Abstract—In this paper, evaluation of high elevation hill and plateau terrain impact on none line-of-sight wireless communication links is presented. The shape of the hilly and plateau path profiles are defined by the ratio of the path profile occultation distance and the path length of the wireless communication link. The International Telecommunication Union (ITU) parabola method is used to determine the required radius of curvature for any given hilly and plateau path profile while the Recommendation ITU-R P.526-13 method is used to calculate the rounded edge diffraction loss proffered by the given hilly and plateau path profile. The path profile data of a case study hilly terrain used is such that the transmitter \(x,y\) coordinates are 0, 343.9 respectively, the receiver \(x,y\) coordinates are 7283.4, 286.7 respectively, while the maximum elevation of 469.1528 m occurred at a distance of 3249.74 m from the transmitter with the coordinates of 3249.74, 469.1528 respectively. The computation of the rounded edge radius of curvature and the rounded edge diffraction loss was implemented in Matlab software using the following values of ratio of the occultation distance to the path length, \(\beta\) = 0.32, \(\beta\) = 0.4910, \(\beta\) = 0.5634 and \(\beta\) = 0.92. The results show that when \(\beta\) = 0.32, the radius of curvature is 8,446.01 m while the computed rounded edge diffraction loss, G(dB) is 50.64527 dB. Again, when \(\beta\) = 0.92, the obstacle profile is a plateau and the radius of curvature is 78,451.83 m while the computed rounded edge diffraction loss, G(dB) is 1212.741 dB. Furthermore, quadratic analytical models were developed for estimating the radius of curvature and the rounded edge diffraction loss for the case study terrains. In all, the results showed that plateau terrains require larger radius of curvature and hence present larger diffraction loss value to the wireless signal than the hilly terrain.

Keywords—Hill Terrain, Diffraction Loss, Plateau Terrain, Wireless Signal, Occultation Distance, Wireless Communication, Path Length

1. INTRODUCTION
Telecommunication entails communication over a distance where the transmitter and the receiver are separated by a certain distance but are connected by a certain communication medium [1,2,3,4,5,6]. In the case of terrestrial wireless communication system, the communication medium is the atmosphere [7,8,9,10]. In such case, the wireless signals suffer several losses due to atmospheric parameters such as rain and fog [11,12,13,14,15,16,17]. Also, there is the inevitable signal spreading loss referred to as free space path loss [18,19,20,21,22]. Furthermore, there is loss due to obstructions in the signal path [23,24,25]. Such obstruction can be trees, building of high rising structures. Also, earth topological features such as high elevation mountains and plateaus can also constitute an obstruction to the signal.

Generally, obstructions in the signal path can cause diffraction loss [23, 24, 25, 26, 27, 28, 29, 30, 31]. Isolated obstructions are generally modeled as single knife edge obstruction or rounded edge obstruction. Rounded edge obstruction are often used for high elevation hills and plateaus that are relatively large in size when compared with the path length of the communication link. However, the diffraction loss differ with different shapes of the high elevation obstruction.

Accordingly, in this paper, analysis of the impact of high elevation hills and plateaus on the rounded edge diffraction loss suffered by signal in a wireless communication system is presented. The hilly and plateau obstructions are identified by the ratio of the occultation distance to the path length of the communication link. Particularly, the rounded edge diffraction loss is computed using the International Telecommunication Union (ITU) Recommendation ITU-R P.526-13 method. In all, the study seeks to demonstrate how different earth surface topographical features affect wireless communication system.

2. METHODOLOGY
2.1 The effect of occultation distance
Consider the transmitter and receiver separated by a distance with path length of \(d\) (km) and there exist an obstacle in the signal path between the transmitter and the receiver, as shown in Figure 1. The obstruction can cause diffraction loss. There are different diffraction loss models that can be applied to estimate the loss due to diffraction. There is single knife edge diffraction loss model, double single and multiple single knife edge diffraction loss models, as well as rounded edge diffraction loss model. The specific model to be employed depends on the nature of the obstacle.

In practice, a typical round edge obstruction is a hilly terrain in the path of the signal. Such hilly terrain is defined by the path profile of the terrain. Accordingly, a typical hilly path profile used for the analysis of the rounded edge diffraction loss is presented in Figure 1. The two key parameters used to define the shape of the hilly path profile are the occultation distance \(D_{occ}\) and the path length \(d\), as shown in Figure 1.
Let β be the ratio of the occultation distance (D_{occ}) to the path length (d), hence,$$
abla = \frac{D_{\text{occ}}}{d} \quad (1)$$When D_{occ} is zero, hence $\beta = 0$; in this case, the terrain is a knife edge obstruction and hence, the knife edge diffraction loss model is used. When $D_{\text{occ}} = d$, hence $\beta = 1$. In this case, the terrain is a flat plane or plateau. The rounded edge can still be applied to estimate the diffraction loss of such terrain. In practice, the rounded edge diffraction loss model is applied when $0 < \beta < 1$. This covers the hilly terrains as well as the plateau terrains. In this paper, the single rounded edge diffraction loss is estimated using the International Telecommunication Union (ITU) Recommendation ITU-R P.526-13 method.

2.2 The ITU-R P.526-13 method of calculating the diffraction loss over single rounded edge obstruction

When the path profile of any obstruction is such that $0 < \beta < 1$, a rounded edge can be fitted towards the vicinity of the obstruction apex. The radius of the rounded edge fitted to the obstruction is then used in the estimation of the rounded edge diffraction loss. The geometry used for the analysis of the rounded edge obstacle and their associated rounded edge diffraction loss is given in Figure 2.

Where in Figure 2, d_1 and d_2 are the length (in kilometers) of the tangent lines drawn from the transmitter and the receiver, R is the radius of the circle that is fitted to the path profile of the obstacle and h is the clearance height in meters for the computation of the diffraction loss. The rounded edge diffraction loss ($A_{d\theta}$) according to the ITU-R method is given as:

$$A_{d\theta} = J(v) + T(m, n) \quad (2)$$

where $J(v)$ denotes the Fresnel-Kirchoff diffraction loss due to an equivalent single knife-edge obstruction that has its peak at the vertex point. The dimensionless Fresnel-Kirchoff diffraction parameter, v is evaluated as:

$$v = 0.0316(h) \left[\frac{2(d_1 + d_2)}{(d_1 d_2)} \right]^{1/3} \quad (3)$$

where λ is signal wavelength in meters and d_1 and d_2 are in kilometers. Then, $J(v)$ and $T(m, n)$ are computed as follows:

$$J(v) = 6.9 + 20 \log \left(\frac{\sqrt{(v - 0.1)^2 + 1} + v - 0.1}{\lambda} \right) \quad (4)$$

$$T(m, n) = k(m)^b \quad (5)$$

where:

$$k = 8.2 + 12 (n) \quad (6)$$

$$b = 0.73 + 0.27 \left[1 - e^{-1.43 (n)} \right] \quad (7)$$

and:

$$m = (R) \left[\frac{(d_1 + d_2)}{d_1 d_2} \right] / \left[\frac{\pi R}{\lambda} \right]^{1/3} \quad (8)$$

$$m = h \left[\frac{\pi R}{\lambda} \right]^{2/3} (R) \quad (9)$$

2.2 The ITU-R P.526-13 method of calculating the diffraction loss over single rounded edge obstruction

When the path profile of any obstruction is such that $0 < \beta < 1$, a rounded edge can be fitted towards the vicinity of the obstruction apex. The radius of the rounded edge fitted to the obstruction is then used in the estimation of the rounded edge diffraction loss. The geometry used for the analysis of the rounded edge obstacle and their associated rounded edge diffraction loss is given in Figure 2.
2.2 RADIUS OF CURVATURE BY THE INTERNATIONAL TELECOMMUNICATION UNION (ITU) PARABOLA METHOD

In the ITU Parabola method, the radius of curvature is computed from the vertical profile data of the path, (Figure 3). If there are n elevation sample points, the mean radius of curvature by ITU Parabola method is given as:

\[R = \frac{1}{n} \left[\sum_{i=1}^{n} \frac{x_i^2}{2r_i} \right] \]

(10)

where

\[r_i = \frac{x_i^2}{2Y_i} \]

(11)

![Figure 3: The parameters for the ITU Parabola method](image)

The radius of the first Fresnel Zone is used to determine the range of path profile elevation data that is considered in the ITU parabola method. The radius of the first Fresnel Zone required to determine the limit of the elevation sample points, the mean radius of curvature by ITU Parabola method is computed as follows;

\[R_{fr} = 17.32 \left(\frac{f(d_t)(d_r)}{d_t+d_r} \right) \]

(12)

Where \(R_{fr} \) denotes the Fresnel zone radius in metres; \(d_t \) denotes the distance of transmitter antenna to the point of obstruction; \(d_r \) denotes the distance of receiver antenna to the point of obstruction, \(f \) is the frequency in GHz.

2.3 The Case Study Path Profile

A portion of the case study elevation profile dataset is presented in Table 1 and the path profile plot is presented in Figure 4. The path profile data of the case study hilly terrain is such that the transmitter x,y coordinates are 0, 343.9, the receiver coordinates are 7283.4, 286.7 while the maximum elevation of 469.1528 m occurred at a distance of 3249.74 m from the transmitter with the coordinates of 3249.74,469.1528.

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>Elevation (m)</th>
<th>Distance (m)</th>
<th>Elevation (m)</th>
<th>Distance (m)</th>
<th>Elevation (m)</th>
<th>Distance (m)</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>343.9</td>
<td>1282.8</td>
<td>389.2</td>
<td>2565.6</td>
<td>456.2</td>
<td>3848.4</td>
<td>453.8</td>
</tr>
<tr>
<td>42.8</td>
<td>346.1</td>
<td>1325.6</td>
<td>389.7</td>
<td>2608.3</td>
<td>454.8</td>
<td>3891.1</td>
<td>454.5</td>
</tr>
<tr>
<td>128.3</td>
<td>349</td>
<td>1411.1</td>
<td>390.5</td>
<td>2693.9</td>
<td>454.2</td>
<td>3976.7</td>
<td>451</td>
</tr>
<tr>
<td>213.8</td>
<td>351.1</td>
<td>1496.6</td>
<td>392.2</td>
<td>2779.4</td>
<td>456.6</td>
<td>4062.2</td>
<td>448.4</td>
</tr>
<tr>
<td>299.3</td>
<td>355</td>
<td>1582.1</td>
<td>394.7</td>
<td>2864.9</td>
<td>459.2</td>
<td>4147.4</td>
<td>444.4</td>
</tr>
<tr>
<td>342.1</td>
<td>356.4</td>
<td>1624.9</td>
<td>396.4</td>
<td>2907.7</td>
<td>460.3</td>
<td>4190.5</td>
<td>442.7</td>
</tr>
<tr>
<td>427.6</td>
<td>358.7</td>
<td>1710.4</td>
<td>400.7</td>
<td>2993.2</td>
<td>461.8</td>
<td>4276</td>
<td>440</td>
</tr>
<tr>
<td>470.4</td>
<td>359.7</td>
<td>1753.1</td>
<td>401</td>
<td>3035.9</td>
<td>460.2</td>
<td>4318.7</td>
<td>438.4</td>
</tr>
<tr>
<td>555.9</td>
<td>361.5</td>
<td>1838.7</td>
<td>403.1</td>
<td>3121.5</td>
<td>465</td>
<td>4404.3</td>
<td>439.5</td>
</tr>
<tr>
<td>598.6</td>
<td>362.8</td>
<td>1881.4</td>
<td>405.3</td>
<td>3164.2</td>
<td>465</td>
<td>4447</td>
<td>442.4</td>
</tr>
<tr>
<td>684.2</td>
<td>364.4</td>
<td>1966.9</td>
<td>410.2</td>
<td>3249.7</td>
<td>469.2</td>
<td>4532.5</td>
<td>436.1</td>
</tr>
<tr>
<td>726.9</td>
<td>365.9</td>
<td>2009.7</td>
<td>412.7</td>
<td>3292.5</td>
<td>467.3</td>
<td>4575.3</td>
<td>435.8</td>
</tr>
<tr>
<td>812.4</td>
<td>369.9</td>
<td>2052.2</td>
<td>419.1</td>
<td>3378</td>
<td>464.2</td>
<td>4660.8</td>
<td>430.5</td>
</tr>
<tr>
<td>898</td>
<td>374.5</td>
<td>2180.7</td>
<td>428.6</td>
<td>3463.5</td>
<td>462.4</td>
<td>4746.3</td>
<td>407.9</td>
</tr>
<tr>
<td>983.5</td>
<td>377.7</td>
<td>2266.3</td>
<td>447</td>
<td>3549.1</td>
<td>461</td>
<td>4831.9</td>
<td>400.8</td>
</tr>
<tr>
<td>1026.2</td>
<td>378.9</td>
<td>2309</td>
<td>450</td>
<td>3591.8</td>
<td>460.1</td>
<td>4874.6</td>
<td>397.4</td>
</tr>
<tr>
<td>1111.8</td>
<td>382</td>
<td>2394.5</td>
<td>453.6</td>
<td>3677.3</td>
<td>453.1</td>
<td>4960.1</td>
<td>390.7</td>
</tr>
<tr>
<td>1154.5</td>
<td>384.1</td>
<td>2437.3</td>
<td>455.4</td>
<td>3720.1</td>
<td>453</td>
<td>5002.9</td>
<td>388.3</td>
</tr>
<tr>
<td>1240</td>
<td>388.5</td>
<td>2522.8</td>
<td>456.9</td>
<td>3805.6</td>
<td>453.3</td>
<td>5088.4</td>
<td>384.2</td>
</tr>
</tbody>
</table>
3. RESULTS AND DISCUSSION
The computation of the rounded edge radius of curvature and the rounded edge diffraction loss was implemented in Matlab software using the following values of the ratio of the occultation distance (D_{occ}) to the path length (d), $\beta = 0.32$, $\beta = 0.4910$, $\beta = 0.5634$ and $\beta = 0.92$. The sketch of the case study rounded edge high elevation path profile for the occasion where $\beta = 0.32$ is given in Figure 5. The image in Figure 5 shows that when $\beta = 0.32$ the obstacle profile is a hill. The results show that when $\beta = 0.32$, the radius of curvature is $8,446.01$ m while the computed rounded edge diffraction loss, G(dB) is 50.64527 dB. Again, the sketch of the case study rounded edge high elevation path profile for the occasion where $\beta = 0.92$ is given in Figure 6. The image in Figure 6 shows that when $\beta = 0.92$ the obstacle profile is a plateau. Also, the results show that when $\beta = 0.92$, the radius of curvature computed by ITU method is $78,451.83$ m while the computed rounded edge diffraction loss, G(dB) is 1212.741 dB.
The analysis was conducted for other values of $\beta = 0.4910$ and $\beta = 0.5634$ and the results for all the four different cases of β considered in the study are shown in Table 2. A graph of the radius of curvature, R (m) versus β is given in Figure 7. The graph gave a quadratic expression for approximating the radius of curvature for the case study high elevation profile as a function of β, as follows;

$$R (m) = 95339\beta^2 - 1546.3\beta - 820.85$$

Similarly, a graph of the rounded edge diffraction loss G(dB) versus β is given in Figure 8. The graph gave a quadratic expression for approximating G(dB) for the case study high elevation profile as a function of β as follows;

$$G(dB) = 4311.8\beta^2 - 3421.9\beta + 709.78$$

The results in Table 2 shows that as the value of β increases, the radius of curvature, R (m) and also the rounded edge diffraction loss G(dB) increases. Notably, the higher the value of β the more the profile turns to a plateau with flat top and the smaller the value of β the more the profile turns to a knife edge. For the cases in Table 2 where $\beta = 0.32$, $\beta = 0.4910$ and $\beta = 0.5634$, the obstacle profile showed hilly terrain. As such, the results showed that plateau requires larger radius of curvature and hence presents higher rounded edge diffraction loss than hilly obstacle.

Table 2 Rounded edge radius of curvature, R (m) and the Rounded Edge Diffraction G(dB) Loss (dB) for the four cases of $\beta = 0.32$, $\beta = 0.4910$, $\beta = 0.5634$ and $\beta = 0.92$

<table>
<thead>
<tr>
<th>β</th>
<th>Radius of curvature, R (m)</th>
<th>Rounded Edge Diffraction Loss G(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32</td>
<td>8,446.01</td>
<td>50.64527</td>
</tr>
<tr>
<td>0.4910</td>
<td>21,409.32</td>
<td>95.82028</td>
</tr>
<tr>
<td>0.5634</td>
<td>28,566.27</td>
<td>128.0203</td>
</tr>
<tr>
<td>0.92</td>
<td>78,451.83</td>
<td>1212.741</td>
</tr>
</tbody>
</table>
4. CONCLUSION
The effect of high elevation hilly and plateau terrains on the diffraction loss suffered by signals of wireless communication systems is presented. The path profiles of different high elevation terrain containing hills and plateaus are used to determine the radius of curvature of the rounded edge and hence the rounded edge diffraction loss due to each of the different profile shapes. The results showed that plateau terrains require larger radius of curvature and hence present larger diffraction loss value to the wireless signal than the hilly terrain. Furthermore, quadratic analytical models were presented for estimating the radius of curvature and the rounded edge diffraction loss for the case study terrains.

REFERENCES

