Isolation of ursane-type triterpene saponins from *Allium ascalonicum* L.

Nguyen Thi Mai Faculty of Basic Science University of Transport and Communications 3 Cau Giay, Hanoi, Vietnam E-mail address: maint@utc.edu.vn

Abstract—Six ursane-type triterpene saponins, including ilexkudinoside T (1), kudinoside D (2), randiasaponin IV (3), kudinoside G (4), ilexkudinoside W (5), lactifoloside G (6) were isolated from the rhizomes of *Allium ascalonicum* L. Their structures were determined by HR-ESI-MS, ¹D-NMR, and ²D-NMR spectral data, and comparison with those reported in the literature. Compounds 1 and 2 possessed 20,28-lactone linkage which was unusual ursane-type triterpene saponins.

Keywords—	Shallot;	Allium	ascalonicum;
Amaryllidaceae; elucidation.	Ursane-type	triterpene	; Structural

I. INTRODUCTION

Shallot (Allium ascalonicum L., Alliaceae) has been used worldwide to be a vegetable and culinary supplements for along times [1]. In traditional medicinial remedies, A. ascalonicum has many benefits such as anti-inflammation, anti-oxidant, antibacterial properties [2, 3]. Aqueous extract of A. ascalonicum showed much less cytotoxic effect against normal cell but significant anti-growth activity on cancer cell and significant anti-inflammatory activity in the in vitro and in vivo studies [3-5]. Phytochemical study on A. ascalonicum, therefore, has been attractive scientists to find potential biological active components and clarify its therapeutic effects. Previous reports indicate that A. ascalonicum is a rich source of phenolics, saponins, and also sulfur containing compounds as general constituents in the Allium genus [6-8]. Contribution to clarify chemical constituents of A. ascalonicum and provide insightful explanation on its beneficial effects, herein, we report the isolation and structural elucidation of six ursanetype saponins from methanolic extract of A. ascalonicum. Saponins have been reviewed to be potential anti-inflammation and cytotoxic activity. Therefore, the identification of saponins could be helpful for explaintion of cytotoxic and anti-inflammatory activities of *A. ascalonicum* and their processed products.

II. MATERIALS AND METHODS

A. General experiment procedures

NMR spectra were recorded on a Bruker AVANCE III 500 MHz (Bruker BioSpin, Bremen, Germany). HR-

ESI-MS was accquired on an Agilent 6530 Accurate Mass QTOF LC/MS system (Agilent technology, Santa Clara, CA, USA). Column chromatography was carried out using silica gel (Merck, Whitehouse Station, NJ, USA), reversed phase C-18 gel (YMC Ltd., Kyoto, Japan), and diaion HP-20 resin as stationary phase. Thin layer chromatography was performed using precoated silica gel 60 F_{254} and RP-C18 F_{254S} plates (Merck, Darmstadt, Germany). Compounds were detected by spraying with aqueous solution of H_2SO_4 (5%, w/w) followed by heating on a hot plate.

B. Plant materials

The rhizomes of *Allium ascalonicum* L. were collected at Hanoi City, Vietnam, in December 2018. Its scientific name was determined by Dr. Nguyen The Cuong, Institute of Ecology and Biological Resources, Hanoi, Vietnam. Voucher specimen (NCCT.2019.78) is kept at the Institute of Marine Biochemistry, Hanoi, Vietnam.

C. Extraction and isolation

The dried powder of the rhizomes of A. ascalonicum (5.0 kg) was ultrasonically extracted with methanol for three times (10 L, each) to give methanol extract. This extract (340 g) was suspended with water (4.0 L) distilled and separated with dichloromethane to give dichloromethane faction and water layer. The water layer was loaded on a Diaion HP-20 column, washed with water, and then eluted with methanol/ water (1:3, 1:1, 3:1, and 1:0) to give four fractions, WA-WD. Fraction WB (38.0 g) was subjected on a silica gel column and eluted with CH₂Cl₂/MeOH (stepwise, 20:1, 10:1, 5:1, 2.5:1, 1:1) to give five fractions, WB1-WB5. Fraction WB3 (16.0 g) was chromatographed on a RP-18 column and eluted with acetone/water (1:1.2) to give four fractions, WB3A-WB3D. Fraction WB3B (3.5 g) was separated a silica gel column and eluted with on CH₂Cl₂/acetone/water (1:4:0.2) to give two fractions, WB3B1 and WB3B2. Compound 3 (3.6 mg) was isolated from fraction WB3B1 by HPLC using aqueous ACN (33%). Compounds 1 (9.1 mg) and 2 (15.6 mg) were purified from the WB3B2 fraction by HPLC using aqueous ACN (40%). Fraction WB3C was subjected silica gel column and eluted on а with CH₂Cl₂/acetone/water (1:4:0.3) to give three fractions, WB3C1-WB3C3. The WB3C1 fraction was purified by HPLC using aqueous ACN (30%) to give 5 (3.9 mg). Fraction WB (48 g) was loaded on a silica gel column

Fig. 1. Structure of Ursane-type saponins **1**-6 isolated from Allium ascalonicum

and eluted with $CH_2Cl_2/MeOH$ (stepsiwe, 20:1, 5:1, 1:1) to give three fractions, WB1- WB3. Fraction WB1 (14.0 g) was separated on a RP-18 column eluting with acetone/water (5:6) to give four fractions, WB1A-WB1D. Fraction WB1B was chromatographed on a RP-18 column, eluting with acetone/water (4:1) and further purified by HPLC with aqueous acetonitrile (30%) to give **4** (6.4 mg). The WB2 fraction (15.0 g) was separated on a RP-18 column eluting with acetone/water (5:6) to give five fractions, WB2A-WB2E. Fraction WB2B (3.5 g) was separated on a RP-18 column, eluting with acetone/water (4:1) and further purified on HPLC with aqueous acetonitrile (35%) to yield **6** (16.6 mg).

• Ilexkudinoside T (1): Molecular formula: $C_{47}H_{74}O_{17}$; White amorphous powder; HR-ESI-MS *m/z*: 945.4613 [M+CI]⁻ (calcd. for $C_{47}H_{74}O_{17}CI$, 945.4615); ¹H-NMR and ¹³C-NMR data are given in the Table 1.

• Kudinoside D (2): Molecular formula: $C_{47}H_{72}O_{17}$; White amorphous powder; HR-ESI-MS *m/z*: 943.4478 [M+CI]⁻ (calcd. for $C_{47}H_{72}O_{17}CI$, 943.4458); ¹H-NMR and ¹³C-NMR data are given in the Table 1.

• Randiasaponin IV (**3**): Molecular formula $C_{47}H_{76}O_{17}$: White amorphous powder; ¹H-NMR and ¹³C-NMR data are given in the Table 1.

• Kudinoside G (4): Molecular formula $C_{53}H_{86}O_{22}$; White amorphous powder; ¹H-NMR and ¹³C-NMR data are given in the Table 2.

• Ilexkudinoside W (5): Molecular formula $C_{53}H_{86}O_{21}$; White amorphous powder; ¹H-NMR and ¹³C-NMR data are given in the Table 2.

• Lactifoloside G (6): Molecular formula $C_{59}H_{96}O_{26}$; White amorphous powder; ¹H-NMR and ¹³C-NMR data are given in the Table 2.

III. RESULTS AND DISCUSSION

The rhizomes of *A. ascalonicum* was extracted with methanol and partitioned with dichloromethane. The water layer usually expected rich of saponins which was then chosen for isolation using combination of chromatographic methods to give six compounds **1-6** (Fig. 1).

Compound 1 was isolated as a white amorphous powder. HR-ESI-MS analysis of 1 revealed quasimolecular ion peak at m/z 945.4613 [M+CI] indicating a molecular formular of $C_{47}H_{74}O_{17}$ (calcd. for $C_{47}H_{74}O_{17}Cl$, 945.4615). The ¹H-NMR and HSQC spectra of 1 showed signals corresponding to seven tertiary methyl groups [δ_{H} 1.40, 1.35, 1.19, 1.05, 0.97, 0.89, 0.86 (each, 3H, s)], a secondary methyl group [δ_{H} 1.24 (3H, d, J = 6.0 Hz)], three anomeric protons [δ_{H} 5.23 (1H, br s), 4.54 (1H, d, J = 5.0 Hz), and 4.52 (1H, d, J = 7.5 Hz)], and an olefinic proton [δ_{H} 6.02 (1H, br s)]. The ¹³C-NMR and HSQC spectra of 1 observed signals of 47 carbons including nine non-protonated carbons, 19 methine groups, 11 methylene groups, and eight methyl groups. Above NMR data suggested that 1 to be a triterpene saponins. Futhermore, an ursane-type triterpene was recognized by HMBC experiment (Fig. 2), including correlations between H₃-23 (δ_{H} 1.05)/ H_{3} -24 (δ_{H} 0.89) and C-3 (δ_{C} 89.6)/ C-4 (δ_C 40.4)/ C-5 (δ_C 57.4), $H_3\text{-}25$ (δ_H 0.97) and C-1 (δ_C 39.7)/ C-5 (δ_{C} 57.4)/ C-9 (δ_{C} 49.0)/ C-10 (δ_{C} 38.3), H₃-26 (δ_H 0.86) and C-7 (δ_C 34.2)/ C-8 (δ_C 41.0)/ C-9 (δ_C 49.0)/ C-14 (δ_C 43.0), H₃-27 (δ_H 1.19) and C-8 (δ_C 41.0)/ C-13 (δ_{C} 136.4)/ C-14 (δ_{C} 43.0)/ C-15 (δ_{C} 25.7), H_3 -29 (δ_H 1.40) and C-18 (δ_C 50.7)/ C-19 (δ_C 73.8)/ C-20 (δ_c 86.9), and H₃-30 (δ_H 1.35) and C-19 (δ_c 73.8)/ C-20 (δ_c 86.9)/ C-21 (δ_c 31.7). A deshielded carbon signal ($\delta_{\rm C}$ 181.3) was assigned for carbonyl carbon C-28. Two olefinic carbons (δ_{C} 126.9 and 136.4) and

No.		<u> </u>		2		3
	Ò _C	O _H (mult., J in Hz)	δ _C	O _H (mult., J in Hz)	δ _C	ο _H (mult., J in Hz)
1	39.7	1.63 (m)/1.04 (m)	39.5	1.95 (m)/1.08 (m)	40.0	1.65 (m)/1.02 (m)
2	27.1	1.82 (m)/1.72 (m)	27.1	1.90 (m)/1.80 (m)	27.0	1.81 (m)/1.70 (m)
3	89.6	3.19 (dd, 11.5, 4.5)	89.5	3.22 (dd, 9.0, 4.0)	90.8	3.14 (dd, 12.0, 4.5)
4	40.4	-	40.5	-	40.3	-
5	57.4	0.85 (m)	56.5	0.85 (m)	57.1	0.80 (m)
6	19.5	1.62 (m)/1.47 (m)	19.2	1.65 (m)/1.48 (m)	19.5	1.56 (m)/1.41 (m)
7	34.2	1.45(m)/1.49 (m)	33.8	1.41 (m)	34.1	1.54 (m)/1.35 (m)
8	41.0	-	43.2	-	41.3	-
9	49.0	1.80 (m)	55.6	2.06 (br s)	49.0	1.70 (m)
10	38.3	-	37.6	-	37.9	-
11	25.0	2.16 (m)/1.85 (m)	127.7	7.03 (dd, 10.5, 2.0)	24.8	1.98 (m)
12	126.9	6.02 (br s)	129.5	5.84 (br d, 10.5)	129.7	5.35 (br t, 3.0)
13	136.4	-	142.7	-	139.6	-
14	43.0	-	43.2	-	42.6	-
15	25.7	1.72 (m)/1.17 (m)	26.4	1.60 (m)/1.16 (m)	29.7	1.85 (m)/1.02 (m)
16	26.5	2.40 (m)/1.44 (m)	26.8	2.30 (m)/1.40 (m)	26.5	2.20 (m)/1.85 (m)
17	41.6	-	44.6	-	49.0	-
18	50.7	2 24 (br s)	134.3	-	55.0	2.54 (s)
19	73.8	-	75.1	-	73.7	-
20	86.9	_	87.1	-	42.9	1.37 (m)
21	31.7	2.30 (m)/1.50 (m)	29.0	2.32 (m)/1.66 (m)	27.2	1.80 (m) / 1.70 (m)
22	27.4	1.40 (m)/1.40 (m)	23.0	1.80 (m)/1.90 (m)	38.3	1.80 (m)/1.64 (m)
22	27.4	1.40 (iii)/1.40 (iii) 1.05 (s)	28.3	1.00 (m)/1.00 (m) 1.05 (c)	28.6	1.00 (III)/ 1.04 (III) 1.04 (e)
23	20.0	0.80 (s)	20.3	0.88(c)	20.0	0.88 (c)
24	16.0	0.03(s)	10.7	0.00(S)	17.1	0.00(s)
20	10.2	0.97 (5)	10.0	0.97 (5)	10.0	0.97 (5)
20	10.0	0.00 (S)	17.0	0.76 (S)	17.0	0.00 (S)
27	23.5	1.19 (8)	18.9	1.04 (S)	24.0	1.34 (S)
28	181.3	-	177.8	-	178.6	-
29	26.4	1.40 (S)	23.4	1.40 (s)	27.1	1.22 (S)
30	20.1	1.35 (S)	19.4	1.36 (S)	16.6	0.95 (d, 6.0)
	3-O-Ara		3-0-Ara		3-0-Ara	
1'	105.1	4.54 (d, 5.0)	105.2	4.52 (d, 5.0)	104.7	4.58 (d, 5.0)
2'	75.3	3.90 (m)	75.3	3.90 (dd, 8.5, 5.0)	76.8	3.79 (dd, 9.0, 5.0)
3'	81.8	3.88 (m)	82.2	3.88 (br d, 8.5)	73.0	3.76 (br d, 9.0)
4'	68.5	4.04 (br s)	68.5	4.05 (br s)	68.3	3.80 (br s)
5'	64.5	3.89	64.6	3.90	63.6	3.90
		3.52 (dd, 11.5, 2.0)		3.53 (br d, 11.5)	.	3.52 (dd, 11.5, 2.0)
	2'-0-Rh	a	2'-0-Rh	a	2'-0-Rha	2
1″	102.0	5.23 (br s)	102.0	5.23 (br s)	102.1	5.11 (d, 1.5)
2″	72.1	3.93 (dd, 3.5, 1.5)	72.1	3.92 (br d, 3.0)	72.2	3.90 (dd, 3.0, 1.5)
3″	72.1	3.72 (dd, 9.0, 3.0)	72.1	3.71 (dd, 9.0, 3.0)	72.2	3.70 (dd, 9.0, 3.0)
4″	73.8	3.40 (m)	73.8	3.40 (t, 9.0)	73.8	3.33 (t, 9.0)
5″	70.3	3.87 (m)	70.3	3.88 (m)	70.2	3.82 (m)
6″	18.0	1.24 (d, 6.0)	18.0	1.24 (d, 6.5)	18.0	1.24 (d, 6.0)
	3'-0-Gla	C	3'-O-Gl	C	28-0-Gl	C
1‴	104.3	4.52 (d, 7.5)	104.3	4.51 (d, 4.5)	95.8	5.34 (dd, 7.5)
2‴	75.0	3.30 (dd, 9.0, 7.5)	75.1	3.32 (dd, 9.0, 7.5)	73.9	3.40 (dd, 8.5, 7.5)
3‴	78.0	3.30 (t, 9.0)	78.0	3.40 (t, 9.0)	78.6	3.35 (t, 8.5)
4‴	71.2	3.36 (m)	71.2	3.36 (t, 8.5)	71.2	3.36 (m)
5‴	78.0	3.40 (m)	78.1	3.30 (m)	78.3	3.42 (m)
6‴	62.4	3.85 (dd. 11.5. 2.0)	62.4	3.87 (dd. 12.0. 2.0)	62.5	3.81 (dd. 12.0. 2.0)
÷	52.1	3 69 (dd 11 5 5 5)	02.1	3 71 (dd 12 0 5 0)	02.0	3.70 (dd. 12.0, 5.0)

TABLE I. 1 H- and 13 C-NMR spectroscopic data of compounds 1-3 in CD₃OD

^{*)}Overlapped signal

HMBC correlations between H-12 ($\delta_{\rm H}$ 6.02) and C-18 ($\delta_{\rm C}$ 50.7) indicated location of C=C double bonds at C-12/C-13. Carbon chemical shift values of C-19 ($\delta_{\rm C}$ 73.8) and C-20 ($\delta_{\rm C}$ 86.9) suggested for their bearing oxygen atoms. Moreover, the downfield shifted of C-20 compared to C-19 suggested for the lactone linkage between C-28 and C-20. Other signals of 17 carbons were assigned for the two hexose and one pentose units. The presence of a secondary methyl group in sugar moiety ($\delta_{\rm C}$ 18.0 and $\delta_{\rm H}$ 1.24) was proposed for a rhamnopyranosyl group. A pentose moiety in which proton H-4' ($\delta_{\rm H}$ 4.04) appeared as broad singlet signals demonstrated for an arabinopyranosyl group. The last

hexose unit was assiged for a glucopyranosyl group by their carbon chemical shiff values (δ_C 104.3, 75.0, 78.0, 71.2, 78.0, and 62.4). Connection in trisaccharide sequence and the connection between sugar and aglycone moiety were then elucidated by HMBC spectra. The HMBC correlation between Ara H-1' (δ_H 4.54) and C-3 (δ_C 89.6) indicated that sugar moiety linked to C-3 of the aglycone. The HMBC correlation between Rha H-1" (δ_H 5.23) and Ara C-2' (δ_C 75.3) confirmed rhanopyranosyl group linked to C-2' of arabinopyranosyl unit. And the HMBC correlation between Glc H-1"" (δ_H 4.52) and Ara C-3' (δ_C 81.8) confirmed glucopyranosyl group linked to C-3' of

TABLE II.	$^1\text{H-}$ and $^{13}\text{C-}\text{NMR}$ spectroscopic data of compounds $\textbf{4-6}$ in CD_3OD
TABLE II.	¹ H- AND ¹³ C-NMR SPECTROSCOPIC DATA OF COMPOUNDS 4-6 IN CD ₃ O

		Λ		5		6
No.	δο		δ		δο	δ (mult/in Hz)
1	40.2	$\frac{0}{1.65}$ (m)/1.03 (m)	40.0	$\frac{1.68 \text{ (m)}/1.04 \text{ (m)}}{1.68 \text{ (m)}/1.04 \text{ (m)}}$	40.2	$\frac{0}{1.66}$ (m)/1.03 (m)
2	27.2	1.00 (m)/1.00 (m)	27.0	1 78 (m)/1 72 (m)	27.2	1.00 (m)/1.00 (m)
3	89.8	3.17 (dd. 9.0, 4.0)	90.8	3.14 (dd. 11.5. 4.5)	89.9	3.18 (dd. 9.0. 4.5)
4	40.3	-	40.3	-	40.4	-
5	57.2	0.80 (br d. 11.5)	57.1	0.82 (m)	57.2	0.80 (m)
6	19.5	1.55 (m)/1.41 (m)	19.5	1.57 (m)/1.42 (m)	19.4	1.56 (m)/1.43 (m)
7	34.2	1.55 (m)/1.35 (m)	34.3	1.56 (m)/1.43 (m)	34.3	1.55 (m)/1.42 (m)
8	41.3	-	40.1	-	41.3	-
9	48.0	1.70 (m)	49.0		48.5	1.69 (m)
10	37.9	-	37.9	-	37.8	-
11	24.7	1.98 (m)	24.7	2.0 (dd, 9.0, 3.5)	24.7	2.00 (dd, 9.0, 3.5)
12	129.7	5.32 (t, 3.0)	129.7	5.33 (br s)	129.8	5.32 (t, 3.5)
13	139.6	-	139.5	-	139.5	-
14	42.9	-	41.3	-	42.7	-
15	29.7	1.85 (m)/1.02 (m)	29.9	1.73 (m)/1.12 (m)	29.9	1.72 (m)/1.13 (m)
16	26.6	2.25 (m)/1.70 (m)	26.7	2.61 (m)/1.58 (m)	26.7	2.63 (m)/1.60 (m)
17	49.0	-	48.7	-	49.5	-
18	55.0	2.54 (S)	55.3	2.50 (S)	55.2	2.51 (S)
19	13.1	- 1 42 (m)	13.1	- 1 12 (m)	13.1	- 1 42 (m)
20	42.0	1.42 (III) 1.80 (m)/1.70 (m)	42.7	1.43 (III) 1.95 (m)/1.27 (m)	42.7	1.43 (III) 1.72 (m)/1.26 (m)
21	20.2	1.80 (m)/1.70 (m)	27.0	1.65 (III)/1.27 (III) 1.64 (m)	27.1	1.72 (III)/1.20 (III) 1.64 (m)
22	28.7	1.00 (m)/1.04 (m) 1.04 (c)	28.7	1.04 (III) 1.04 (s)	28.7	1.04 (III) 1.04 (s)
23	173	0.88 (s)	20.7	0.87 (s)	17.3	0.88(s)
25	16.1	0.00 (S)	16.1	1 00 (s)	16.1	0.98 (s)
26	17.6	0.80 (s)	17.8	0.80 (s)	17.8	0.80 (s)
27	24.6	1.34 (s)	24.5	1 25 (s)	24.5	1.36 (s)
28	178.6	-	178.5	-	178.5	-
29	27.1	1.22 (s)	27.0	1.21 (s)	27.1	1.21 (s)
30	16.6	0.95 (d, 6.0)	16.6	0.94 (d, 6.5)	16.6	0.93 (d, 7.0)
	3-0-Ara	1	3-O-Ara		3-0-Ara	
1′	105.1	4.54 (d, 5.0)	104.7	4.59 (d, 4.5)	105.1	4.54 (d, 5.0)
2'	75.2	3.90 (dd, 9.0, 5.0)	76.9	3.80 (dd, 8.5, 4.5)	75.2	3.91 (dd, 9.0, 5.0)
3′	82.1	3.88 (br d, 9.0)	73.0	3.76 (br d, 8.5)	82.1	3.88 (br d, 9.0)
4'	68.5	4.04 (br s)	68.3	3.80 (br s)	68.4	4.04 (br s)
5'	64.5	3.90*	63.6	3.86*	64.5	3.89*
		3.52 (dd, 11.5, 2.0)		3.50 (dd, 11.5, 3.0)		3.53 (dd, 11.5, 2.0)
	2'-0-Rh	a	2'-0-Rh	al	2'-0-Rha	a /
1″	102.0	5.22 (br s)	102.0	5.11 (d, 1.0)	102.0	5.22 (d, 2.0)
2"	72.1	3.23 (br d, 3.0)	72.0	3.95 (dd, 3.0, 1.0)	72.1	3.95 (dd, 3.0, 1.5)
3"	72.1	3.71 (m)	72.2	3.71 (dd, 9.0, 3.0)	72.6	3.70 (dd, 9.0, 3.0)
4" 5"	73.8	3.33 (m)	73.6	3.40 (t, 9.0)	73.8	3.41 (t, 9.0)
5	10.3	3.87 (M) 1.24 (d. 6.0)	70.3	3.80 (m) 1.25 (d. 6.5)	70.2	3.88 (m) 1.22 (d. 6.0)
0	2'-0-CH	1.24 (u, 0.0)	28-0-6	1.25 (0, 0.5)	10.0 2'-0-Clo	1.23 (u, 0.0)
1‴	10/ 3	151 (d 75)	20-0-01	5 39 (d 7 5)	10/ 3	1 51 (d. 7 5)
2‴	75.0	330 (dd 90 75)	76.7	3.62 (dd 8.5, 7.5)	75 1	3 32 (m)
3‴	78.0	3.30 (m)	79.4	3.57 (t. 8.5)	78.0	3.32 (m)
4‴	71.2	3.35 (m)	71.5	3.43 (m)	71.2	3.32 (m)
5‴	78.0	3.40 (m)	78.3	3.34 (m)	78.0	3.40 (m)
6‴	62.4	3.85 (dd. 12.0. 2.0)	62.6	3.78 (dd. 11.5. 2.0)	62.5	3.78 (dd. 11.5. 2.0)
-		3.70 (dd, 12.0, 5.0)	0=:0	3.68 (dd, 11.5. 5.0)	02.0	3.67 (dd, 11.5, 5.0)
	28-0-G	lc II	2‴-0-Rh	na II	28-0-Gk	
1‴″	95.8	5.34 (dd, 7.5)	101.5	5.43 (d, 1.5)	95.2	5.40 (dd, 7.5)
2""	73.9	3.40 (dd, 9.0, 7.5)	72.2	3.90 (dd, 3.0, 1.5)	76.7	3.62 (dd, 8.5, 7.5)
3‴″	78.3	3.40 (m)	72.2	3.71 (t, 9.0)	79.4	3.58 (t, 8.5)
4""	71.2	3.35 (m)	73.9	3.42 (t, 9.0)	71.5	3.40 (m)
5″″	78.6	3.40 (m)	70.3	3.80 (m)	78.3	3.34 (m)
6″″	62.4	3.85 (dd, 12.0, 2.0)	18.2	1.28 (d, 6.0)	62.4	3.87 (dd, 12.0, 2.0)
		3.70 (dd, 12.0, 5.0)				3.69 (dd, 12.0, 5.0)
					2""-O-Rł	na II
1‴‴					101.5	5.43 (d, 1.5)
2‴‴					71.9	3.93 (dd, 1.5, 3.0)
3‴‴					72.1	3.70 (dd, 9.0, 3.0)
4''''					73.7	3.41 (t, 9.0)
5""					70.3	3.80 (m)
					18.2	1.27 (U, O.U)
Ovenapped s	synals					

www.jmest.org

Fig. 2. Important HMBC correlations ($H \rightarrow C$) for compounds 1-6

arabinopyranosyl group. Consequently, the structure of **1** was established to be 3,19-dihidroxyurs-12-en-20,28-olide 3-O- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -[α -L-rhamnopy-ranosyl- $(1 \rightarrow 2)$]- α -L-arabinopyranoside, a previous saponin isolated from the leaves of *llex kudingcha* and named as ilekudinoside T [9].

Compound 2 was isolated as a white amorphous powder. Molecular fomular of 2 was deduced to be $C_{47}H_{72}O_{17}$ by quassimolecular ion peak at m/z943.4478 [M+CI] (calcd. for C₄₇H₇₂O₁₇Cl, 943.4458). The 1H and 13C-NMR spectral data of 2 were close similarity with those of 1 except the apperance signal of two olefinic protons [δ_H 7.03 (dd, 10.5, 2.0) and 5.84 (br d, 10.5)] and four olefinic carbons ($\delta_{\rm C}$ 127.7, 129.5, 134.3, and 142.7). These evidences indicated that 2 contains two C=C double bonds insteat of one C=C double bonds in 1. This deduction was also agreed by the loss of 2 hydrogen atoms from molecular formula of 2 $(C_{47}H_{72}O_{17})$ in comparison with that of 1 $(C_{47}H_{74}O_{17})$. The COSY correlation between two olefinic protons (δ_H 7.03 and 5.84) demonstrated for the presence of a vinylene group. Locations of these C=C double bonds were then clarified by HMBC experiment (Fig. 2). The HMBC correlations between H_3 -29 (δ_H 1.40) and C-18 (δ_C 134.3)/ C-19 (δ_C 75.1)/ C-20 (δ_{C} 87.1) indicated the presence of C=C double bonds at C-13/C-18. And the HMBC correlations between H-12 (δ_H 5.84) and C-13 (δ_C 142.7)/ C-18 (δ_C 134.3), H-11 (δ_{H} 7.03) and C-13 (δ_{C} 142.7) demonstrated for an other C=C double bonds at C-11/C-12. Therefore, compound 2 was determined to be 3,19-dihidroxyursa-11,13(18)-diene-20,28-olide 3-*O*-β-D-glucopyranosyl- $(1 \rightarrow 3)$ - $[\alpha$ -L-rhamnopyranosyl-

 $(1\rightarrow 2)$]- α -L-arabinopyranoside. This compound was also previously isolated from *llex kudingcha* and named as kudinoside D [10].

The NMR spectral data of 3-6 (Table 2) indicated that they shared the same aglycone moiety and different in their sugar moiety. Different to 1 and 2, a doublet proton signals of methyl group H₃-30 indicated that aglycone of **3-6** did not contain other substitutional group except methyl group (C-30). This deduction was confirmed by HMBC correlations between H₃-30 and C-19/ C-20/ C-22, and signals of methine group assigning for C-20 (Fig. 2). Therefore, aglycone of 3-6 was deduced to be 3,19-dihydroxyurs-12-en-28-oic acid. Not only showing HMBC correlation between Ara H-1' and C-3, the HMBC spectra of 3-6 also observed addional HMBC correlations between another anomeric proton and carbonyl carbon C-28, indicating the presence of a glycosidic ester at C-28. In particulally, in the HMBC spectrum of 3, correlation between Glc H-1" (δ_H 5.34) and C-28 (δ_C 178.6) indicated the glucopyranosyl group at C-28. Disaccharide moiety were assigned to be rhamnopyranosyl-(1→2)-arabinopyranosyl group, showing HMBC correlation bewteen Rha H-1" (δ_H 5.11) and Ara C-2' (δ_C 76.8). Connection of rhamnopyranosyl-(1→2)-arabinopyranosyl group at C-3 was confirmed by HMBC correlation between Ara H-1' ($\delta_{\rm H}$ 4.58) and C-3 ($\delta_{\rm C}$ 90.8). Thus, compound **3** was determined to be 3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl-19-hydroxyurs-12-en-28-oic acid 28-O-β-D-glucopyranosyl ester, a saponin previously isolated from Randia formosa and named as randiasaponin IV [11]. The ¹H-NMR spectra of 4 and 5 showed an additional anomeric proton in comparison with 3, indicating for the presence of four monosaccharides. Moreover, ¹³C-NMR spectral data of 4 indicated the presence of a trisaccharide sequence, β -D-glucopyranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-

 $(1 \rightarrow 2)$]- α -L-arabinopyranosyl group as shown in compounds **1** and **2**, which was confirmed by HMBC

correlations between Glc I H-1[‴] (δ_{H} 4.51) and Ara C-3' (δ_{C} 82.1), Rha H-1" (δ_{H} 5.22) and Ara C-2' (δ_{C} 75.2). Connection of this trisaccharide group with aglycone at C-3 was demonstrated by HMBC correlation between Ara H-1' (δ_{H} 4.54) and C-3 (δ_{C} 89.8). The second glucopyranosyl group at C-28 was confirmed by HMBC correlation between Glc II H-1"" (δ_{H} 5.34) and C-28 (δ_{C} 178.6). Thus, compound **4** was determined to be 3-O- β -D-glucopyranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-

 $(1\rightarrow 2)$]- α -L-arabinopyranosyl -19-hydroxyurs-12-en-28-oic acid 28-O-β-D-glucopyranosyl ester, a saponin previously isolated from *llex species such as l.* kudingcha, I. latifolia and named as kudinoside G [10, 12]. Sugar moieties of 5 were recognized by two individual disaccharide sequences. The HMBC correlation between Rha I H-1" (δ_H 5.11) and Ara C-2' (δ_C 76.9), Ara H-1' (δ_H 4.59) and C-3 (δ_C 90.8) indicated the first disaccharide group, rhamnopyranosyl- $(1\rightarrow 2)$ -arabinopyranosyl at C-3. The second disaccharide group was elucidated to be rhamnopyranosyl-(1→2)-arabinopyranosyl group and its linked to C-28 which were confirmed by HMBC correlations between Rha II H-1"" (δ_{H} 5.43) and Glc C-2"'' (δ_C 76.7), Glc H-1"'' (δ_H 5.39) and C-28 (δ_C 178.5). Thus, compound 5 was determined to be $3-O-\alpha-L$ rhamnopyranosyl- $(1 \rightarrow 2)$ - α -L-arabinopyranosyl-19-

hydroxyurs-12-en-28-oic acid 28-0α-Lrhamnopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl ester, a saponin previously isolated from Ilex kudingcha and named as ilekudinoside W [13]. Compound 6 five monosaccharide units contained which characterized by five anomeric protons (δ_H 4.51, 4.54, 5.22, 5.40, and 5.43). Of these, presence of a trisaccharide sequence, β -D-glucopyranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl- $(1\rightarrow 2)$]- α -L-arabinopyranosyl

group at C-3 was indicated by HMBC correlations between Glc I H-1^{*m*} (δ_H 4.51) and Ara C-3' (δ_C 82.1), Rha H-1^{*r*} (δ_H 5.22) and Ara C-2' (δ_C 75.2), Ara H-1' (δ_H 4.54) and C-3 (δ_C 89.9). Other disaccharide sequence, α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl

group, at C-28 was confirmed by HMBC correlations between Rha II H-1"" (δ_{H} 5.43) and Glc C-2"" (δ_{C} 76.7), Glc H-1"" (δ_{H} 5.40) and C-28 (δ_{C} 178.5). Therefore, compound **6** was determined to be 3-*O*- β -Dglucopyranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- α -L-arabinopyranosyl -19-hydroxyurs-12-en-28-oic acid 28-*O*- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -Dglucopyranosyl ester, a saponin previously isolated from *llex latifolia* and named as latifoloside G [14]

In summary, six ursane-type triterpene saponins including ilexkudinoside T (1), kudinoside D (2), randiasaponin IV (3), kudinoside G (4), ilexkudinoside W (5), lactifoloside G (6) were isolated from the rhizomes of *Allium ascalonicum*. Triterpene saponins have been reported potential cytotoxic and antiinflamatory activities. Therefore, the identification of those saponins in *A. ascalonicum* may support for explanation of anti-inflammation and anti-tumor properties of this medicinal plant.

ACKNOWLEDGMENT

This research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 104.01-2018.332.

REFERENCES

[1] S.M.A. Bastaki, S. Ojha, H. Kalasz, E. Adeghate, "Chemical constituents and medicinal properties of *Allium* species," Mol. Cell. Biochem., In press, DOI. 10.1007/s11010-021-04213-2 (2021).

[2] L. Mobin, M.A. Haq, R. Ali, S. Naz, S.G. Saeed, "Antibacterial and antioxidant potential of the phenolic extract and its fractions isolated from *Allium ascalonicum* (onion) peel," Nat. Prod. Res., In press, DOI. 10.1080/14786419.2021.1948040 (2021).

[3] H.R. Mohammadi-Motlagh, A. Mostafaie, K. Mansouri, "Anticancer and anti-inflammatory activities of shallot (*Allium ascalonicum*) extract," Archives of medical science : AMS, vol **7**, pp. 38-44 (2011).

[4] P. Seyfi, A. Mostafaie, K. Mansouri, D. Arshadi, H.R. Mohammadi-Motlagh, A. Kiani, "In vitro and in vivo anti-angiogenesis effect of shallot (*Allium ascalonicum*): a heat-stable and flavonoid-rich fraction of shallot extract potently inhibits angiogenesis," Toxicol. In Vitro, vol **24**, pp. 1655-1661 (2010).

[5] Y. Asemani, N. Zamani, M. Bayat, Z. Amirghofran, "Allium vegetables for possible future of cancer treatment," Phytother Res, vol **33**, pp. 3019-3039 (2019).

[6] D. Sobolewska, K. Michalska, I. Podolak, K. Grabowska, "Steroidal saponins from the genus *Allium,"* Phytochem. Rev., vol **15**, pp. 1-35 (2016).

[7] V. Lanzotti, F. Scala, G. Bonanomi, "Compounds from *Allium* species with cytotoxic and antimicrobial activity," Phytochem. Rev., vol **13**, pp. 769-791 (2014).

[8] E. Fattorusso, M. Iorizzi, V. Lanzotti, O. Taglialatela-Scafati, "Chemical composition of shallot (*Allium ascalonicum* Hort.)," J. Agric. Food Chem., vol **50**, pp. 5686-90 (2002).

[9] L. Tang, Y. Jiang, X.M. Tian, S.X. Zhou, P.F. Tu, "Triterpene saponins from the leaves of *llex kudingcha,*" J. Asian Nat. Prod. Res., vol **11**, pp. 554-561 (2009).

[10] M.A. Ouyang, C.R. Yang, Z.L. Chen, H.Q. Wang, "Triterpenes and triterpenoid glycosides from the leaves of *Ilex kudincha,"* Phytochemistry, vol **41**, pp. 871-877 (1996).

[11] S. Sahpaz, M.P. Gupta, K. Hostettmann, "Triterpene saponins from *Randia formosa,"* Phytochemistry, vol **54**, pp. 77-84 (2000).

[12] M.A. Ouyang, H.Q. Wang, Y.Q. Liu, C.R. Yang, "Triterpenoid saponins from the leaves of *llex latifolia,*" Phytochemistry, vol **45**, pp. 1501-1505 (1997).

[13] Y.Y. Che, N. Li, L. Zhang, P.F. Tu, "Triterpenoid saponins from the leaves of *llex kudingcha,"* Chin. J. Nat. Med., vol **9**, pp. 22-25 (2011).

[14] M.A. Ouyang, Y.Q. Liu, H.Q. Wang, C.R. Yang, "Triterpenoid saponins from *Ilex latifolia,*" Phytochemistry, vol **49**, pp. 2483-2486 (1998).