). For 
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example, for 0/1, we have T, for 1/2 we have the 
halved interval, i.e. T+(S-T)/2. The reasonable 
approach is to use x=22/35, as the next term is 
137/218 and is more complicated. With this value for x 
(x=22/35) we have 

𝜋 ≈
22 ∗ 𝑆 + 13 ∗ 𝑇

35
= 3.141592411 …. 

Thus, using a simple linear combination we improved 
the accuracy of the Archimedes’ estimation for the 
number pi. Of course, in such an approach we have to 
know the value of the number pi [3]. 

 

TABLE 1. The approximations from the continued 

fraction of the value x (Numerator/Denominator) & .  

Numerator Denominator Approximation of pi 

0 1 3.1428571430 

1 1 3.1408450700 

1 2 3.1418511070 

2 3 3.1415157612 

5 8 3.1415995980 

22 35 3.1415924116 

137 218 3.1415926750 

159 253 3.1415926390 

296 471 3.1415926557 

1047 1666 3.1415926532 

The technique of such linear combinations is applied 
to other methods given in the presentation below. In 
general, the described approach can be used to find 

interesting approximations to the number . 

II. DÖRRIE’S MODIFICATION 

The BPS method works as follows: new values a′, 
b′ are produced from the old values a, b – which are 
the values from the previous step. It’s an iterative 
process and is relatively easy to implement on a 
computer. Starting with a = 2√3 and b = 3, the values 
for circumscribed and inscribed regular 6-gons, we 
can produce the sequence of intervals [b, a], b < a. 
The successive intervals contain the number π. The 
process of the BPS algorithm is described by the 
formula 

𝑎′ =
𝑎𝑏

𝑎+𝑏
,  𝑏′ = √𝑏𝑎′. 

The formulae generate the sequence of the intervals 
[𝑎′, 𝑏′] ⊂ [𝑎, 𝑏]  and 𝑏 < 𝜋 < 𝑎.  The convergence of 
this method is rather slow comparing to others. 

In his book, the German mathematician 
Heinrich Dörrie, in problem No. 38, presented a 
method to improve Archimedes’ estimations [5]. He 
defined two new series B and A, which give a better 
approximation for the length of the circumference (|C|) 
of the circle with diameter d=1 (r=1/2). 

For given values b and a (obtained from the BPS 
algorithm) a simple transformation is executed. 

𝐵 =
3𝑎𝑏

2𝑎 + 𝑏
, 𝐴 = √𝑎𝑏23

. 

Dörrie demonstrated that the following inequalities 
hold b < B < C < A < a. The sequence B increases to 

C, and the sequence A decreases to C. 
Consequently, the values of B and A bound the 
interval that contains the number pi. The interval [b, a] 
generated in each step of the BPS algorithm contains 
the interval [B, A]. For an initial regular hexagon with 
d=1 we have a= 2√3, b = 3, and after applying Dörrie’s 
method: B = 3.14023, A =3.14734. This is already an 
accuracy achieved by the BPS method with a 96-gon.  

Here the linear transformation is applied to 
the sequences b and a produced by the BPS 
algorithm and its modified version developed by 
Dörrie, thus we have two approximations as the 
number pi is transcendental. 

𝜋 = 𝑥 ∗ 𝑎 + (1 − 𝑥) ∗ 𝑏 

and 

𝜋 = 𝑥 ∗ 𝐴 + (1 − 𝑥) ∗ 𝐵. 

The above equations are solved and the 
parameter x is approximated using the continued 
fraction u. Table 2 summarizes the results for two 
equations. The table gives values for the parameter x 
and the corresponding continued fraction. As the 
number of sides of the regular polygons increases for 
the BPS algorithm, x tends to 1/3. This is exactly the 
same linear weight as was discovered by Snell and 
later proved by Huygens [6,7]. Similarly, based on the 
Taylor series it was shown that the linear combination 
of the form B-(A-B)/5 (thus x=0.2) increases the 
accuracy [8,9]. For example, for k=3 (regular triangles) 
this transformation gives pi= 3.148827 (with B = 

3.117691 and A = 3.273370) where the BPS algorithm 
produces the interval [2.598076, 5.196152] and the 
Snell-Huygens transformation gives pi= 3.464101. 

 

TABLE 2. The continued fractions u for the parameter 
x for regular polygons with n=6,12, 24,48,96,192 
sides. 

Archimedes 

Parameter x Continued fraction u 

0.305090 0;3 3 1 1 1 1 56 1 

0.326429 0;3 15 1 3 6 1 1 1 

0.331617 0;3 64 2 1 1 5 3 1 

0.332905 0;3 258 1 13 3 1 10 7 

0.333226 0;3 1037 13 15 2 2 5 23 

0.333307 0;3 4149 1 1 1 31 1 3 

Dörrie 

Parameter x Continued fraction u 

0.190678027 0;5 4 10 1 293 2 2 3 

0.197786862 0;5 17 1 6 1 13 10 1 

0.199453729 0;5 73 42 20 14526 1 1 2 

0.199863866 0;5 293 1 1 1 2 4 1 

0.199965995 0;5 1176 8 1 2 1 4 25 

0.199991481 0;5 4695 3 4 2 2 1 36160 

The parameter x converges to1/3 and 1/5, 
respectively. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 10 Issue 7, July - 2023  

www.jmest.org 

JMESTN42354231 16206 

TABLE 3. The approximation generated by 
Archimedes and Dörrie algorithms + transformation. 

Archimedes 

Numerator Denominator Archimedes’ pi 

0 1 3.00000000000000 
1 3 3.15470053837925 
3 10 3.13923048454133 
4 13 3.14280049696546 

0 1 3.10582854123025 
1 3 3.14234913054466 
15 46 3.14155520469000 
16 49 3.14160381239538 

0 1 3.13262861328124 
1 3 3.14163905621999 
64 193 3.14159236998715 
129 389 3.14159273003522 

0 1 3.13935020304687 
1 3 3.14159554040839 
258 775 3.14159264319889 
259 778 3.14159265437065 

0 1 3.14103195089051 
1 3 3.14159283380880 
1037 3112 3.14159265357650 
13482 40459 3.14159265358986 

0 1 3.14145247228546 
1 3 3.14159266485025 
4149 12448 3.14159265358799 
4150 12451 3.14159265359071 

Dörrie 

Numerator Denominator Dörrie’s pi 

0 1 3.14023734336617 
1 5 3.14165891274593 
4 21 3.14159121896594 
41 215 3.14159279323989 

0 1 3.14150999364292 
1 5 3.14159357851421 
17 86 3.14159260659710 
18 91 3.14159265999914 

0 1 3.14158751885795 
1 5 3.14159266765297 
73 366 3.14159265358522 
3067 15377 3.14159265358980 

0 1 3.14159233315964 
1 5 3.14159265380805 
293 1466 3.14159265358933 
294 1471 3.14159265359007 

0 1 3.14159263357057 
1 5 3.14159265359320 
1176 5881 3.14159265358979 
9409 47053 3.14159265358979 

0 1 3.14159265233871 
1 5 3.14159265358985 
4695 23476 3.14159265358979 
14086 70433 3.14159265358979 

In the table only the 4 first terms of the continued 
fractions are shown. They are grouped by the results 
generated for 6, 12, 24, 48, 96 and 192 sided regular 
polygons. 

 

III. PLATO AND THE NUMBER PI 

There is an assertion that Plato used the relation 
√2+√3 (= 3.14626437…) as an approximation for the 

number 𝜋 [10]. For this fact we really do not have any 
documented evidence or supporting source materials. 
It is rather only a common sense and widely accepted 
assumption that the philosopher Plato knew of this 
representation for the number pi. 

Consider the unit circle, i.e., the circle with radius 
one (r=1, d=0.5). In the considered scenario, two 
regular polygons are constructed: a regular octagon 
inscribed and a regular hexagon circumscribed, both 
realized on this unit circle. The area of this octagon is 
2√2. It is 8 times the area of the isosceles triangle with 
two sides of the length one. The area of the 
circumscribed hexagon is 6 times the area of the 
equilateral triangle with side √3/3 and this area is 2√3. 
The approximation √2+√3 of the number pi is the 
arithmetic average of the two areas 2√2 and 2√3. 

 
Fig. 3. A regular octagon and hexagon. The area of 
the unit circle (=π) is approximated as √2+√3 (an 
average). 
 

Using the same technique of a linear 
combination of these two estimates (2√2 and 2√3), we 
obtain the continued fraction 
u=[0;1,1,33,1,1,14,19,1,3] for the value 
x=0.5073492…. The results presented in Table 4 
suggest using the ratio 69/136. Such a choice gives 
an elegant new approximation to the number pi. Using 
this formula, we have an approximation which has 6 
correct digits [3]. 
 

𝜋≈√2+√3+ (√2−√3)/68=3.141590293… 
 
TABLE 4. Rational approximation to the number x and 
the obtained pi based on 2√2 and 2√3. 

Numerator Denominator Approximation of pi 

0 1 3.4641016150 
1 1 2.8284271250 
1 2 3.1462643700 
34 67 3.1415205305 
35 69 3.1416580331 
69 136 3.1415902928 

1001 1973 3.1415926618 
19088 37623 3.1415926533 
20089 3959600 3.1415926537 
79355 1564110 3.1415926536 
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IV. RATIONAL APPROXIMATION 

Continued fractions allow generating successive 
best rational estimations of the number pi. These 
approximations are the best among possible rational 
approximations relative to the size of their 
denominators. The accuracy can be increased by 
using fractions with larger numerators and 
denominators. This usually requires more digits in the 
approximation than there are correct significant 
figures achieved in the result. Using the continued 
fraction representations of the number pi we have the 
following sequence: 
3/1, 22/7, 333/106 (= 3.1415 0943396226…), 355/113 
(=3.141592 92035398…), 103993/33102, 
104348/33215, 208341/66317, 312689/99532, 
833719/265381, 1146408/364913, 4272943/1360120, 
5419351/1725033 (=3.141592653 58982…). 
Some of these approximations were used for 
hundreds of years and among them are 3, 22/7, 
333/106, and 355/113. Here we propose to apply the 
weighted combination of two of them, 333/106 and 
355/113, with the goal of increasing the accuracy of 
estimating the number pi. The fraction 355/113 gives 
more exact digits of π than the number of digits used 
to approximate it (i.e., 7 vs. 6). The accuracy can be 
improved by using other fractions with larger 
numerators and denominators. This needs more digits 
in the approximation than correct significant figures 
achieved in the result. The following relation is 
considered to define the approximation for the number 
pi. 

𝑥 ∗
355

113
+ (1 − 𝑥) ∗

333

106
= 𝜋. 

The solution of this equation is the parameter 
x=0.996804698539321…. The continued fraction for 
this solution is u = [0;1 311 1 23 1 2 2 1]. In Table 5 
are presented the corresponding convergents and pi. 
 

355

113
+

(
333
106

−
355
113

)

313
= 3.141592653 62430 ⋯. 

 
TABLE 5. Rational approximation to x and the 

obtained pi () 

Numerator Denominator Approximation of pi 

0 1 3.14150943396226 
1 1 3.14159292035398 

311 312 3.14159265276939 
312 313 3.14159265362430 
7487 7511 3.14159265358879 
7799 7824 3.14159265359021 
23085 23159 3.14159265358974 
53969 54142 3.14159265358981 
77054 77301 3.14159265358979 

Thus, the linear combination of two fractions of the 
form 

355

113
+

(
333
106

−
355
113

)

313
= 𝟑. 𝟏𝟒𝟏𝟓𝟗𝟐𝟔𝟓𝟑 62430 ⋯ 

increases the accuracy of the approximation of . 
 
 

V. CONCLUSION 

In this paper was justified the association 
between the number pi and the square root of 2 and 
3. A formula was proposed to use these values and 

obtain a higher accuracy for . A linear combination 
was proposed to combine rational approximations 
such as 333/106 and 355/113 to improve the 
accuracy. The presented technique is useful to find 
effective approximation to the number pi. Other 
approaches are possible, as ones presented by the 
author, where the onscribed regular polygons are 
applied [11-15]. In Appendix a program in R is 
presented. This program realizes Dörrie’s 
approximation and a linear combination with the 

bounds A and B, where 𝜋 ∈ [𝐴, 𝐵]. 
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APPENDIX  

 
#Program realizes Dörrie’s method 
#+ combination pi=x*A+(1-x)*B 
# Author: Mieczysław Szyszkowicz 
library(contfrac); options(digits=15) 
#m=4; b=2*sqrt(2); a=4 #Use a square or others. 
m=6; b=3; a=2*sqrt(3)  #Use a hexagon 
for (k in 1:6){ 
cn=c(k-1,m); print(cn) 
arch = c(b,a) #Archimedes' results 
# print(arch)  
# Dörrie's transformation 
# The bounds: b<B<pi<A<a 
B=(3*a*b)/(2*a + b) 
A=(a*b*b)^(1/3) 
Dor = c(B,A) # Dörrie's results 
print(Dor); 
#Next Archimedes: 
a=2*a*b/(a+b) 
b=sqrt(a*b) 
#############################  
#Determine x: PI=x*A+(1-x)*B 
#pi= x*A+(1-x)*B 
x =(pi-B)/(A-B); print(x); # x= 0.2 
fracx = as_cf(x, n = 9) 
print(fracx) #continued fraction 
fraction = convergents(fracx) 
print(fraction$A) #Numerators  
print(fraction$B) #Denominators 
for (k in 1:9) { #Use x=fraction 
N=fraction$A[k]; D=fraction$B[k] 
w=N/D; aprPi=w*A+(1-w)*B 
result =c(N,D,aprPi) 
print(result) } # Results  
############################### 
# Results with the estimated x 
aprPix=x*A+(1-x)*B 
resx=c("x=",x,aprPix); 
# Combination with x 
print (resx) }# The end ######################### 
 
A part of the results from the program are presented. 
Here we start with a regular hexagon: 0 6, 0 – first 
step. 
 
The results for a regular hexagon: 
0 6 
3.14023734336617 3.14734519026494 
0.190678027105049 
 0 5 4 10 1 293 2 2 3 
 0 1 4 41 45 13226 26497 66220 225157 

 1 5 21 215 236 69363 138962 347287 1180823 
0.00000000000000 1.00000000000000 
3.14023734336617 
1.00000000000000 5.00000000000000 
3.14165891274593 
 4.00000000000000 21.00000000000000 
3.14159121896594 
 41.00000000000000 215.00000000000000 
3.14159279323989 
 45.00000000000000 236.00000000000000 
3.14159265315619 
13226.0000000000000 69363.0000000000000 
3.1415926535904 
2.64970000000000e+04 1.38962000000000e+05 
3.14159265358966e+00 
6.62200000000000e+04 3.47287000000000e+05 
3.14159265358981e+00 
2.25157000000000e+05 1.18082300000000e+06 
3.14159265358979e+00 
"x=" "0.190678027105049" "3.14159265358979"  
########################################### 
The results for a regular 96-gon: (4,6), 4 -fourth step 
 
4 6 
 3.14159263357057 3.14159273368372 
 0.199965995487192 
 0    5 1176    8    1    2    1    4   25 
 0       1    1176    9409   10585   30579   41164  
195235 4922039 
 1      5     5881    47053    52934   152921   205855   
976341  24614380 
 0.00000000000000 1.00000000000000 
3.14159263357057 
 1.0000000000000 5.0000000000000 
3.1415926535932 
 1176.00000000000000 5881.00000000000000    
3.14159265358979 
  9409.00000000000000 47053.00000000000000     
3.14159265358979 
 10585.00000000000000 52934.00000000000000     
3.14159265358979 
 3.05790000000000e+04 1.52921000000000e+05 
3.14159265358979e+00 
 4.11640000000000e+04 2.05855000000000e+05 
3.14159265358979e+00 
 1.95235000000000e+05 9.76341000000000e+05 
3.14159265358979e+00 
 4.92203900000000e+06 2.46143800000000e+07 
3.14159265358979e+00 
 "x="                "0.199965995487192" 
"3.14159265358979" 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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