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Abstract—This paper analyses the influence of 
the heat-mass driven regimes succession on the 
stability of the boundary layers generated by a 
constant temperature and mass flux vertical 
impermeable wall situated in a constant 
temperature and linearly mass stratified 
environment (air). Two working methods are used: 
the numerical modeling using the finite 
differences method and the linear stability 
analysis (LSA). The numerical modeling considers 
both an instantaneous as well as a periodic 
thermal load at the leading edge of the boundary 
layer and, in this way, it analyzes the instability 
characteristics of the system. Two particular 
parameter sets are considered corresponding to 
the two possible situations: a heat driven 
convection regime and a heat-mass driven 
convection regime succession along the wall. The 
results show that each of the two particular 
parameter sets considered here defines 
convectively unstable systems. A notable 
difference is the influence done by the buoyancy 
forces in the energy balance of the disturbance 
motion.  

Keywords—linear stability analysis; finite 
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I.  INTRODUCTION  

The stability analysis of a boundary layer near a 
vertical impermeable wall is a classical problem of 
great interest for the scientific community [1-20]. 
Applications of this problem in the oceanographic 
double diffusive convection, the melted materials 
solidification are only a few examples of practical 
problems that embedded the fundamental scientific 
results obtained in the last decades. 

This paper is continuing this scientific effort by 
analyzing the stability of the temperature and 
concentration boundary layers near a vertical 
impermeable wall that presents a constant 
temperature and a constant mass flux of a certain 
constituent. The wall is embedded in a constant 
temperature and linearly mass stratified environment. 

 Previous scientific works [21-23] showed that, 
according to the system parameters, only two 
situations are possible: a heat driven convection 

(HDC) or a succession of heat-mass driven convection 
(HDC-MDC) regimes to attain the equilibrium state 
along the wall. For a particular parameters set: Prandtl 

number, 1Pr  , Lewis number, 1Le  , Smith number, 

1Sch  , Rayleigh number, Ra, the buoyancy ratio, N 

and the environment mass stratification, SC, the factor 

    Pr1PrNSchSRaM 32
C   defines the two 

possible situations: a HDC regime along the wall if 

1M   or a HDC-MDC regime if 1M   (Fig. 1). 

This paper analyses two particular parameter sets 
in a first attempt to understand the influence of the 
natural convection regimes on the stability of the 

system [23]: 5000Ra  , 1N  , 1Le  , 72.0Pr  , 

08.0SC  (a HDC regime) and 5000Ra  , 5N  , 

1Le  , 72.0Pr  , 04.0SC  (a HDC-MDC regime). 

Two numerical methods are used in this study: 

 The finite differences method is used to study 
the evolution of the system on two particular thermal 
inputs: a single mode perturbation applied near the 
edge of the wall and an instantaneous perturbation 
applied at an arbitrary point along the wall. 

 The linear stability analysis (LSA) method is 
used to establish the complex wave number (k) for a 
real frequency (ω) input. 

II. MATHEMATICAL FORMULATION 

Fig. 1(a) presents the (x,y) coordinate system that 
is attached to the leading edge of the vertical wall, a 
wall that has a constant temperature, Tw, and a 
constant mass flux, mw, the (u,v) velocity field and, 
also, h, the upper limit of the computational domain. 
The environment has, far from the wall, a constant 

temperature, T, while the linearly stratified 
concentration of a certain constituent is 

xsCC C0x,  , where sC is the stratification 

coefficient, C0 and C,X are the environment 

concentrations at 0x   and at an arbitrary abscissa, 

respectively. Fig. 1(b) and Fig. 1(c) show the 
dimensionless presentation of the problem for the HDC 
case (Fig. 1(b)) and the HDC-MDC case (Fig. 1(c)). 

The dimensional mass, momentum, energy and 
species concentration conservation equations [21-23], 
in the Boussinesq approximation, are: 

http://www.jmest.org/
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 (5) 

where α is the thermal diffusivity, D is the mass 
diffusivity,  is the kinematic viscosity, T is the 
temperature field, C is the concentration field, p is the 
pressure, T, is the thermal expansion coefficient, 
while C is the mass expansion coefficient. 

The boundary conditions that are applied to the 
system (1)-(5) are [21-23] - 

0vu  , wTT  , 
D

m

y

C w



 at 0y  ; (6) 

0v  ,  TT , x,CC   as y ; (7) 

0v  ,  TT , 0,CC   at 0x  ; (8) 
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The dimensionless governing equations [21-23 ]: 
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Fig. 1. (a) The dimensional problem;  the dimensionless problem (b) HDC case, (c) HDC-MDC case . 
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and boundary conditions [21-23]: 

0
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0 , 0 , 0  at 0X  ; (16) 
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are determined by defining the dimensionless 

coordinates: L/xX  , L/yY  , time, 
2L/t , 

velocity field:  /LuU ,  /LvV  temperature, 

  TTTT w , concentration, 

1
wx, DLmCC 

  , stratification parameter, 

 D/m/sS WCC  , stream function: XU  ; 

YV  , and vorticity, XUYV  , as well 

as the Pradtl,  /Pr , Lewis, D/Le  , Smith, 

D/Sch   and Rayleigh,   /LgRa 3
t , numbers 

and the buoyancy ratio, twc /L)D/m(N  , where L is 

the reference length. 

III. THE PERTURBATION REGIME 

In order to analyze the stability of the system a 
small perturbation is applied to the equilibrium base:  
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DB  , (21) 

where the subscripts B and D refer to the base and 
the perturbation fields, while 1 . The system (10)-
(13) along with the boundary conditions (14)-(17) are 
satisfied by the total variables as well as by the base 
solution. Subsequently, we obtain the dimensionless 
conservation equations of the perturbation field:  
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Some scientific researches neglect the DU  and 

the DV  terms of (23)-(25) [1], while other researchers 

consider the complete form of the disturbance 
governing equations [2, 4, 6, 7, 14]. Further, this paper 
neglects the above mentioned terms.    

The dimensionless boundary conditions of the 
perturbation field take the following form: 
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Two perturbation types are applied to the base 
equilibrium temperature fields. 

  An initial, instantaneous perturbation is applied 
at a certain abscissa along the wall and, then, (30) is 
imposed at that particular abscissa. 
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The governing equations of the perturbation field 
are solved using the finite differences method. The 
method as well as the computational domain, number 
of discretization points and the convergence conditions 
were described elsewhere [21]. 
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upper boundary, a buffer region is considered [2, 4, 
7, 19]. Starting at the 0.9H abscissa, at each time step, 
the buffer region modifies the vorticity as follows [4]: 

  oldnew XF  , (32) 

where:   543 615101XF  , 

   1b2b1b XXXX  , HX 2b   and H9.0X 1b  . 

IV. LINEAR STABILITY ANALYSIS 

This method is completing the method presented 
above. It gives us a validation of the results obtained 
using the finite differences method and it helps us to 
gain insights regarding the mechanisms of the energy 
balance of the disturbance motion.  

A transverse wave is considered along the wall with 
a complex wave number, k, and a real frequency, ω: 
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The horizontal and the vertical velocity field and the 
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Replacing (33)-(38) in (22)-(25) and neglecting the 
higher order products of the perturbation variables, the 
following system of equations is obtained: 
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of equations (39)-(41) are: 

0  at 0y  ; (42) 

0  as y . (43) 

The system (39)-(41) with the associated boundary 
conditions are solved using the finite differences 
method with the same characteristics mentioned in 
[23]. In order to avoid the null solution, the determinant 
of the matrix obtained after the discretisation must be 
zero. An iterative process is used in order to find the 
complex wave number, k, that assures a non-zero 
solution. The iterative process stops when the absolute 
value of the determinant is smaller than 1.0e-6 and the 
square of the norm of the wave number variation is 
smaller than 1.0e-12.   

Previous scientific results [1, 8, 10, 20] show us the 
way in which the analysis of the conservation 
equations reveals the rate of change of the kinetic 
energy through the viscous dissipation, the buoyancy 
forces and the energy transfer from the base field to 
the perturbation field for the neutral stability case (the 
case where k and ω are real numbers). Following their 
guidance, the dimensionless form of “the energy 
balance of the disturbance motion” [20], for a complex 
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 dYW
k4

PrRa
ReB

0 i
















 ; (48) 

 dYW
k4

PrNRa
ReC

0 i

M 















 ; (49) 

 dY VW
k4

Pr
kD

0

B

i

2
2

M 


 ; (50) 

  dY W
k4

1
kImM

0 i

M 











 ; (51) 

  dY W
k4

1
kKE

0 i

222




 , (52) 

where  )kk4exp(1W ir , Re is the real part and 

Im is the imaginary part of a variable, while 

 is the 

complex conjugate variable. 

V. RESULTS AND DISCUSSIONS 

The first perturbation considered in this analysis is 
an initial instantaneous thermal load, 8 , that is 

applied at the 3X   abscissa for the HDC case and at 

the 4X  abscissa for the HDC-MDC case. 

Fig. 2 shows the temperature (Fig. 2a) and the 
concentration (Fig. 2b) perturbation fields at the  
dimensionless time 09.0  for the HDC case, while 
Fig. 3 shows the temperature (Fig. 3a) and the 
concentration (Fig. 3b) perturbation fields at the  
dimensionless time 225.0  for the HDC-MDc case.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Temperature (a) and concentration (b)  perturbation field for an instantaneous perturbation at 3X  ; 09.0 ; 

8A  ; 5000Ra  , 1N  , 1Le  , 72.0Pr   and 08.0SC  . 

 

 

Fig. 3. Temperature (a) and concentration (b)  perturbation field for an instantaneous perturbation at 4X  ; 225.0 ; 

8A  ; 5000Ra  , 5N  , 1Le  , 72.0Pr   and 04.0SC  . 
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The perturbation moves downstream in both figures 
proving the presence of a convectively unstable (CU) 
regime. We conclude that the imaginary part of ω 

obeys the inequality 0i  . In this research study only 

real frequencies, ω, will be considered. 

The second type (the single mode) perturbation 
gives us the possibility to measure the complex wave 
number of the perturbation field that installs itself in the 
system for a certain frequency input (ω).  

The HDC case is used as a verification of the 
working method: the frequency of the perturbation 
input has a value of 79.128 . Fig. 4 presents the 
temperature (Fig. 4(a)) and the concentration (Fig. 
4(b)) fields, while Fig. 4(c) and Fig. 4(d) show the time 
evolution of the temperature and the concentration, for 
two points: (1.0, 0.2) and (2.0, 0.2). We notice than 
both the temperature and the concentration values 
decrease downstream in Fig. 4(a) and Fig. 4(b) 
revealing a positive spatial growth rate, ki. From the 
time evolutions of Fig. 4(c) and Fig. 4(d) we also notice 
that the temperature and the concentration values 
have oscillatory behavior and, in time, their amplitude 
attain the equilibrium value. 

For the temperature field, at 1.0y  , the calculated 

medium wave number is 94.1i73.3k  . For the 
same characteristics, the LSA method gives us a wave 
number of 98.1i66.3k   which is a good 
agreement between the two working methods. 

 These results show us that the LSA method can be 
used to determine the complex wave number and to 
proceed further investigating the behavior of the two 
cases considered in this paper (the HDC and the HDC-
MDC cases).  

Further, the LSA method used the following input 
perturbation frequencies: 

 For the HDC case the frequency suggested by 
the scientific literature [7, 17] for a constant 

temperature wall is     2/TgBf
3/23/1 , where 

065.0Pr315.0B  . Consequently, the frequency 

3405.84Ra2884.0 3/2  . The LSA analysis 

determines a complex wave number of 

639.1i562.2k  . 

 For the HDC-MDC case, the frequency 
suggested by the scientific literature [17] for a constant 

heat flux at the wall is    2/k/qgBf
3/2**

, where 

4/1* Pr04.1B  . Consequently, the frequency 

7410.67Ra958.0 2/1  . The LSA analysis gives 

us a value of  92.0i86.1k  . 

Fig. 5 presents the results of the LSA method. 

 

 

 

 

 

 

Fig. 4. Temperature (a), concentration (b) perturbation fields at 60180. ; temperature (c) and concentration (d) 

time variation at two points:   2.0,0.1 —red line  and   2.0,0.2 —blue line; the thermal load is   sin8 , 

7941.128   for 05.0X  , 0Y  , 0 ; 5000Ra  , 1N  , 1Le  , 72.0Pr   and 08.0SC  . 

Fig. 5. . 
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Fig. 5(a) presents the evolution of the B/DM (the 
“relative buoyant production” [10]) and CM/DM ratios 
along the wall for the HDC case. For this case both 
ratios have positive values indicating a destabilizing 
effect of the buoyancy forces. Fig. 5(a) shows that, in 
this case, the contribution of the buoyancy forces, B 
and CM, is smaller than the contribution of the viscous 
dissipative term, DM, to the energy balance of the 
disturbance motion. We notice that the thermal 
buoyancy forces have a greater contribution that the 
buoyancy forces due to the presence of the 
constituent.  

Fig. 5(b) shows the evolution of the B/DM and 
CM/DM ratios along the wall for the HDC-MDC case. 
Both ratios have a destabilizing effect on the 
perturbation flow, but the DM values are always bigger 
than the B or CM values. We, also, notice that for the 
HDC-MDC case the thermal buoyancy contribution to 
the perturbation flow is, in general, smaller than the 
contribution due to the concentration field. A special 
attention can be given to the 2.1X   abscissa where 
strong negative values are encountered for the B/DM 
ratio, while the CM/DM ratio has a relatively high 
positive value. As a transition from a heat driven 
convection to a mass driven convection is expected to 
take place at the point on the wall with an 34.3X   
abscissa, we can expect that this transition is the 
cause of the opposing tendencies of the two types of 
buoyancy forces. Further studies should analyze this 
aspect. 

Fig. 5(c) presents the B/MM and the CM/MM ratios 
variation along the wall for the HDC case. We notice 

the negative values of MM for this particular parameter 
set and the small values of both B/MM and CM/MM 
ratios. It is clear that the “Reynolds stress term”, MM 
[20], is taking energy from the disturbance flow and its 
values are much higher that the energy added to the 
perturbation flow by the buoyancy forces.  

Fig. 5(d) shows the evolution of the B/MM and the 
CM/MM ratios along the wall for the HDC-MDC case. 
The ratios have negative and positive values 
alternating along the wall. Two points are of great 
interest in this case [23]: the  34.3X   point, where 
heat-mass driven change takes place in the base flow 

and the abscissa 73.7X   where the Csx/C   in 

(5). This result invites to a deeper analysis of the 
energy balance of the disturbance motion for a clearer 
understanding of this complex variation. 

VI. CONCLUSIONS 

This paper is an analysis of the stability of two 
natural convection regimes: 

 a HDC regime with the following 

characteristics: 5000Ra  , 1N  , 1Le  , 72.0Pr   

and 08.0SC  . 

 a HDC-MDC natural convective regime with: 

5000Ra  , 5N  , 1Le  , 72.0Pr   and 04.0SC  . 

 These two regimes are convectively unstable as an 
instantaneous perturbation initiated at an arbitrary 
abscissa of the wall moves downstream.  

 

Fig. 5. B/DM (red line) and CM/DM (green line) ratio variation for the HDC case (a) and the HDC-MDC case (b); B/MM (red 
line) and CM/MM (green line) ratio variation for the HDC case (c) and the HDC-MDC case (d). 
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The buoyancy forces due to both temperature and 
concentration are destabilizing the system in both 
cases but, for the HDC regime the temperature 
buoyancy forces have a greater influence than the 
concentration buoyancy force, while for the second 
case the reverse is true. The work done by the 
buoyancy forces are always smaller than both the rate 
of viscous dissipation and the rate of kinematic energy 
transferred from or to the perturbation flow. 

 This analysis is a first step toward the complete 
understanding of the influence that the heat/mass 
driven natural convection regime succession can have 
on the stability of this system. Further analysis for 
higher values of Rayleigh numbers should be 
considered. Also, studies on the resonance 
frequencies of these systems could be a subject of 
great scientific interest. 
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