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Abstract—This paper is an analysis of the 
natural convection process that occurs near a 
vertical boundary of a constant temperature and 
of constant mass flux of a certain constituent, a 
boundary that is embedded in a mass stratified 
and constant temperature environment.  
Throughout the paper the environment considered 
is air, the Lewis number and the Smith number are 
greater than 1.0. The successions of the heat 
and/or the mass driven convection processes that 
attain the equilibrium state along the wall are 
revealed using the scale analysis method, while 
the finite differences method is used to verify 
these results for two particular cases. This 
analysis concludes that, depending on the 
process parameters, only two situations can be 
encountered: a heat driven convection regime or a  
succession of heat and mass driven convection 
regimes along the boundary.  

Keywords—natural convection; mass 
stratification; constant mass flux; scale analysis; 
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I.  INTRODUCTION  

This paper belongs to a group of research analyses 
[1-4] of the natural convection process along a vertical 
impermeable wall embedded in a porous or a fluid 
medium saturated with a certain constituent such that 
the environment is thermally and/or mass stratified. 
Using the scale analysis method, these analyses prove 
that a heat and/or a mass driven natural convection 
succession attains the equilibrium state along the wall, 
a succession that depends on the process 
characteristics and parameters. All these studies [1-4] 
conclude that a specific coefficient defines the heat 
and/or the mass driven convection regimes succession 
along the vertical boundary. 

This paper analyzes the case of a vertical 

impermeable wall situated in a 1Pr   environment 
(air, 72.0Pr  ) saturated with a certain constituent 

such that the Lewis number 1Le   and the Smith 

number 1Sch   (see Fig. 1). The temperature of the 
wall is constant (Tw), while a constant mass flux (mw) 
of the constituent is registered at the wall. Far from the 
wall, the environment registers a constant temperature 
(T∞) and a linearly varying concentration of the 
constituent, C∞,x. 

 The scale analysis indicates the existence of a heat 
driven convection (HDC) regime or a HDC-MDC (mass 
driven convection) regime succession according to Fig. 
2. The finite differences solution of the governing 
equations verifies the scale analysis results for two 
parameter sets. 

II. MATHEMATICAL FORMULATION 

Fig. 1 presents the wall and the Cartesian 
coordinate system attached to it, as well as the 
boundary conditions. The concentration of the 

constituent is: xsCC C0,x,   , as x , where 

sC is the environment stratification parameter. In the 
case of a fluid whose density obeys the Boussinesq 
approximation, the governing equations become [2]: 
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The boundary conditions are [2]: 
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0v  , TT , x,CC   as y ; (7) 

0v  , TT , 0,CC   at 0x  ; (8) 
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where: t is the time, T the temperature, C the 
concentration, h the upper limit of the computational 
domain, u/v the horizontal and the vertical velocity, 
respectively, while p is the environment pressure,    

thermal diffusivity, D mass diffusivity,   kinematic 

viscosity. D/mww   is the concentration gradient at 

the boundary, c  and t   are the coefficients of 

volumetric expansion with concentration and 
temperature, respectively. 

III. SCALE ANALYSIS 

This section studies the transient state (A), the 
equilibrium heat driven convection (HDC) regime (B) 
and the equilibrium mass driven convection (MDC) 
regime (C) using the scale analysis method [5]. 

A. Scale Analysis of the 
Transient State 

During the transient state, the equilibrium between 
the inertia and the horizontal diffusion of heat 
(equation (4)) or the horizontal diffusion of the species 
(equation (5)) defines the boundary layer thickness of 
the temperature field [2]:  

2/12/1

T t~   (10) 

or of the concentration field [2]: 

2/12/1

C tD~  . (11) 

The study realised by [2] defines two aspects of 
interest for this analysis: 

 at the beginning, a HDC regime occurs at each 
abscissa along the wall and it is replaced by a MDC 
regime only if the equilibrium time at that abscissa is 
bigger than the transition time, ttrz [2]:  

  122

trz DNL~t


 , (12) 

where N is the buoyancy ratio: twc /LN   and L is 

the reference length; 

 at the beginning, the Csv   term is the 

dominant term on the left side of equation (5), but the  

x/Cv   term could become greater than the Csv   

term if the equilibrium time at that abscissa is greater 
than ts [2]. 
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B. Scale Analysis of the 
Heat Driven Convection Regime 

As a HDC regime is registered at each abscissa 
along the wall during the first moments of the transition 
state, this HDC regime will be analysed first. Section 
3.3 will analyse the MDC regime. 

For 1Pr  , 1Le    case, [6] proves that the vertical 
velocity order of magnitude is: 
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while the velocity boundary layer thickness is  
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v Pr   and the Prandtl number is  /Pr  . 

Requiring the equilibrium between the horizontal 
diffusion and the vertical convection of heat [2], the 
temperature equilibrium time, boundary layer thickness 
and vertical velocity magnitudes are discovered: 
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where L/xX  ,  /vLV ,   /LgRa 3
t .  

Scale analysis of the concentration field in the HDC 
regime: the concentration field for the 

 

Fig. 1. (a) The dimensional problem; (b) the dimensionless problem. 
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1PrLeD/Sch   case is characterized by the 

vertical velocity   VCTTC /vv  . We note that 

D/Le  . 

Two situations appear: 

1) If x/Cv   is the dominant term in the left side 

of equation (5): The equilibrium between the 
horizontal diffusion of the constituent and the vertical 
convection of it determines the equilibrium time and 
boundary layer thickness of the concentration field: 
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The dimensionless vertical velocity order of magnitude 
of the concentration field in the HDC regime becomes: 

  3/1
TC Sch/XV  . 

The equilibrium time of the concentration field, 

 
TC,echt , is bigger than the transition time, ttrz, if: 

 Pr1/NLePrRaXX 43/43/1
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 (20) 

2) If the Csv   term is the dominant term in 

equation (5): Then the equilibrium time and the 
boundary layer thickness are:  
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, where the dimensionless stratification parameter is 

wCC /sS  . 

The equilibrium time  
TSc,,echt  is compared to ttrz 

and ts: 

a) The equilibrium time  
TSc,,echt  is bigger than 

the transition time, ttrz, if: 
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b) The inequality   sTSc,ech tt   is restricted to 

the following domain: . 
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The relative position of these two abscissa, Xtrz,Sc 
and XS,T, along the vertical plane boundary assures the 
existence of only two possibilities: 

 A HDC regime along the wall if  

C,trzT,SSc,trz XXX   (Fig. 2 (a)) or 

1
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 A HDC regime in the  C,trzX,0  domain and a 

MDC regime in the  ,X Sc,trz  domain (see Fig. 2 (b))  

if    1Pr1PrN/SchSRa 33/4
C  . 

C. Scale Analysis of the 
Mass Driven Convection Regime 

This analysis has as a point of start the results 
obtained by [7] and [8]. The equilibrium between 
viscosity and buoyancy over the entire concentration 
boundary layer thickness gives us the vertical velocity 
order of magnitude: 

 /AtDg~v 2/32/1

wCC , (26) 

where 1A   in [7] and   2Sch1/SchA   in [8].

  
1) MDCSc regime  

In this case, the equilibrium between the horizontal 
diffusion and the vertical convection of the constituent 
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Replacing vC from equation (26), the equilibrium time 
and the boundary layer thickness are: 
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At equilibrium, the vertical velocity scales as: 
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defines the X co-ordinate that separates the MDCC 
and the MDCSc regimes in Fig. 2(b). 

Scale analysis of the temperature field in the 
MDCSc regime: this analysis requires  
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and (29), the temperature boundary layer becomes: 
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  Sch/SLeXL~ CScT,ech  , (31) 

while the vertical velocity order of magnitude is 

   XSLe/Sch~v 4/5
C
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ScT  . 

2) MDCC regime  

The equilibrium between the horizontal diffusion 
and the vertical convection requires 
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while the vertical velocity scales: 
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Scale analysis of the temperature field in the MDCC 
regime: the equilibrium between the thermal horizontal 
diffusion and the vertical thermal convection requires 
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The validity of the scale analysis requires that, at a 
certain point along the wall, the boundary layer 
thickness to be smaller than the point abscissas: 

 If    1Pr1PrN/SchSRaC 33/4
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the inequality    
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conditions that must be imposed are:   x
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 Further, the scale analysis results of section III will 
be verified using the finite differences method for two 
particular parameters sets. 

IV. NUMERICAL MODELING 

The stream function formulation of the velocity field:  
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Fig. 2. The heat and mass driven natural convection regimes sequence. (a)    1Pr1PrN/SchSRa 33/4
C  ; (b) 

   1Pr1PrN/SchSRa 33/4
C  . 
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The governing equations, (36)-(39), subjected to 
the boundary conditions, equations (40)-(43), were 
solved using the finite differences method, the higher 
order hybrid scheme [9] using a software created by 
the author and explained in detail in [2].  

The system of equation (36)-(39) were solved using 
an iterative process: at each time step, equation (36) 
was solved iteratively till the relative error of  , at 
each grid point , became less than 10

-6
. The iterative 

process stopped when the relative errors of  ,   and 

 , at each grid point, became less than   10
-6

.   

V. RESULTS AND DISCUSSIONS 

The software presented above was used to solve 
the conservation equations for two parameter sets:   

A. 5000Ra  , 1N  , 

2Le  , 72.0Pr   and 05.0SC   

This is the   1NPr)1Pr(/SchSRa 33/4
C   

case. According to the scale analysis results (Fig. 
2(a)), we expect a HDC regime to attain the 
equilibrium state along the vertical boundary. The 
HDCC and the HDCSc regimes are delimitated by the 

abscissas 98.2X T,S   (equation (24)). A 

computational dimensionless domain of 0.66.0   was 

discretised uniformly using a 30161  grid that 
assures the desired accuracy. 

Fig. 3 presents the temperature (Fig. 3(a)), 
concentration (Fig. 3(b)), stream function (Fig. 3(c)) 
and X/C   (Fig. 3(d)) fields. The concentration field 
magnitude of Fig. 3(b) never exceeds the value  

0.1N/1   which indicates a HDC regime along the 

entire wall. Fig. 3(d) shows that  csx/c   or  

0X/C   when 0.2X  .  

Fig. 4 chooses and presents the temperature (Fig. 
4(a)), concentration (Fig. 4(b)) and vertical velocity 
(Fig. 4(c)) plots for three sections made at the 1.0; 1.5 
and 2.0 abscissa in the HDCC regime. These plots 
collapse if the plots variables are scaled using the 
equations (16), (17) and (19).  

 Similarly, Fig. 5 presents the temperature (Fig. 
5(a)), concentration (Fig. 5(b)) and vertical velocity 
(Fig. 5(c)) and their scaled versions: Fig. 5(d), Fig. 5(e) 
and Fig. 5(f), using the equations (16), (17) and (22).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. The dimensionless temperature (a), concentration (b), stream function (c) and x/   (d) fields. 5000Ra  , 1N  , 

2Le  , 72.0Pr   and 05.0SC  . 
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Fig. 5. The dimensionless (a) temperature, (b) concentration and (c) vertical velocity variations as a function of Y and the 
scaled (d) temperature, (e) concentration and (f) vertical velocity plots for the abscissas: 1.0, 1.5 and 2.0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The dimensionless (a) temperature, (b) concentration and (c) vertical velocity variations as a function of Y and the 
scaled (d) temperature, (e) concentration and (f) vertical velocity plots for the abscissas: 4.0, 5.0 and 6.0. 
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The sections were made in the HDCSc region at the 
abscissa: 4, 5 and 6.  

Fig. 3, Fig. 4 and Fig. 5 prove the validity of the 
scale analysis results for the  

  1NPr)1Pr(/SchSRa 33/4
C   case. 

B. 5000Ra  , 8N  , 

2Le  , 72.0Pr   and 04.0SC   

The inequality   1NPr)1Pr(/SchSRa 33/4
C   

is valid. A computational dimensionless domain of 
0.85.0  was discretised uniformly using a 40151  

grid that assures the desired accuracy. 

The temperature (Fig. 6(a)), concentration (Fig. 
6(b)), stream function (Fig.6(c)) and X/C   (Fig. 6(d)) 
contour plots reveal the following aspects: 

 The concentration field at the boundary 

exceeds 8/1N/1   at 62.0X  , a value that is closed 

to the scale analysis results 6.1X trz   (equation (20)). 

 The X/C   field shows that the csx/c   or 

0X/C   inequality is valid if 0.5X   (equation (30) 

indicates 6.4X C,S  ). 

Fig. 7, Fig. 8 and Fig. 9 present the plots and the 
scaled plots for three particular sections along the 
boundary layer corresponding to the three regime 
types emphasized above: HDCC, MDCC and MDCSc, 
as follows: 

 Fig. 7 chooses the abscissa 0.2, 0.4 and 0.6 in 
the HDCC region. Fig. 7(a), Fig. 7(b) and Fig. 7(c) 
present the temperature, the concentration and the 
vertical velocity plots for these abscissa, while Fig. 
7(d), Fig. 7(e) and Fig. 7(f) present the scaled plots 

using the equations (16), (17) and (19). 

 Fig. 8(a), Fig. 8(b) and Fig. 8(c) present the 
temperature, the concentration and the vertical velocity 
plots for the abscissa 2.0, 3.0 and 4.0 situated in the 
MDCC region. Fig. 8(d), Fig. 8(e) and Fig. 8(f) show 
their scaled plots realised using the equations (33), 
(34) and (35). 

 Similarly, Fig. 9(a), Fig. 9(b) and Fig. 9(c) 
present the temperature, the concentration and the 
vertical velocity plots for three  abscissa: 6, 6.5 and 7 
situated in the MDCSc region. Fig. 9(d), Fig. 9(e) and 
Fig. 9(f) show their scaled plots realised using the 
equations (28), (29) and (31). Fig. 7, Fig. 8 and Fig.9 
verify the scale analysis results. 

VI. CONCLUSIONS 

This study reveals a set of conditions under which a 
vertical plane impermeable boundary situated in a 
constant temperature and mass stratified environment 
(air) determines the head and/or the mass driven 
convection regimes in the air adjacent to it. The 
boundary presents a constant temperature and the flux 
of a certain constituent is constant along the boundary.  

The scale analysis reveals two situations that are 
encountered: 

    1Pr1PrN/SchSRa 33/4
C  , where a 

HDC regime attains the equilibrium state. 

    1Pr1PrN/SchSRa 33/4
C  , a HDC-

MDC regimes succession attains the equilibrium state. 

 The finite differences method is used to solve the 
governing equations for two parameter sets in order to 
verify the scale analysis results.  

 

Fig. 6. The dimensionless temperature (a), concentration (b), stream function (c) and x/   (d) fields. 5000Ra  , 

8N  , 2Le  , 72.0Pr   and 04.0SC  . 
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Fig. 7. The dimensionless (a) temperature, (b) concentration and (c) vertical velocity variations as a function of Y and the 
scaled (d) temperature, (e) concentration and (f) vertical velocity plots for the abscissas: 0.2, 0.4 and 0.6. 

 

 

Fig. 8. The dimensionless (a) temperature, (b) concentration and (c) vertical velocity variations as a function of Y and the 
scaled (d) temperature, (e) concentration and (f) vertical velocity plots for the abscissas: 2.0, 3.0 and 4.0. 
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 We can conclude that the HDC and/or the MDC 
regimes succession along a vertical impermeable wall 
is a characteristic of the natural convection process 
that takes place near a constant temperature and 
mass flux vertical impermeable boundary embedded in 
a mass stratified environment. 
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Fig. 9. The dimensionless (a) temperature, (b) concentration and (c) vertical velocity variations as a function of Y and the 
scaled (d) temperature, (e) concentration and (f) vertical velocity plots for the abscissas: 6.0, 6.5 and 7.0. 
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