
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14499

On Computing Transitive Closures in MatBase
(Does HRH Prince Charles of Wales Also Have Cuman Blood?)

Christian Mancas
DATASIS ProSoft srl
Bucharest, Romania

christian.mancas@gmail.com

Abstract — This paper presents how transitive
closures and their instantiations for all possible
types of db interesting dyadic relations, self-
functions, and function products are computed by
the MatBase Datalog subsystem. Moreover, it is
proved that the corresponding algorithms are
linear, solid, complete, and optimal.

Keywords — dyadic relation, self-function,
function product, transitive closure, Datalog,
fixpoint semantics, Relational Algebra,
(Elementary) Mathematical Data Model, MatBase

Abbreviations — card – cardinal, db – database,
DKNF – Domain Key Normal Form, e.g. – for
example, EMDM – (Elementary) Mathematical Data
Model, E-RDM – Entity-Relationship Data Model,
HRH – His Royal Highness, i.e. – that is, kb –
knowledge base, q.e.d. – what was to be proved, RA
– relational algebra, RDBMS – Relational DataBase
Management System, RDM – Relational Data Model

I. INTRODUCTION

In everyday life we often talk about parent-child
relationships: binary relations on a set of people,
dead or alive. For example, in a REIGNS database,
we might have a RULERS table having (among other
columns as well) a surrogate autonumber primary
key x, a key (unique) text Name one, and two foreign
keys (both referencing x) Father and Mother (for
storing corresponding parents) as in Fig. 1 (also
presenting a partial instance from Romania’s history
between the XIII

th
 and XV

th
).

We are often also interested in ancestor-
descendant relations. Although the latter relation can
be obtained from the former (hence, it is redundant in
that sense), ancestor-descendant relations give us
necessary information much more directly.

For example, some years ago, HRH Prince
Charles of Wales declared that he is a descendent of
Vlad Ţepeş (“the Impaler”) “Dracula” (apparently,
according to [24], through his stepbrother Vlad
Călugărul (“the Monk”), who was one of the
ancestors of Queen Elizabeth II, HRH’s mother);
does this mean, for example, that he is also a
descendant of the founders of the two Romanian
medieval states, Basarab I for Walachia and Bogdan
I for Moldavia?

RULERS (x, Name) Father  x, Mother  x

x Name Father Mother

36 Vlad Ţepeş (“Dracula”) 35 493

33 Vlad Călugărul 35 485

23 Radu cel Frumos 35 15

35 Vlad Dracul 19 255

15 Vasilisa Mușat 42

19 Mircea cel Bătrân 26 248

26 Radu I 22 58

22 Nicolae Alexandru 5 243

5 Basarab I 241 240

241 Thocomerius

240 Ana 239

239 Bărbat

42 Alexandru cel Bun 71 44

71 Roman I 75 57

75 Ştefan I Muşat 218 73

218 Ştefan 46

46 Bogdan I

Fig. 1. Walachia and Moldavia first rulers and some of
their parents

This ancestor-descendant relation relates two
people if there is a sequence of parent-child relations
from one to the other; obviously, it includes the
parent-child relation as a subset. The ancestor-
descendant relation is an example of the closure of a
relation, in particular the transitive closure of the
parent-child one.

A. Transitive closures

Recall that a relation R' is the transitive closure of
a relation R if and only if

(1) R' is transitive,

(2) R  R', and

(3) for any relation R'', if R  R'' and R'' is

transitive, then R'  R'', that is, R' is the
smallest relation that satisfies (1) and (2).

Note that the digraph of the transitive closure of a
relation is obtained from the digraph of the relation by
adding for each directed path the edge that shunts
the path, if one is not already there.

Obviously, both above self-mappings Father :

RULERS  RULERS and Mother : RULERS 
RULERS are parent-child relations.

Among others, there is a well-known Roy-Floyd-
Warshall algorithm [23] for computing transitive
closures; based on the relation’s adjacency matrix,
this elegant algorithm is, however, practical only for
small amounts of data, not for db size table instances
(as their closures generally cannot fit into memory,

http://www.jmest.org/
mailto:christian.mancas@gmail.com

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14500

even if the base corresponding relations can: e.g.,
the actual instance of the RULERS table only for
Dacia, all 3 former Romania kingdoms, and Romania
has 650 lines; its transitive closure for both Father
and Mother relationships has 6377 lines and only few
daughter data has been added yet to it).

As known since 1979 [21], neither relational
algebra (RA), nor relational calculus cannot compute
transitive closures; although, lately, most of the
commercially available RDBMSs extended their

SQLs to compute it, however, the appeal to Datalog
(and other similar paradigms) for solving this problem
is still strong, as they are more powerful and elegant.

Let us denote by Gf = {<x, f(x)> | x  R} the graph

of any self-function f : R  R; we denote (by
notational abuse) its transitive closure Gf * with f*. For
example, to compute Father*, the transitive closure of
Father, the following Datalog program [16] can be
used:

Father*(x,y)  RULERS(x,y)

Father*(x,y)  Father*(x,z), RULERS(z,y)

Fig. 2. Datalog program for computing Father’s

transitive closure

Similarly, to compute Mother*, the transitive
closure of Mother, the following Datalog program can
be used:

Mother*(x,v)  RULERS(x,v)

Mother*(x,v)  Mother*(x,z), RULERS(z,v)

Fig. 3. Datalog program for computing Mother’s

transitive closure

Note that, in both of them, the first rule is the
equivalent of (2) above (i.e. the transitive closure of a
relation includes that relation), whereas the second is
the equivalent of (3) above (i.e. if somebody has x as
an ancestor, then x’s father/mother is also an
ancestor of that somebody).

Computing the transitive closure of only one
element (e.g. “Dracula”, i.e. 36 in Fig. 1 above) can
be done through instantiating the corresponding pro-
gram for it: Fig. 4 shows an instantiation of the
program in Fig. 2, whereas Fig. 5 shows the same
one for the Datalog program in Fig. 3.

Unfortunately, neither of these two programs, nor
their instantiations can answer, for example, the
question on whether HRH Prince Charles of Wales’
ancestors also Cuman blood have (for the fact that
the founder of the Wallachian Kingdom was a Cuman
see, for example, [10]), as Romanian dynasties too
have from time to time survived only by females and,
of course, they interrelated to each other through
marriages. For example, in Fig. 1, “Dracula”’s
stepmother, Vasilisa Muşat, was one of the links
between some of his brothers and sisters Walachian
(from their father) and Moldavian descendance.

Father*(36,y)  RULERS(36,y)

Father*(36,y)  Father*(36,z), RULERS(z,y)

Fig. 4. Datalog program instantiation for computing

Father’s transitive closure of ruler 36 from Fig. 1

Mother*(36,v)  RULERS(36,v)

Mother*(36,v)  Mother*(36,z), RULERS(z,v)

Fig. 5. Datalog program instantiation for computing

Mother’s transitive closure of ruler 36 from Fig. 1

Obviously, what should be computed for correctly
answering such queries is the transitive closure of

the function product (Father  Mother)*, or, at least,
the transitive closure, according to this product, of the
corresponding person (in this case, “Dracula”), i.e.
the corresponding instantiation of the transitive

closure of the function product (Father  Mother)*.

B. Related work

Lot of work was published on computing transitive
closures (e.g. [2, 3, 4, 9, 11, 12, 17, 18, 19, 20, 22]),
but none, to our knowledge, for function products.

Datalog engines are behind specialized db
systems such as LDL [7], MatBase [14, 16], and
Intellidimension's database for the semantic web [25].
Moreover, some widely used database systems
include ideas and algorithms developed for Datalog.
For example, the SQL:1999 standard includes
recursive queries, and the Magic Sets algorithm
(initially developed for the faster evaluation of
Datalog queries) is implemented in IBM's DB2.

C. MatBase

MatBase [14, 16] is a prototype intelligent db and
kb management system based on both the
(Elementary) Mathematical Data Model (EMDM) [13,
16], Entity-Relationship Data Model (E-RDM) [6, 15],
Relational Data Model (RDM) [1, 8, 15], and

Datalog [1, 16], developed by the author in two
versions: one in MS Access (mainly for use in
university labs) and (a commercial) one in MS .net
C# and SQL Server.

D. Paper outline

Next Section presents first how MatBase
computes transitive closures of dyadic relations,
including the syntax-directed algorithms for
translating Datalog programs to Relational Algebra
(RA) equation systems and for computing the least
fixpoint of recursive RA equations. Then, it continues
with the algorithms for computing transitive closures
for function products (first, of arity 2, then, of any
arity). Section III deals with MatBase’s algorithms for
computing transitive closures of function products’
instance elements. The paper ends with conclusion
and references.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14501

II. COMPUTING FUNCTION PRODUCT CLOSURES

Through its (E)MDM interface, MatBase users can
define, among many others, any number of function
products; obviously, all members of such a product
should have a same domain. If, moreover, all their
codomains are the same as (or included into) their
common domain, then, like for any other dyadic
relation, users can also ask for computation of their
closures (be them reflexive, symmetric, transitive, or
any combinations between them).

A. Computing transitive closures of dyadic
relations

Although there are other faster methods for
computing transitive closures, MatBase is using the
semi-naïve implementation of the least fixpoint
semantics for RA equations [1, 16], which is fast
enough (for instance, computing the 6377 lines of

(Father  Mother)* above only takes under 1 second
on a current “standard” notebook).

This approach is first translating each inference
rule of a Datalog program into a RA disequation (i.e
inclusion relationship) by using a syntax-directed
algorithm; then, by applying the closed world
assumption (i.e. we are only interested in those
ground facts that are a consequence of the
corresponding Datalog program), all such
disequations having same head (i.e. left-hand side
intentional predicate) are collapsed into a single RA
equation, having same head and as body (i.e. right-
hand side expression) the union of all involved
disequations’ bodies, thus obtaining a corresponding
RA equation system; such systems are then solved
first by using substitution (just like for numbers
algebra equation systems) and then, as equations
may be recursive (i.e. containing, for example, the
head intensional predicate also in the body), each
such equation is solved by using the least fixpoint
computational semantics (i.e. computing the smallest
relation instance that satisfies the equation).

A.1. Syntax-directed translation algorithm from
Datalog to RA

Without entering into details, for example, if a
query p is defined on attribute A and a relation r on
attributes B and C, using the natural correspondence
between positional and non-positional notations, a

Datalog inference rule of the form p(x)  p(y), r(x, y)
is translated by this algorithm into the disequation

p  A  B (B(p A = C r)), where , , and are
the relational algebra (RA) renaming, projection, and
join operators, respectively.

Generally, given a rule p(x1, …, xn)  q1(y1, …,
yk1), …, qm(y1, …, ykm), this algorithm translates it into

the disequation P  E(Q1, …, Qm), where P, Q1, …,
Qm are the query and fundamental relations that
correspond to predicates p, q1, …, qm, respectively.
By collapsing all such disequations having P as left-

hand side, a RA equation of the type P = E1(Q1, …,

Qm1)  …  Ei(Q1, …, Qmi) is obtained.

For instance, the two rules of the program in Fig.
2 above are translated into the following two RA
disequations:

Father*   Descendant, Ancestor  x, Father (x,

Father(RULERS))

Father*  Ancestor  Father(Descendant, Father(Father*

 Ancestor = x x, Father(RULERS)))

Fig. 6. RA disequations corresponding to the Datalog
program in Fig. 2

These disequations are then collapsed into the
following RA recursive equation:

Father* =  Descendant, Ancestor  x, Father (x,

Father(RULERS)) 

 Ancestor  Father(Descendant, Father(Father*

 Ancestor = x x, Father(RULERS)))

Fig. 7. Recursive RA equation corresponding to the
disequations in Fig. 6

A.2. Computing the least fixpoint of RA recursive
equations

It can be shown that RA equations obtained as in
II.A.1 from Datalog programs always have a fixpoint
(trivially, as db instances are finite). This fixpoint is
obtained as follows: from every RA recursive
equation, a family of recurrent ones is obtained,
where, by definition, P0 is the empty set, for any

query P, for every natural j  0; by definition, the least
fixpoint of P is the first Pj in the sequence P0, P1, …
such that Pj = Pj+1.

For instance, the RA equation in Fig. 7 is
transformed into the family of recurrent ones shown
in Fig. 8:

Father*j+1 =  Descendant, Ancestor  x, Father (x,

Father(RULERS)) 

Ancestor  Father(Descendant, Father(Father*j

Ancestor = x x, Father(RULERS)))

Fig. 8. Recurrent RA equations corresponding to the
equation in Fig. 7

Obviously, Father*1 =  Descendant, Ancestor  x, Father (x,

Father(RULERS)), as joining anything with the empty
set always yields the empty set; so, if RULERS
instance were the one in Fig. 1, Father*1 instance
would also have 17 lines, the ones in Fig. 9.

Then, Father*2 =  Descendant, Ancestor  x, Father (x,

Father(RULERS))  Ancestor  Father(Descendant,

Father(Father*1 Ancestor = x x, Father(RULERS))), so
that Father*2 contains 14 more lines (the bottom ones
in Fig. 10).

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14502

Father*1

Descendant Ancestor

36 35

33 35

23 35

35 19

15 42

19 26

26 22

22 5

5 241

241

240 239

239

42 71

71 75

75 218

218 46

46

Fig. 9. First approximation of Father*’s fixpoint for

RULERS instance in Fig. 1

Father*2

Descendant Ancestor

36 35

33 35

23 35

35 19

15 42

19 26

26 22

22 5

5 241

241

240 239

239

42 71

71 75

75 218

218 46

46

36 19

33 19

23 19

35 26

15 71

19 22

26 5

22 241

5

240

42 75

71 218

75 46

218

Fig. 10. Second approximation of Father*’s fixpoint for

RULERS instance in Fig. 1

Note that the first operand of this union asks for
duplication of all existing lines, which, obviously,
must be rejected.

Also note that, in fact, if user does not ask
explicitly the contrary, MatBase eliminates null
ancestors (which, for the dynasties founders may be
interesting, but for all others are not: as such, in the
above instance, tuples <5,>, <240,>, and <218,> are
not generated, so only 11 new lines are added in this

step), generating in fact as second rule (in Datalog)
of the program from Fig. 2:

Father*(x,y)  Father*(x,z), RULERS(z,y), IsNull(y)

instead, which yields the following disequation (see

Fig. 6, where  is the selection RA operator):

Father*  Ancestor  Father(Descendant, Father(Father*

 Ancestor = x x, Father(NOT IsNULL(Father)(RULERS)))).

Fig. 11 shows Father*3‘s instance, obtained this
time (as always from now on) according to this
enhanced second rule.

It should be noted that the 9 new rows that were
added in this step (at the bottom of the table) were
generated only from the 11 ones obtained in the
previous one; the other lines (i.e. those originally
coming from RULERS in the first step) re-generated
these existing 11 ones and have to be rejected as
duplicates. Moreover, just as in the previous step,
attempts to re-duplicate the first 17 lines are again
asked by the first operand of the union operator, but
they must be rejected once more.

In fact, based on these facts, MatBase is not even
generating duplicates ever, as, in any step, it joins
RULERS with only those lines of Father* that were
added in the previous step (by adding a column Level
to Father* for also storing for each pair <descendant,
ancestor> its depth level, which is also an interesting
information per se).

The third iteration adds 7 new lines, the fourth one
another 5, the fifth – other 3, and, finally, the sixth
none: the process stops as Father*5 has just been
identified as being the least fixpoint (hence, the
solution) of Father* (see its instance in Fig. 12). From
these 42 lines it is immediately computable that Vlad
Călugărul (“the Monk”, id 33) is a descendent of
Basarab I (id 5), the founder of Wallachia, but that he
is not descending on his father side from Bogdan I (id
46), the founder of Moldavia (as no pair <33, 46>
exists in this transitive closure).

Moreover, as the latest allegations of historians
(see, for instance, [10]) that Basarab I’s father,
Thocomerius (id 241), was a Cuman are most
probably true, and as Vlad Călugărul (“the Monk”) is
also a descendent of Thocomerius (see the tuple
<33, 241> from Father* in Fig. 12), then in HRH
Charles of Wales blood there are also Cuman
reminiscences.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14503

Father*3

Descendan
t

Ancesto
r

36 35

33 35

23 35

35 19

15 42

19 26

26 22

22 5

5 241

241

240 239

239

42 71

71 75

75 218

218 46

46

36 19

33 19

23 19

35 26

15 71

19 22

26 5

22 241

42 75

71 218

75 46

36 26

33 26

23 26

35 22

15 75

19 5

26 241

42 218

71 46
Fig. 11. Third approximation of Father*’s fixpoint for

RULERS instance in Fig. 1, excluding nulls (except for
dynasties’ founders)

Generally, MatBase algorithm (presented here in
a pseudo-code embedding SQL [15, 16] –invoked
through function execute–, where // introduces
comments, & is the string concatenation operator and
domain, codomain, error, existsTable, and iif are
librarian functions performing obvious tasks: for
instance, the result of iif(cond, T, F) is T when cond is
true and F otherwise) for computing the transitive
closure of any relation is the one presented in Fig.
13.

Please note that in MatBase all tables are stored
in a very restrictive variant of the DKNF [1, 15], with
every table having an integer surrogate primary key –
which, obviously, stands for the x of all other columns
of the table when regarded as functions defined on
their table instance– and any foreign key referencing

only the corresponding primary key; this is why both
a1 and a2 are always integers.

Father* = Father*5 (= Father*6= Father*7 = …)

Descendant Ancestor

36 35

33 35

23 35

35 19

15 42

19 26

26 22

22 5

5 241

241

240 239

239

42 71

71 75

75 218

218 46

46

36 19

33 35

23 19

35 26

15 71

19 22

26 5

22 241

42 75

71 218

75 46

36 26

33 26

23 26

35 22

15 75

19 5

26 241

42 218

71 46

36 22

33 22

23 22

35 5

15 218

19 241

42 46

36 5

33 5

23 5

35 241

15 46

36 241

33 241

23 241

Fig. 12. Father* fixpoint for RULERS instance in Fig. 1

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14504

For “deciphering” the computed transitive closure
instance, two inner joins of this result with two
instances of the corresponding “deciphering” table on
these columns with the corresponding surrogate key
are all that’s needed; for instance:

SELECT RULERS.Name AS Descendant,

FATHERS.Name AS Ancestor

FROM (RULERS INNER JOIN Father*

ON RULERS.[x]=Father*.Descendant)

INNER JOIN RULERS AS FATHERS

ON Father*.Ancestor=FATHERS.[x];):

Algorithm computeTransClosure

Input: c1, c2 – the two columns of a table R storing the desired dyadic relation’s graph instance;

 transClosure, a1, a2 – the names of the desired table (distinct in the db) and its two columns for storing the result;

 nulls? – 0, if no null values are desired in c2, or

 1, if no null values are desired in c2 except for those in R (which is the default value), or

 2, if all null values are desired in c2;

Output: table transClosure instance, storing the corresponding transitive closure;

Strategy: R = domain(c1);

if R  domain(c2) or codomain(c1)  INT or codomain(c2)  INT then

 return error(“impossible to compute transitive closure: c1 and c2 are either not columns of a same table or have

 incompatible data types!”);

if existsTable(transClosure) then execute (“DELETE FROM “ & transClosure)

else execute(“CREATE TABLE “ & transClosure & “([Level] INT, “ & a1 & “ INT, “ & a2 & “ INT);”);

oldcard = 0; // transClosure is empty

execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & c1 & “, “ & c2 & “ FROM “ & R &

iif(nulls?=0, “ WHERE “ & c2 & “ NOT IS NULL”,)); // initialize result with <“son”, “father”>
pairs

level = 2; // next step will add second level “ancestors”

card = execute(“SELECT Count(*) FROM “ & transClosure);

while card  oldcard

 oldcard = card; // prevent infinite looping

 execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &

“, “ & R & “.” & c2 & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.” & a2 &

“=“ & R & “.” & c1 & “ WHERE [Level]=“ & level – 1 & iif(nulls?=1, “ AND “ & R & “.” & c2 &

“ NOT IS NULL”,));

 card = execute(“SELECT Count(*) FROM “ & transClosure);

 level = level + 1; // prepare next level “ancestors”

end while;

end algorithm computeTransClosure;

Fig. 13. MatBase algorithm for computing dyadic relations’ transitive closures

Obviously, the result showed in Fig. 12 is
obtainable by the following call to this method:
computeTransClosure([x], Father, Father*,
Descendant, Ancestor,). Fig. 14 presents the result of
a call computeTransClosure([x], Mother, Mother*,
Descendant, Ancestor, 0), which, obviously, is
Mother* (without any null ancestors). It is obvious

that Father*  Mother* does not contain the pair <23,
46> either, although, by his mother, Radu cel Frumos
(id 23), one of “Dracula”’s stepbrothers, also

descends from Bogdan I (id 46), the Moldavia’s
founder.

Naturally, this method can be used for computing
the transitive closure of any dyadic relation; for
example, in a FOOTBALL_CHAMPIONSHIP db, we
might want to compute the transitive closure of a
relation MATCHES for its two columns Host and
Visitor (both referencing the surrogate primary key [x]
of a table FOOTBALL_CLUBS); trivially (note that

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14505

both being in fact canonical projections of
MATCHES, neither Host nor Visitor should accept
nulls), this can be computed by the call:
computeTransClosure(Host, Visitor, MATCHES*,
Host, Visitor, 0).

Mother* = Mother*1 (= Mother*2= Mother*3 = …)

Descendant Ancestor

36 493

33 485

23 15

35 255

19 248

26 58

22 243

5 240

42 44

71 57

75 73

Fig. 14. Mother*’s fixpoint for RULERS instance in Fig.

1 (without nulls)

Moreover, obviously, this method can compute

the transitive closure of any function product f  g : R

 INT  INT; for example, in a RAILROADS db, the
call computeTransClosure(DepartureStation,
DestinationStation, CONNECTIONS*, Departure,
Destination, 0) would compute the transitive closure
of the product of the columns DepartureStation and
DestinationStation (both of them referencing the
surrogate primary key [x] of a table STATIONS and
not accepting nulls) of a table LINES.

Theorem 1: Algorithm computeTransClosure from
Fig. 13 has the following four properties:

(i) it is linear in the longest path in the digraph of
the input relation

(ii) it is sound (i.e. it is not generating anything
else but elements of the transitive closure of the input
relation)

(iii) it is complete (i.e. it generates all elements of
the transitive closure of the input relation)

(iv) it is optimal (i.e. it computes the transitive
closure of the input relation in the least number of
steps possible)

Proof:

(i) Trivial, as it has only one finite loop (hence, it
never loops infinitely) depending on the longest path
in the digraph of the input relation (trivially, as db
instances are finite, any such length is finite).

(ii) Obviously, the initial step only adds the input
relation; then, in each iteration of the loop, for any
pair <x,y> in the current result approximation and <y,
z> in the input relation, it is only added the pair <x,
z>, according to the transitivity rule. Moreover,
trivially, attempts to call the corresponding method
with wrong input parameters (i.e. columns not of the

same table or not referencing both a same table) are
rejected.

(iii) Obviously, the loop is executed up until no
further transitively computable pairs may be added to
the result: the first statement of the loop makes sure
that variable oldcard is storing the current result
cardinal, the last but one one is updating variable
card value to the cardinal of the result after adding
current iteration elements, and the while statement
condition ensures that the process repeats only as
long as these two values are not equal (i.e. as long
as the previous iteration was adding at least one new
element to the result).

(iv) Obviously, as soon as the previous loop
iteration did not add any new elements to the result,
the process stops (i.e. the algorithm only computes
the first two fixpoints, which is the minimum possible
in order to discover the least fixpoint). Moreover, the
algorithm never generates duplicates on a same level
(as it joins to the input relation only the current result
elements that were added in the previous iteration),
which is minimizing disk accesses for both reading
and writing operations. q.e.d.

B. Computing transitive closures for function
products

Let f : R  R be any self-function defined on and
taking values into some set R. By definition, for any

(generally other, but not necessarily distinct) g : R 

R, we define (f  g)* = (Gf  Gg)*.

Proposition 1: f*  g*  (f  g)*

Proof: let us assume that there is a pair <a, b> 

f*  g*, which does not belong to (f  g)*; then, it
either belongs to f* or/and to g*; if it belongs to f* (i.e.

Gf *), then it should belong to (f  g)* too, even if Gg
were the empty set; if it belongs to g* (i.e. Gg *), then

it should belong to (f  g)* too, even if Gf were the
empty set; consequently, the assumption that it does

not belong to (f  g)* too was absurd
 q.e.d.

As we should expect, generally, (f  g)*  f*  g*,
as we will see, for instance, with the <23, 46>

element, which belongs to (Father  Mother)* (Fig. 18

below), although it does not belong to Father* 
Mother* (see Fig. 12 and 14).

Proposition 2: (f  g)*  f*  g*

Proof: see the <23, 46> counterexample in Fig. 18
(as compared to Fig. 12 and 14); alternative proof:

(see Fig. 18) card((Father  Mother)*) = 72 > 53 = 42
+ 11 = card(Father *) (see Fig. 12) + card(Mother *)
(see Fig. 14). q.e.d.

B.1. Computing transitive closures for self-
function products of arity 2

MatBase is computing self-function products’
transitive closures with this definition, starting with
the generation of the following Datalog program type

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14506

(with slight variations on nulls, depending on the
user’s request and preserving notations used in Fig.
13 and the ones above):

transClosure(a1, a2)  R(c1, f) [, IsNull(f)]

transClosure(a1, a2)  R(c1, g) [, IsNull(g)]

transClosure(a1, a2)  transClosure(a1, x), R(x, f)

[, IsNull(f)]

transClosure(a1, a2)  transClosure(a1, x), R(x, g)

[, IsNull(g)]

Fig. 15. MatBase Datalog generic program for

computing (f  g)*

which yields (when all null values are desired) the
following RA equation:

transClosure = a1, a2 c1, f (c1, f (R)  a1, a2 c1, g (c1,

g (R)  a2  f (a1, f (transClosure a2 = c1  c1, f (R)))

 a2  g (a1, g (transClosure a2 = c1  c1, g (R)))

Fig. 16. RA equation corresponding to the Datalog
generic program in Fig. 15 (all nulls)

Its evaluation can be done by a method
computeBinarySelfProductTransClosure, whose
algorithm is presented in Fig. 17 (which is, except for
the duplicate deletion step, an obvious extension of
computeTransClosure):

Algorithm computeBinarySelfProductTransClosure

Input: x, f, g – columns of a table R storing the desired self-function product’s graph instance;

 transClosure, a1, a2 – the distinct names of the desired output table and its two columns for storing the result;

 nulls? – a pair of the type <0 or 1 or 2, 0 or 1 or 2>, where the first element is describing user request for

nulls processing for f, while the second one is for g (using same codes meaning as in Fig. 13);

Output: table transClosure instance, storing the transitive closure of f  g;

Strategy: R = domain(x); S = codomain(f);

if R  domain(f) or R  domain(g) or S  codomain(g) then return error (“impossible to compute transitive

 closure: either x, f, and g are not columns of a same table or f and g are not referencing a same table!”);

if existsTable(transClosure) then execute (“DELETE FROM “ & transClosure)

else execute(“CREATE TABLE “ & transClosure & “([Level] INT, “ & a1 & “ INT, “ & a2 & “ INT);”);

oldcard = 0; // transClosure is empty

execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & x & “, “ & f & “ FROM “ & R &

iif(nulls?[1]=0, “ WHERE “ & f & “ NOT IS NULL”,)); // initialize result with <“son”, “father”> pairs

execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & x & “, “ & g & “ FROM “ & R &

iif(nulls?[2]=0, “ WHERE “ & g & “ NOT IS NULL”,)); // initialize result with <“son”, “mother”> pairs

level = 2; // 2nd level “ancestors”// card = execute(“SELECT Count(*) FROM “ & transClosure);

while card  oldcard

 oldcard = card; // prevent infinite looping

 execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &

“, “ & R & “.” & f & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.” & a2 & “=“

& R & “.” & x & “ WHERE [Level]=“ & level – 1 & iif(nulls?[1]=1, “ AND “ & R & “.” & f & “ NOT IS NULL”,));

 execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &

“, “ & R & “.” & g & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.” & a2 & “=“

& R & “.” & x & “ WHERE [Level]=“ & level – 1 & iif(nulls?[2]=1, “ AND “ & R & “.” & g & “ NOT IS NULL”,));

 execute(“DELETE FROM “ & transClosure & “ WHERE x IN (SELECT y FROM (SELECT Min(Descendent),

Min(Ancestor), Count(Descendent) AS NumberOfDups, Max(x) AS y FROM “ & transClosure & “ GROUP

BY Descendent, Ancestor HAVING Count(Descendent)>1);”)

 card = execute(“SELECT Count(*) FROM “ & transClosure);

 level = level + 1; // prepare next level “ancestors”

end while;

end algorithm computeBinarySelfProductTransClosure;

Fig. 17. MatBase algorithm for computing binary self-function products’ transitive closures

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14507

For example, the following call of this method

computes the transitive closure (Father  Mother)*
into table RulersTransClosure, with nulls only for
those initially existing in Father:
computeBinarySelfProductTransClosure([x], Father,
Mother, RulersTransClosure, Descendant,
Ascendant, , 0); the corresponding computed
instance is showed in Fig. 18.

RulersTransClosure = (Father  Mother)* = (Father 

Mother)*6 (= (Father  Mother)*7 = …)

Level Descendant Ancestor

1 36 35

1 33 35

1 23 35

1 35 19

1 15 42

1 19 26

1 26 22

1 22 5

1 5 241

1 241

1 240 239

1 239

1 42 71

1 71 75

1 75 218

1 218 46

1 46

1 36 493

1 33 485

1 23 15

1 35 255

1 19 248

1 26 58

1 22 243

1 5 240

1 42 44

1 71 57

1 75 73

2 36 19

2 33 19

2 23 19

2 35 26

2 15 71

2 19 22

2 26 5

2 22 241

2 42 75

2 71 218

2 75 46

2 23 42

2 5 239

2 42 218

2 71 46

3 36 26

3 33 26

3 23 26

3 35 22

3 15 75

3 19 5

3 26 241

3 23 71

3 23 44

3 42 46

4 36 5

4 33 5

4 23 5

4 35 241

4 15 46

4 23 75

4 33 57

5 36 241

5 33 241

5 23 241

5 23 218

5 23 73

5 36 240

5 33 240

5 23 240

6 36 239

6 33 239

6 23 239

6 23 46

Fig. 18. (Father  Mother)*’s fixpoint for RULERS

instance in Fig. 1

It is obvious that (Father  Mother)* contains the
pair <23, 46> (see its last instance line), so Radu cel
Frumos (id 23) has also been discovered as
descending too from Bogdan I (id 46), the Moldavia’s
founder, but does not contain a pair <36, 46>, i.e.
Vlad Ţepeş (the Impaler) “Dracula” (id 36) was not
descending from Bogdan I; this, finally, is proving not
only that the answer to the question whether HRH
Prince Charles of Wales also descends from the
founders of both Wallachia and Moldavia is negative
(i.e. partially true -for Wallachia- but partially false -for
Moldavia), but, much more important, that, indeed, (f

 g)*  f*  g* (i.e. (f  g)* is richer than f*  g*).

Please note first that, in fact, MatBase actual
algorithm for computing transitive closures is more
powerful and complicated: as its metacatalogue also
stores (fundamental) functions, (computed) function
products, and their members, only the ids of the
desired function product is needed instead of the first
three parameters of the
computeBinarySelfProductTransClosure method
from Fig. 17; but the major advantage of this
approach is the fact that MatBase can compute
transitive closures for relations and function products
of any arity (i.e. not only for binary ones).

B.2. The need for deleting duplicates in each step
of the computation

Formalizing genealogical trees, both Father and
Mother are acyclic. However, the graph of their
product may contain cycles (i.e. generally, the union
of tree-type graphs is no more tree-like, but a lattice-
type one).

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14508

Especially in royal houses, it is frequently the
case that somebody is a descendant of a same
person several times, on several branches of his/her
family. For example, to keep it simple, let us recall
that the famous pharaoh Akhenaten (founder of the
monotheism), son of Amenhotep III and Tiye, married
one of his sisters (which was common not only in
ancient Egypt). Consequently, their famous son
Tutankhamun was twice descending from both his
grandparents.

If not deleted in the Algorithm above, such
duplicates (on a same level) are only polluting the
final answer with more and more duplicates (on each
lower levels).

There may be, however, such duplicates on
different levels as well; for example, let x be a father
of y and z, w a descendant of y, and v a child of w
and z: then, v is a descendant of x twice, once as his
grandfather (through z) and once as his grand-

grandfather (through y and w). This means that, on a
level l, the above algorithm adds to the result a pair
<v, x> and then, on level l + 1, would add it once
more.

Consequently, the above Algorithm would never
stop if such duplicates were not deleted.

B.3. Computing transitive closures for self-
function products of any arity

In fact, MatBase is able to compute transitive

closures for any f1  …  fn : R  R
n
 product (n being

a strictly positive natural), as (f1  …  fn)* = (Gf1  …

 Gfn)*. Fig. 19 presents this generalized algorithm,
also based on the associativity of the union operator.
Note that, as MatBase does not allow definition of
function products having different domains, there is
no need for checking that anymore.

Corresponding extended Datalog and RA
counterparts are trivially obtainable for any n > 2.

Algorithm computeProductTransClosure

Input: id F of an integer function product f1  …  fn, n > 0, whose graph is stored by a table R, having an integer

column as its surrogate primary key;

transClosure, a1, a2 –the (distinct) names of the desired table and its two columns for storing the result;

 nulls? – a tuple of the type <0 or 1 or 2, …, 0 or 1 or 2>, where each element is describing user request for

nulls processing for the corresponding member functions of F (using same codes meaning as in

Fig. 13);

Output: transClosure instance, storing the transitive closure of F = f1  …  fn;

Strategy:

if F does not correspond to a function then return error(“wrong parameter: there is no function having this id!”);

R = domain(F); n = arity(F);

loop for i = 1, n, 1

 if codomain(F[i])  INT then return error(“impossible to compute transitive closure: i-th F’s member data type

is not an integer one!”);

end loop;

if existsTable(transClosure) then execute (“DELETE FROM “ & transClosure)

else execute(“CREATE TABLE “ & transClosure & “([Level] INT, “ & a1 & “ INT, “ & a2 & “ INT);”);

oldcard = 0; // transClosure is empty

if codomain(f1) = R or n = 1 then x = primaryKeyName(R);

else begin n = n -1; x = F[1];

 loop for i = 1, n, 1

F[i] = F[i +1];

 end loop;

 end;

loop for i = 1, n, 1

 execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & x & “, “ & F[i] & “ FROM “ & R &

iif(nulls?[i]=0, “ WHERE “ & F[i] & “ NOT IS NULL”,)); // initialize result with <x, fi(x)> pairs

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14509

end loop;

level = 2; // next step will add second level “ancestors”

card = execute(“SELECT Count(*) FROM “ & transClosure);

while card  oldcard

 oldcard = card; // prevent infinite looping

 loop for i = 1, n, 1

 execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &

“, “ & R & “.” & F[i] & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.”

& a2 & “=“ & R & “.” & x & “ WHERE [Level]=“ & level – 1 & iif(nulls?[i]=1, “ AND “ & R & “.” & F[i] &

“ NOT IS NULL”,));

 end loop;

 execute(“DELETE FROM “ & transClosure & “ WHERE x IN (SELECT y FROM (SELECT Min(Descendent),

Min(Ancestor), Count(Descendent) AS NumberOfDups, Max(x) AS y FROM “ & transClosure &

“ GROUP BY Descendent, Ancestor HAVING Count(Descendent)>1);”)

 card = execute(“SELECT Count(*) FROM “ & transClosure);

 level = level + 1; // prepare next level “ancestors”

end while;

end algorithm computeProductTransClosure;

Fig. 19: MatBase algorithm for computing function products (of any arity) transitive closures

Theorem 2: Algorithm computeProductTransClo-
sure from Fig. 19 has the following four properties:

(i) its complexity is O(n * level), where n is the
arity of the input function product (i.e. the number of
its member functions) and level is the maximum of all
lengths of the corresponding n digraphs

(ii) it is sound (i.e. it is not generating anything
else but elements of the transitive closure of the input
function product)

(iii) it is complete (i.e. it generates all elements of
the transitive closure of the input function product)

(iv) it is optimal (i.e. it computes the transitive
closure of the input function product in the least
number of steps possible)

Proof: (similar to the one of Theorem 1 above)

(i) Trivial, as it has only three finite loops (hence,
as it is also deleting any duplicates in each iteration,
it never loops infinitely): the first two of them
depending on the finite input function product arity n,
and the last one depending on the maximum longest
path (level – 2 at the end of the loop execution, as
the final iteration does not add any new elements to
the result, thus corresponding to the second fixpoint,
and as one more execution of the last statement of
the loop takes place before discovering that the while
condition has become true) in the digraphs of the
input function members (trivially, as db instances are
finite, any such length is finite), and also on the inner
fourth loop, which is executed in each iteration of the
third one for n times (and even if some such

executions would not add any new elements to the
result, so no disk writes are necessary, only read
ones are).

(ii) Obviously, the second loop only adds the n
input function members digraphs; then, in each
iteration of the third loop, for any pair <x,y> in the
current result approximation and <y, z> in the current
corresponding i–th function member digraph, it is
only added the pair <x, z>, according to the
transitivity rule.

(iii) Obviously, the second and the fourth (i.e. the
inner to the third one) loops are executed for each
member function of the input function product, while
the third one is executed up until no further
transitively computable pairs may be added to the
result: the first statement of this loop makes sure that
variable oldcard is storing the current result cardinal,
the last but one one is updating variable card value to
the cardinal of the result after adding current iteration
elements, and the while statement condition ensures
that the process repeats only as long as these two
values are not equal (i.e. as long as the previous
iteration was adding at least one new element to the
result).

(iv) Obviously, as soon as the previous third loop
iteration did not add any new elements to the result,
the process stops (i.e. the algorithm only computes
the first two fixpoints, which is the minimum possible
in order to discover the least fixpoint). Moreover, the
algorithm never generates duplicates on a same level
(as it joins to the input relation only the current result
elements that were added in the previous iteration of

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14510

the third loop), which is minimizing disk accesses for
both reading and writing operations. q.e.d.

Obviously, corresponding extensions of Proposi-
tions 1 and 2 above for n functions (n > 2) are trivial
and their proofs obvious.

MatBase users may call this method also for
computing transitive closures of dyadic relations (i.e.
over a same set), by considering its canonical
Cartesian projections as the members of a function

product (defining its scheme) of the type F = f1  f2 : R

 S
2
 (S  R).

In fact, trivially, MatBase is able to compute
transitive closures for any integer function product f1

 …  fn : R  INT
n
 (n being a strictly positive

natural), as (f1  …  fn)* = (Gf1  …  Gfn)*.

III. COMPUTING DYADIC RELATION AND FUNCTION
PRODUCT CLOSURES FOR THEIR DOMAIN
ELEMENTS

As seen in Fig. 3 and 4 above, a simpler (and
faster) way to compute somebody’s ascendance is
by using Datalog programs instantiations.

For example, given any relation S  R  R and

any given x  R, we define x’s transitive closure x* =

S*|x = { y  R | <x,y>  S*}; in particular, given any

self-function f : R  R (having graph Gf = {<x, f(x)> |

x  R}) and any given x  R, x* = Gf *|x = { y  R |

<x,y>  Gf *}. Trivially, given another (not necessarily

distinct) g : R  R (having graph Gg = {<x, g(x)> | x 
R}), corresponding x’s transitive closure for the

function product (f  g)* = (Gf  Gg)* is x* = (Gf 

Gg)*|x = { y  R | <x,y>  (Gf  Gg)*}.

Obviously, by translating, for example, the
program instantiation from Fig. 3 above into RA, the
following equation is obtained:

36* =  Ancestor  Father (Father(x = 36(RULERS))) 

Ancestor  Father(Father(36* Ancestor = x x, Father(x = 36

(RULERS))))

Fig. 20. Recursive RA equation corresponding to the
instantiation in Fig. 3

Fig. 21 presents MatBase’s algorithm for
computing such instantiation closures.

Similarly, Fig. 22 presents MatBase’s algorithm
for computing instantiation closures for function
products of any arity.

Algorithm computeDyadicRelInstantiationTransClosure

Input: c1, c2 – the two columns of a table R storing the desired relation’s graph instance;

 transClosure, a1, a2 – the (distinct) names of the desired table and its two columns for storing the result;

 nulls? – 0, if no null values are desired in c2, or

 1, if no null values are desired in c2 except for those in R (which is the default value), or

 2, if all null values are desired in c2;

 x – the value of the surrogate key of R for which the closure is computed;

Output: table transClosure instance, storing the corresponding transitive closure;

Strategy:

R = domain(c1);

if R  domain(c2) or codomain(c1)  INT or codomain(c2)  INT then

 return error(“impossible to compute transitive closure: c1 and c2 are either not columns of a same table or have

incompatible data types!”);

if existsTable(transClosure) then execute (“DELETE FROM “ & transClosure)

else execute(“CREATE TABLE “ & transClosure & “([Level] INT, “ & a1 & “ INT, “ & a2 & “ INT);”);

oldcard = 0; // transClosure is empty

execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & c1 & “, “ & c2 & “ FROM “ & R &

“ WHERE x =“ & x & iif(nulls?=0, “ AND “ & c2 & “ NOT IS NULL”,)); // initialize with <“son”, “father”> pairs

level = 2; // next step will add second level “ancestors”

card = execute(“SELECT Count(*) FROM “ & transClosure);

while card  oldcard

 oldcard = card; // prevent infinite looping

 execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14511

“, “ & R & “.” & c2 & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.” & a2 & “=“

& R & “.” & c1 & “ WHERE [Level]=“ & level – 1 & “ AND x = “ & x & iif(nulls?=1, “ AND “ & R & “.” & c2 &

“ NOT IS NULL”,));

 card = execute(“SELECT Count(*) FROM “ & transClosure);

 level = level + 1; // prepare next level “ancestors”

end while;

end algorithm computeDyadicRelInstantiationTransClosure;

Fig. 21. MatBase algorithm for computing transitive closures of dyadic relations’ elements

Algorithm computeFunctProductInstantiationTransClosure

Input: id F of an integer function product f1  …  fn, n > 0, whose graph is stored by a table R, having an integer

column as its surrogate primary key;

transClosure, a1, a2 – the (distinct) names of the desired table and its two columns for storing the result;

nulls? – a tuple of the type <0 or 1 or 2, …, 0 or 1 or 2>, where each element is describing user request for

nulls processing for the corresponding member functions of F (using same codes meaning as in

Fig. 13);

x – the value of the surrogate key of R for which the closure is computed;

Output: transClosure instance, storing the transitive closure of F = f1  …  fn for the element x;

Strategy:

if F does not correspond to a function then return error(“wrong parameter: there is no function having this id!”);

R = domain(F); n = arity(F);

loop for i = 1, n, 1

 if codomain(F[i])  INT then return error(“impossible to compute transitive closure: i-th F’s member data type

is not an integer one!”);

end loop;

if existsTable(transClosure) then execute (“DELETE FROM “ & transClosure)

else execute(“CREATE TABLE “ & transClosure & “([Level] INT, “ & a1 & “ INT, “ & a2 & “ INT);”);

oldcard = 0; // transClosure is empty

if codomain(f1) = R or n = 1 then x = primaryKeyName(R);

else begin n = n -1; x = F[1];

 loop for i = 1, n, 1

F[i] = F[i +1];

 end loop;

 end;

loop for i = 1, n, 1

 execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & x & “, “ & F[i] & “ FROM “ & R &

iif(nulls?[i]=0, “ WHERE x =“ & x & “ AND “ & F[i] & “ NOT IS NULL”,)); // initialize with <x, fi(x)> pairs

end loop;

level = 2; // next step will add second level “ancestors”

card = execute(“SELECT Count(*) FROM “ & transClosure);

while card  oldcard

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14512

 oldcard = card; // prevent infinite looping

 loop for i = 1, n, 1

 execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &

“, “ & R & “.” & F[i] & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.” & a2

& “=“ & R & “.” & x & “ WHERE [Level]=“ & level – 1 & “ AND x =” & x & iif(nulls?[i]=1, “ AND “ & R & “.”

& F[i] & “ NOT IS NULL”,));

 end loop;

 execute(“DELETE FROM “ & transClosure & “ WHERE x IN (SELECT y FROM (SELECT Min(Descendent),

Min(Ancestor), Count(Descendent) AS NumberOfDups, Max(x) AS y FROM “ & transClosure & “ GROUP

BY Descendent, Ancestor HAVING Count(Descendent)>1);”)

 card = execute(“SELECT Count(*) FROM “ & transClosure);

 level = level + 1; // prepare next level “ancestors”

end while;

end algorithm computeFunctProductInstantiationTransClosure;

Fig. 22. MatBase algorithm for computing transitive closures of function products’ elements

These two latter algorithms also enjoy the same
four properties as those from Fig. 13 and 19,
respectively (i.e their complexities are O(longest
digraph path for element x) and O(n * levelx),
respectively, and they are sound, complete, and
optimal). The corresponding proofs are left to the
reader, as they are only slight simplifications of those
of the two Theorems above.

CONCLUSION

The main contribution of this paper is not only
presenting how should be theoretically computed
transitive closures for both dyadic relations, self-

functions, function products of the type f1  …  fn : R

 S
n
 (by computing the transitive closure of the

union of their members’ graphs), and for their domain
elements, but also introducing the elegant way in
which MatBase, a prototype intelligent db and kb
management system developed by the author, is

actually computing them, both in Datalog, RA, and
a pseudo-code embedding SQL.

 Moreover, it is proved that MatBase algorithms
for computing transitive closures (both for n-ary
homogeneous relations and function products, as
well as for their instance elements) are linear, solid,
complete, and optimal. In the sequel, it is also proved
that the union of the transitive closures of the
members of any function product is always included
in the transitive closure of their product, but the
reverse is not true: generally, the transitive closure of
a function product is richer than the union of its
members’ transitive closures.

Note that no commercially available, nor prototype
system is offering to its users the possibility to
compute transitive closures for function products and
that this facility is crucial in order to be able to
correctly answer such questions as the one in the

subtitle of this paper, without first designing and
running costly preliminary queries.

Anecdotically, examples also show that HRH
Prince Charles of Wales, who has among his
maternal ancestors Vlad Călugărul, a stepbrother of
Vlad „Dracula” „the Impaler”, is descending from
Wallachia’s founder, Basarab I (of Cuman origin by
his father), but not from Moldova’s one, Bogdan I,
although most of „Dracula”’s stepbrothers and sisters
are also, by their mother, descending from Bogdan I.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu.
Foundations of Databases. Addison-Wesley, 1995.

[2] R. Agrawal and H. V. Jagadish, "Direct
algorithms for computing the transitive closure of
database relations," in Proc. 13th Int. Conf. Very
Large Data Bases, Brighton, England, Sept. 1987,
pp. 255-266.

[3] A. Beletska, D. Barthou, W. Bielecki and A.
Cohen. “Computing the Transitive Closure of a Union
of Affine Integer Tuple Relations”, Lecture Notes in
Computer Science, 2009, Volume 5573/2009, pp. 98-
109, DOI: 10.1007/978-3-642-02026-1_9.

[4] M. Bozga, R. Iosif, and F. Konecný. “Transitive
Closures of Ultimately Periodic Relations”, VERIMAG
Technical Report TR-2011-14, 2011.

[5] S. Ceri, G. Gottlob, L. Tanca, "What You
Always Wanted to Know About Datalog (And Never
Dared to Ask)," IEEE Transactions on Knowledge
and Data Engineering, vol. 1, no. 1, pp. 146-166,
Mar. 1989.

[6] P.P. Chen. “The Entity-Relationship Model:
Toward a Unified View of Data”. ACM Trans. on
Database Syst. 1(1): 9-36, 1976.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 8, August - 2021

www.jmest.org

JMESTN42353862 14513

[7] D. Chimenti, R. Gamboa, R. Krishnamurti, S.
Naqvi, S. Tsur, and C. Zaniolo. “The LDL System
Prototype”. IEEE Trans. on Knowledge and Data
Eng. 2(1): 76-90, 1990.

[8] E. F. Codd. “A Relational Model for Large
Shared Data Banks”. Comm. Of the ACM 13(6): 377-
387, 1970.

[9] C. Demetrescu and G.F. Italiano. “Fully
dynamic transitive closure: Breaking through the
O(n2) barrier”. In Proc. of the 41st IEEE Annual
Symposium on Foundations of Computer Science
(FOCS’00), pp. 381–389, 2000.

[10] N. Djuvara. “Thocomerius – Negru Vodă a
Ruling Prince of Cuman Origins at the beginnings of
Wallachia” (in Romanian). Humanitas Publishing
House, Bucharest, Romania, 2

nd
 ed., 2011.

[11] W. Kelly, W. Pugh, E. Rosser, and T.
Shpeisman, “Transitive closure of infinite graphs and
its applications”, University of Maryland at College
Park, College Park, MD, 1994, CS-TR-3457.

[12] V. King. “Fully dynamic algorithms for
maintaining all-pairs shortest paths and transitive
closure in digraphs”. In Proc. 40th IEEE Symposium
on Foundations of Computer Science (FOCS’99), pp.
81–99, 1999.

[13] C. Mancas. “On Knowledge Representation
using an Elementary Mathematical Data Model”.
Proc. of IASTED Intl. Conf. on Information and
Knowledge Sharing, St. Thomas, U.S. Virgin Islands,
206-211, 2002.

[14] C. Mancas, S. Dragomir: “Matbase Datalog¬
subsystem meta-catalog conceptual design”. IASTED
Conf. on Software Engineering and Applications
2004, pp. 34-41.

[15] C. Mancas, Conceptual Data Modeling and
Database Design: A Completely Algorithmic
Approach. Volume I: The Shortest Advisable Path.
Apple Academic Press / CRC Press (Taylor &
Francis Group), Waretown, NJ, 2015.

[16] C. Mancas, Conceptual Data Modeling and
Database Design: A Completely Algorithmic
Approach. Volume II: Refinements for an Expert
Path. Apple Academic Press / CRC Press (Taylor &
Francis Group), Waretown, NJ (2022, in press).

[17] H. De Meyer, H. Naessens, B. De Baets.
“Algorithms for computing the min-transitive closure
and associated partition tree of a symmetric fuzzy
relation”, European Journal of Operational Research
Volume 155, Issue 1, 16 May 2004, pp. 226-238.

[18] C. Pang, G. Dong, and K. Ramamohanarao,
"Incrémental Maintenance of Shortest Distance and
Transitive Closure in First-Order Logic and SQL,"
ACM Transactions on Database Systems, 30(3), pp.
698-721, 2005.

[19] T. Przymusinski, “Every logic program has a
natural stratification and an iterated least fixed point
model”, in 8th ACM Symp. Principles Database Syst.
(PODS), Mar. 1989, pp. 11-21.

[20] C. Sternagel and R. Thiemann. “Executable
Transitive Closures of Finite Relations”, The Archive
of Formal Proofs, 2011.

[21] J. D. Ullman. “Implementation of Logical
Query Languages for Databases”. ACM Trans. On
Database Systems, 10(3): 289-321, 1985.

[22] S. Verdoolaege, A. Cohen, and A. Beletska.
“Transitive Closures of Affine Integer Tuple Relations
and their Overapproximations”, INRIA N° RR-7560,
2011.

[23] S. Warshall. “A theorem on Boolean
matrices”. Journal of the ACM 9 (1): 11–12, 1962.

[24] Vlad the Impaler: How is Prince Charles,
Queen Elizabeth related to him? - CBS News, 2004.
http://www.redicecreations.com/news/2004/princevla
d-the-impaler.html

[25] Intellidimension - Semantic Web Tools and
Technology for Windows, RDF for .NET Framework
(C#), SPARQL on SQL Server, 2021.

http://www.jmest.org/
http://www.redicecreations.com/news/2004/princevlad-the-impaler.html
http://www.redicecreations.com/news/2004/princevlad-the-impaler.html
http://www.intellidimension.com/products/semantics-platform/
http://www.intellidimension.com/products/semantics-platform/
http://www.intellidimension.com/products/semantics-platform/

