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Abstract — This paper presents how transitive 
closures and their instantiations for all possible 
types of db interesting dyadic relations, self-
functions, and function products are computed by 
the MatBase Datalog subsystem. Moreover, it is 
proved that the corresponding algorithms are 
linear, solid, complete, and optimal. 
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I. INTRODUCTION 

In everyday life we often talk about parent-child 
relationships: binary relations on a set of people, 
dead or alive. For example, in a REIGNS database, 
we might have a RULERS table having (among other 
columns as well) a surrogate autonumber primary 
key x, a key (unique) text Name one, and two foreign 
keys (both referencing x) Father and Mother (for 
storing corresponding parents) as in Fig. 1 (also 
presenting a partial instance from Romania’s history 
between the XIII

th
 and XV

th
). 

We are often also interested in ancestor-
descendant relations. Although the latter relation can 
be obtained from the former (hence, it is redundant in 
that sense), ancestor-descendant relations give us 
necessary information much more directly.  

For example, some years ago, HRH Prince 
Charles of Wales declared that he is a descendent of 
Vlad Ţepeş (“the Impaler”) “Dracula” (apparently, 
according to [24], through his stepbrother Vlad 
Călugărul (“the Monk”), who was one of the 
ancestors of Queen Elizabeth II, HRH’s mother); 
does this mean, for example, that he is also a 
descendant of the founders of the two Romanian 
medieval states, Basarab I for Walachia and Bogdan 
I for Moldavia? 

 

RULERS (x, Name) Father  x, Mother  x 

x Name Father Mother 

36 Vlad Ţepeş (“Dracula”) 35 493 

33 Vlad Călugărul 35 485 

23 Radu cel Frumos 35 15 

35 Vlad Dracul 19 255 

15 Vasilisa Mușat 42  

19 Mircea cel Bătrân 26 248 

26 Radu I   22 58 

22 Nicolae Alexandru 5 243 

5 Basarab I 241 240 

241 Thocomerius   

240 Ana 239  

239 Bărbat   

42 Alexandru cel Bun 71 44 

71 Roman I 75 57 

75 Ştefan I Muşat 218 73 

218 Ştefan 46  

46 Bogdan I     

Fig. 1. Walachia and Moldavia first rulers and some of 
their parents 

This ancestor-descendant relation relates two 
people if there is a sequence of parent-child relations 
from one to the other; obviously, it includes the 
parent-child relation as a subset. The ancestor-
descendant relation is an example of the closure of a 
relation, in particular the transitive closure of the 
parent-child one. 

A. Transitive closures 

Recall that a relation R' is the transitive closure of 
a relation R if and only if 

(1) R' is transitive, 

(2) R  R', and 

(3) for any relation R'', if R  R'' and R'' is 

transitive, then R'  R'', that is, R' is the 
smallest relation that satisfies (1) and (2). 

Note that the digraph of the transitive closure of a 
relation is obtained from the digraph of the relation by 
adding for each directed path the edge that shunts 
the path, if one is not already there. 

Obviously, both above self-mappings Father : 

RULERS  RULERS and Mother : RULERS  
RULERS are parent-child relations. 

Among others, there is a well-known Roy-Floyd-
Warshall algorithm [23] for computing transitive 
closures; based on the relation’s adjacency matrix, 
this elegant algorithm is, however, practical only for 
small amounts of data, not for db size table instances 
(as their closures generally cannot fit into memory, 
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even if the base corresponding relations can: e.g., 
the actual instance of the RULERS table only for 
Dacia, all 3 former Romania kingdoms, and Romania 
has 650 lines; its transitive closure for both Father 
and Mother relationships has 6377 lines and only few 
daughter data has been added yet to it).  

As known since 1979 [21], neither relational 
algebra (RA), nor relational calculus cannot compute 
transitive closures; although, lately, most of the 
commercially available RDBMSs extended their 

SQLs to compute it, however, the appeal to Datalog 
(and other similar paradigms) for solving this problem 
is still strong, as they are more powerful and elegant. 

Let us denote by Gf = {<x, f(x)> | x  R} the graph 

of any self-function f : R  R; we denote (by 
notational abuse) its transitive closure Gf * with f*. For 
example, to compute Father*, the transitive closure of 
Father, the following Datalog program [16] can be 
used: 

Father*(x,y)   RULERS(x,y) 

Father*(x,y)  Father*(x,z), RULERS(z,y) 

Fig. 2. Datalog program for computing Father’s 

transitive closure 

Similarly, to compute Mother*, the transitive 
closure of Mother, the following Datalog program can 
be used: 

Mother*(x,v)   RULERS(x,v) 

Mother*(x,v)  Mother*(x,z), RULERS(z,v) 

Fig. 3. Datalog program for computing Mother’s 

transitive closure 

Note that, in both of them, the first rule is the 
equivalent of (2) above (i.e. the transitive closure of a 
relation includes that relation), whereas the second is 
the equivalent of (3) above (i.e. if somebody has x as 
an ancestor, then x’s father/mother is also an 
ancestor of that somebody). 

Computing the transitive closure of only one 
element (e.g. “Dracula”, i.e. 36 in Fig. 1 above) can 
be done through instantiating the corresponding pro-
gram for it: Fig. 4 shows an instantiation of the 
program in Fig. 2, whereas Fig. 5 shows the same 
one for the Datalog program in Fig. 3. 

Unfortunately, neither of these two programs, nor 
their instantiations can answer, for example, the 
question on whether HRH Prince Charles of Wales’ 
ancestors also Cuman blood have (for the fact that 
the founder of the Wallachian Kingdom was a Cuman 
see, for example, [10]), as Romanian dynasties too 
have from time to time survived only by females and, 
of course, they interrelated to each other through 
marriages. For example, in Fig. 1, “Dracula”’s 
stepmother, Vasilisa Muşat, was one of the links 
between some of his brothers and sisters Walachian 
(from their father) and Moldavian descendance. 

Father*(36,y)   RULERS(36,y) 

Father*(36,y)  Father*(36,z), RULERS(z,y) 

Fig. 4. Datalog program instantiation for computing 

Father’s transitive closure of ruler 36 from Fig. 1 

 

Mother*(36,v)   RULERS(36,v) 

Mother*(36,v)  Mother*(36,z), RULERS(z,v) 

Fig. 5. Datalog program instantiation for computing 

Mother’s transitive closure of ruler 36 from Fig. 1 

Obviously, what should be computed for correctly 
answering such queries is the transitive closure of 

the function product (Father  Mother)*, or, at least, 
the transitive closure, according to this product, of the 
corresponding person (in this case, “Dracula”), i.e. 
the corresponding instantiation of the transitive 

closure of the function product (Father  Mother)*. 

B. Related work 

Lot of work was published on computing transitive 
closures (e.g. [2, 3, 4, 9, 11, 12, 17, 18, 19, 20, 22]), 
but none, to our knowledge, for function products. 

Datalog engines are behind specialized db 
systems such as LDL [7], MatBase [14, 16], and 
Intellidimension's database for the semantic web [25]. 
Moreover, some widely used database systems 
include ideas and algorithms developed for Datalog. 
For example, the SQL:1999 standard includes 
recursive queries, and the Magic Sets algorithm 
(initially developed for the faster evaluation of 
Datalog queries) is implemented in IBM's DB2. 

C. MatBase 

MatBase [14, 16] is a prototype intelligent db and 
kb management system based on both the 
(Elementary) Mathematical Data Model (EMDM) [13, 
16], Entity-Relationship Data Model (E-RDM) [6, 15], 
Relational Data Model (RDM) [1, 8, 15], and 

Datalog [1, 16], developed by the author in two 
versions: one in MS Access (mainly for use in 
university labs) and (a commercial) one in MS .net 
C# and SQL Server. 

D. Paper outline 

Next Section presents first how MatBase 
computes transitive closures of dyadic relations, 
including the syntax-directed algorithms for 
translating Datalog programs to Relational Algebra 
(RA) equation systems and for computing the least 
fixpoint of recursive RA equations. Then, it continues 
with the algorithms for computing transitive closures 
for function products (first, of arity 2, then, of any 
arity). Section III deals with MatBase’s algorithms for 
computing transitive closures of function products’ 
instance elements. The paper ends with conclusion 
and references. 
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II. COMPUTING FUNCTION PRODUCT CLOSURES 

Through its (E)MDM interface, MatBase users can 
define, among many others, any number of function 
products; obviously, all members of such a product 
should have a same domain. If, moreover, all their 
codomains are the same as (or included into) their 
common domain, then, like for any other dyadic 
relation, users can also ask for computation of their 
closures (be them reflexive, symmetric, transitive, or 
any combinations between them). 

A. Computing transitive closures of dyadic 
relations 

Although there are other faster methods for 
computing transitive closures, MatBase is using the 
semi-naïve implementation of the least fixpoint 
semantics for RA equations [1, 16], which is fast 
enough (for instance, computing the 6377 lines of 

(Father  Mother)* above only takes under 1 second 
on a current “standard” notebook).  

This approach is first translating each inference 
rule of a Datalog program into a RA disequation (i.e 
inclusion relationship) by using a syntax-directed 
algorithm; then, by applying the closed world 
assumption (i.e. we are only interested in those 
ground facts that are a consequence of the 
corresponding Datalog program), all such 
disequations having same head (i.e. left-hand side 
intentional predicate) are collapsed into a single RA 
equation, having same head and as body (i.e. right-
hand side expression) the union of all involved 
disequations’ bodies, thus obtaining a corresponding 
RA equation system; such systems are then solved 
first by using substitution (just like for numbers 
algebra equation systems) and then, as equations 
may be recursive (i.e. containing, for example, the 
head intensional predicate also in the body), each 
such equation is solved by using the least fixpoint 
computational semantics (i.e. computing the smallest 
relation instance that satisfies the equation). 

A.1. Syntax-directed translation algorithm from 
Datalog to RA 

Without entering into details, for example, if a 
query p is defined on attribute A and a relation r on 
attributes B and C, using the natural correspondence 
between positional and non-positional notations, a 

Datalog inference rule of the form p(x)  p(y), r(x, y) 
is translated by this algorithm into the disequation  

p  A  B (B(p  A = C  r)), where , , and  are 
the relational algebra (RA) renaming, projection, and 
join operators, respectively.  

Generally, given a rule p(x1, …, xn)  q1(y1, …, 
yk1), …, qm(y1, …, ykm), this algorithm translates it into 

the disequation P  E(Q1, …, Qm), where P, Q1, …, 
Qm are the query and fundamental relations that 
correspond to predicates p, q1, …, qm, respectively. 
By collapsing all such disequations having P as left-

hand side, a RA equation of the type P = E1(Q1, …, 

Qm1)  …  Ei(Q1, …, Qmi) is obtained. 

For instance, the two rules of the program in Fig. 
2 above are translated into the following two RA 
disequations: 

Father*   Descendant, Ancestor  x, Father (x, 

Father(RULERS)) 

Father*  Ancestor  Father(Descendant, Father(Father* 

 Ancestor = x x, Father(RULERS))) 

Fig. 6. RA disequations corresponding to the Datalog 
program in Fig. 2 

These disequations are then collapsed into the 
following RA recursive equation: 

Father*  =  Descendant, Ancestor  x, Father (x, 

Father(RULERS))  

      Ancestor  Father(Descendant, Father(Father* 

 Ancestor = x x, Father(RULERS))) 

Fig. 7. Recursive RA equation corresponding to the 
disequations in Fig. 6 

A.2. Computing the least fixpoint of RA recursive 
equations 

It can be shown that RA equations obtained as in 
II.A.1 from Datalog programs always have a fixpoint 
(trivially, as db instances are finite). This fixpoint is 
obtained as follows: from every RA recursive 
equation, a family of recurrent ones is obtained, 
where, by definition, P0 is the empty set, for any 

query P, for every natural j  0; by definition, the least 
fixpoint of P is the first Pj in the sequence P0, P1, … 
such that Pj = Pj+1. 

For instance, the RA equation in Fig. 7 is 
transformed into the family of recurrent ones shown 
in Fig. 8: 

Father*j+1  =   Descendant, Ancestor  x, Father (x, 

Father(RULERS))  

Ancestor  Father(Descendant, Father(Father*j  

Ancestor = x x, Father(RULERS))) 

Fig. 8. Recurrent RA equations corresponding to the 
equation in Fig. 7 

Obviously, Father*1 =  Descendant, Ancestor  x, Father (x, 

Father(RULERS)), as joining anything with the empty 
set always yields the empty set; so, if RULERS 
instance were the one in Fig. 1, Father*1 instance 
would also have 17 lines, the ones in Fig. 9. 

Then, Father*2  =  Descendant, Ancestor  x, Father (x, 

Father(RULERS))  Ancestor  Father(Descendant, 

Father(Father*1  Ancestor = x x, Father(RULERS))), so 
that Father*2 contains 14 more lines (the bottom ones 
in Fig. 10). 
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Father*1 

Descendant Ancestor 

36 35 

33 35 

23 35 

35 19 

15 42 

19 26 

26 22 

22 5 

5 241 

241  

240 239 

239  

42 71 

71 75 

75 218 

218 46 

46  

Fig. 9. First approximation of Father*’s fixpoint for 

RULERS instance in Fig. 1 

Father*2 

Descendant Ancestor 

36 35 

33 35 

23 35 

35 19 

15 42 

19 26 

26 22 

22 5 

5 241 

241  

240 239 

239  

42 71 

71 75 

75 218 

218 46 

46  

36 19 

33 19 

23 19 

35 26 

15 71 

19 22 

26 5 

22 241 

5  

240  

42 75 

71 218 

75 46 

218  

Fig. 10. Second approximation of Father*’s fixpoint for 

RULERS instance in Fig. 1 

Note that the first operand of this union asks for 
duplication of all existing lines, which, obviously, 
must be rejected. 

Also note that, in fact, if user does not ask 
explicitly the contrary, MatBase eliminates null 
ancestors (which, for the dynasties founders may be 
interesting, but for all others are not: as such, in the 
above instance, tuples <5,>, <240,>, and <218,> are 
not generated, so only 11 new lines are added in this 

step), generating in fact as second rule (in Datalog) 
of the program from Fig. 2: 

Father*(x,y)  Father*(x,z), RULERS(z,y), IsNull(y) 

instead, which yields the following disequation (see 

Fig. 6, where  is the selection RA operator): 

Father*  Ancestor  Father(Descendant, Father(Father* 

 Ancestor = x x, Father(NOT IsNULL(Father)(RULERS)))). 

Fig. 11 shows Father*3‘s instance, obtained this 
time (as always from now on) according to this 
enhanced second rule. 

It should be noted that the 9 new rows that were 
added in this step (at the bottom of the table) were 
generated only from the 11 ones obtained in the 
previous one; the other lines (i.e. those originally 
coming from RULERS in the first step) re-generated 
these existing 11 ones and have to be rejected as 
duplicates. Moreover, just as in the previous step, 
attempts to re-duplicate the first 17 lines are again 
asked by the first operand of the union operator, but 
they must be rejected once more. 

In fact, based on these facts, MatBase is not even 
generating duplicates ever, as, in any step, it joins 
RULERS with only those lines of Father* that were 
added in the previous step (by adding a column Level 
to Father* for also storing for each pair <descendant, 
ancestor> its depth level, which is also an interesting 
information per se). 

The third iteration adds 7 new lines, the fourth one 
another 5, the fifth – other 3, and, finally, the sixth 
none: the process stops as Father*5 has just been 
identified as being the least fixpoint (hence, the 
solution) of Father* (see its instance in Fig. 12). From 
these 42 lines it is immediately computable that Vlad 
Călugărul (“the Monk”, id 33) is a descendent of 
Basarab I (id 5), the founder of Wallachia, but that he 
is not descending on his father side from Bogdan I (id 
46), the founder of Moldavia (as no pair <33, 46> 
exists in this transitive closure). 

Moreover, as the latest allegations of historians 
(see, for instance, [10]) that Basarab I’s father, 
Thocomerius (id 241), was a Cuman are most 
probably true, and as Vlad Călugărul (“the Monk”) is 
also a descendent of Thocomerius (see the tuple 
<33, 241> from Father* in Fig. 12), then in HRH 
Charles of Wales blood there are also Cuman 
reminiscences. 
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Father*3 

Descendan
t 

Ancesto
r 

36 35 

33 35 

23 35 

35 19 

15 42 

19 26 

26 22 

22 5 

5 241 

241  

240 239 

239  

42 71 

71 75 

75 218 

218 46 

46  

36 19 

33 19 

23 19 

35 26 

15 71 

19 22 

26 5 

22 241 

42 75 

71 218 

75 46 

36 26 

33 26 

23 26 

35 22 

15 75 

19 5 

26 241 

42 218 

71 46 
Fig. 11. Third approximation of Father*’s fixpoint for 

RULERS instance in Fig. 1, excluding nulls (except for 
dynasties’ founders) 

Generally, MatBase algorithm (presented here in 
a pseudo-code embedding SQL [15, 16] –invoked 
through function execute–, where // introduces 
comments, & is the string concatenation operator and 
domain, codomain, error, existsTable, and iif are 
librarian functions performing obvious tasks: for 
instance, the result of iif(cond, T, F) is T when cond is 
true and F otherwise) for computing the transitive 
closure of any relation is the one presented in Fig. 
13.  

Please note that in MatBase all tables are stored 
in a very restrictive variant of the DKNF [1, 15], with 
every table having an integer surrogate primary key –
which, obviously, stands for the x of all other columns 
of the table when regarded as functions defined on 
their table instance– and any foreign key referencing 

only the corresponding primary key; this is why both 
a1 and a2 are always integers. 

Father* = Father*5 (= Father*6= Father*7 = …) 

Descendant Ancestor 

36 35 

33 35 

23 35 

35 19 

15 42 

19 26 

26 22 

22 5 

5 241 

241  

240 239 

239  

42 71 

71 75 

75 218 

218 46 

46  

36 19 

33 35 

23 19 

35 26 

15 71 

19 22 

26 5 

22 241 

42 75 

71 218 

75 46 

36 26 

33 26 

23 26 

35 22 

15 75 

19 5 

26 241 

42 218 

71 46 

36 22 

33 22 

23 22 

35 5 

15 218 

19 241 

42 46 

36 5 

33 5 

23 5 

35 241 

15 46 

36 241 

33 241 

23 241 

Fig. 12. Father* fixpoint for RULERS instance in Fig. 1 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 8 Issue 8, August - 2021  

www.jmest.org 

JMESTN42353862 14504 

For “deciphering” the computed transitive closure 
instance, two inner joins of this result with two 
instances of the corresponding “deciphering” table on 
these columns with the corresponding surrogate key 
are all that’s needed; for instance:  

SELECT RULERS.Name AS Descendant,  

FATHERS.Name AS Ancestor  

FROM (RULERS INNER JOIN Father*  

ON RULERS.[x]=Father*.Descendant)  

INNER JOIN RULERS AS FATHERS  

ON Father*.Ancestor=FATHERS.[x];): 

Algorithm computeTransClosure 

Input:  c1, c2 – the two columns of a table R storing the desired dyadic relation’s graph instance; 

    transClosure, a1, a2 – the names of the desired table (distinct in the db) and its two columns for storing the result; 

    nulls? – 0, if no null values are desired in c2, or  

    1, if no null values are desired in c2 except for those in R (which is the default value), or  

     2, if all null values are desired in c2;  

Output: table transClosure instance, storing the corresponding transitive closure; 

Strategy:  R = domain(c1); 

if R  domain(c2) or codomain(c1)  INT or codomain(c2)  INT then  

  return error(“impossible to compute transitive closure: c1 and c2 are either not columns of a same table or have  

           incompatible data types!”); 

if existsTable(transClosure) then execute (“DELETE FROM “ & transClosure) 

else execute(“CREATE TABLE “ & transClosure & “([Level] INT, “ & a1 & “ INT, “ & a2 & “ INT);”); 

oldcard = 0; // transClosure is empty 

execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & c1 & “, “ & c2 & “ FROM “ & R &  

iif(nulls?=0, “ WHERE “ & c2 & “ NOT IS NULL”,));          // initialize result with <“son”, “father”> 
pairs 

level = 2; // next step will add second level “ancestors” 

card = execute(“SELECT Count(*) FROM “ & transClosure); 

while card  oldcard 

    oldcard = card; // prevent infinite looping 

    execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &  

“, “ & R & “.” & c2 & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.” & a2 &  

“=“ & R & “.” & c1 & “ WHERE [Level]=“ & level – 1 & iif(nulls?=1, “ AND “ & R & “.” & c2 &  

“ NOT IS NULL”,)); 

    card = execute(“SELECT Count(*) FROM “ & transClosure); 

    level = level + 1; // prepare next level “ancestors” 

end while; 

end algorithm computeTransClosure; 

Fig. 13. MatBase algorithm for computing dyadic relations’ transitive closures 

Obviously, the result showed in Fig. 12 is 
obtainable by the following call to this method: 
computeTransClosure([x], Father, Father*, 
Descendant, Ancestor,). Fig. 14 presents the result of 
a call computeTransClosure([x], Mother, Mother*, 
Descendant, Ancestor, 0), which, obviously, is 
Mother* (without any null ancestors). It is obvious 

that Father*  Mother* does not contain the pair <23, 
46> either, although, by his mother, Radu cel Frumos 
(id 23), one of “Dracula”’s stepbrothers, also 

descends from Bogdan I (id 46), the Moldavia’s 
founder. 

Naturally, this method can be used for computing 
the transitive closure of any dyadic relation; for 
example, in a FOOTBALL_CHAMPIONSHIP db, we 
might want to compute the transitive closure of a 
relation MATCHES for its two columns Host and 
Visitor (both referencing the surrogate primary key [x] 
of a table FOOTBALL_CLUBS); trivially (note that 
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both being in fact canonical projections of 
MATCHES, neither Host nor Visitor should accept 
nulls), this can be computed by the call:  
computeTransClosure(Host, Visitor, MATCHES*, 
Host, Visitor, 0). 

Mother* = Mother*1 (= Mother*2= Mother*3 = …) 

Descendant Ancestor 

36 493 

33 485 

23 15 

35 255 

19 248 

26 58 

22 243 

5 240 

42 44 

71 57 

75 73 

Fig. 14. Mother*’s fixpoint for RULERS instance in Fig. 

1 (without nulls) 

Moreover, obviously, this method can compute 

the transitive closure of any function product f  g : R 

 INT  INT; for example, in a RAILROADS db, the 
call computeTransClosure(DepartureStation, 
DestinationStation, CONNECTIONS*, Departure, 
Destination, 0) would compute the transitive closure 
of the product of the columns DepartureStation and 
DestinationStation (both of them referencing the 
surrogate primary key [x] of a table STATIONS and 
not accepting nulls) of a table LINES. 

Theorem 1: Algorithm computeTransClosure from 
Fig. 13 has the following four properties: 

(i) it is linear in the longest path in the digraph of 
the input relation 

(ii) it is sound (i.e. it is not generating anything 
else but elements of the transitive closure of the input 
relation)  

(iii) it is complete (i.e. it generates all elements of 
the transitive closure of the input relation) 

(iv) it is optimal (i.e. it computes the transitive 
closure of the input relation in the least number of 
steps possible) 

Proof: 

(i) Trivial, as it has only one finite loop (hence, it 
never loops infinitely) depending on the longest path 
in the digraph of the input relation (trivially, as db 
instances are finite, any such length is finite). 

(ii) Obviously, the initial step only adds the input 
relation; then, in each iteration of the loop, for any 
pair <x,y> in the current result approximation and <y, 
z> in the input relation, it is only added the pair <x, 
z>, according to the transitivity rule. Moreover, 
trivially, attempts to call the corresponding method 
with wrong input parameters (i.e. columns not of the 

same table or not referencing both a same table) are 
rejected. 

(iii) Obviously, the loop is executed up until no 
further transitively computable pairs may be added to 
the result: the first statement of the loop makes sure 
that variable oldcard is storing the current result 
cardinal, the last but one one is updating variable 
card value to the cardinal of the result after adding 
current iteration elements, and the while statement 
condition ensures that the process repeats only as 
long as these two values are not equal (i.e. as long 
as the previous iteration was adding at least one new 
element to the result). 

(iv) Obviously, as soon as the previous loop 
iteration did not add any new elements to the result, 
the process stops (i.e. the algorithm only computes 
the first two fixpoints, which is the minimum possible 
in order to discover the least fixpoint). Moreover, the 
algorithm never generates duplicates on a same level 
(as it joins to the input relation only the current result 
elements that were added in the previous iteration), 
which is minimizing disk accesses for both reading 
and writing operations.   q.e.d.  

B. Computing transitive closures for function 
products 

Let f : R  R be any self-function defined on and 
taking values into some set R. By definition, for any 

(generally other, but not necessarily distinct) g : R  

R, we define (f  g)* = (Gf   Gg)*.  

Proposition 1:  f*  g*   (f  g)*  

Proof: let us assume that there is a pair <a, b>  

f*  g*, which does not belong to (f  g)*; then, it 
either belongs to f* or/and to g*; if it belongs to f* (i.e. 

Gf *), then it should belong to (f  g)* too, even if Gg 
were the empty set; if it belongs to g* (i.e. Gg *), then 

it should belong to (f  g)* too, even if Gf were the 
empty set; consequently, the assumption that it does 

not belong to (f  g)* too was absurd  
 q.e.d. 

As we should expect, generally, (f  g)*  f*  g*, 
as we will see, for instance, with the <23, 46> 

element, which belongs to (Father  Mother)* (Fig. 18 

below), although it does not belong to Father*  
Mother* (see Fig. 12 and 14). 

Proposition 2: (f  g)*  f*  g* 

Proof: see the <23, 46> counterexample in Fig. 18 
(as compared to Fig. 12 and 14); alternative proof: 

(see Fig. 18) card((Father  Mother)*) = 72 > 53 = 42 
+ 11 = card(Father *) (see Fig. 12) + card(Mother *) 
(see Fig. 14).        q.e.d. 

B.1. Computing transitive closures for self-
function products of arity 2 

MatBase is computing self-function products’ 
transitive closures with this definition, starting with 
the generation of the following Datalog program type 
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(with slight variations on nulls, depending on the 
user’s request and preserving notations used in Fig. 
13 and the ones above): 

transClosure(a1, a2)  R(c1, f) [, IsNull(f)] 

transClosure(a1, a2)  R(c1, g) [, IsNull(g)] 

transClosure(a1, a2)  transClosure(a1, x), R(x, f) 

[, IsNull(f)] 

transClosure(a1, a2)  transClosure(a1, x), R(x, g) 

[, IsNull(g)] 

Fig. 15. MatBase Datalog generic program for 

computing (f  g)* 

which yields (when all null values are desired) the 
following RA equation: 

transClosure  =  a1, a2 c1, f (c1, f (R)  a1, a2 c1, g (c1, 

g (R)  a2  f (a1, f (transClosure   a2 = c1  c1, f (R))) 

 a2  g (a1, g (transClosure   a2 = c1  c1, g (R))) 

Fig. 16. RA equation corresponding to the Datalog 
generic program in Fig. 15 (all nulls) 

Its evaluation can be done by a method 
computeBinarySelfProductTransClosure, whose 
algorithm is presented in Fig. 17 (which is, except for 
the duplicate deletion step, an obvious extension of 
computeTransClosure): 

Algorithm computeBinarySelfProductTransClosure 

Input: x, f, g – columns of a table R storing the desired self-function product’s graph instance; 

          transClosure, a1, a2 – the distinct names of the desired output table and its two columns for storing the result; 

     nulls? – a pair of the type <0 or 1 or 2, 0 or 1 or 2>, where the first element is describing user request for  

nulls processing for f, while the second one is for g (using same codes meaning as in Fig. 13); 

Output: table transClosure instance, storing the transitive closure of f  g; 

Strategy: R = domain(x); S = codomain(f); 

if R  domain(f) or R  domain(g) or S  codomain(g) then return error (“impossible to compute transitive  

     closure: either x, f, and g are not columns of a same table or f and g are not referencing a same table!”); 

if existsTable(transClosure) then execute (“DELETE FROM “ & transClosure) 

else execute(“CREATE TABLE “ & transClosure & “([Level] INT, “ & a1 & “ INT, “ & a2 & “ INT);”); 

oldcard = 0;  // transClosure is empty 

execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & x & “, “ & f & “ FROM “ & R &  

iif(nulls?[1]=0, “ WHERE “ & f & “ NOT IS NULL”,));             // initialize result with <“son”, “father”> pairs 

execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & x & “, “ & g & “ FROM “ & R &  

iif(nulls?[2]=0, “ WHERE “ & g & “ NOT IS NULL”,));           // initialize result with <“son”, “mother”> pairs 

level = 2;  // 2nd level “ancestors”// card = execute(“SELECT Count(*) FROM “ & transClosure); 

while card  oldcard 

    oldcard = card;  // prevent infinite looping 

    execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &  

“, “ & R & “.” & f & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.” & a2 & “=“  

& R & “.” & x & “ WHERE [Level]=“ & level – 1 & iif(nulls?[1]=1, “ AND “ & R & “.” & f & “ NOT IS NULL”,)); 

    execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &  

“, “ & R & “.” & g & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.” & a2 & “=“  

& R & “.” & x & “ WHERE [Level]=“ & level – 1 & iif(nulls?[2]=1, “ AND “ & R & “.” & g & “ NOT IS NULL”,)); 

    execute(“DELETE FROM “ & transClosure & “ WHERE x IN (SELECT y FROM (SELECT Min(Descendent),  

Min(Ancestor), Count(Descendent) AS NumberOfDups, Max(x) AS y FROM “ & transClosure & “ GROUP  

BY Descendent, Ancestor HAVING Count(Descendent)>1);”) 

    card = execute(“SELECT Count(*) FROM “ & transClosure); 

    level = level + 1;  // prepare next level “ancestors” 

end while; 

end algorithm computeBinarySelfProductTransClosure; 

Fig. 17. MatBase algorithm for computing binary self-function products’ transitive closures 
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For example, the following call of this method 

computes the transitive closure (Father  Mother)* 
into table RulersTransClosure, with nulls only for 
those initially existing in Father: 
computeBinarySelfProductTransClosure([x], Father, 
Mother, RulersTransClosure, Descendant, 
Ascendant, , 0); the corresponding computed 
instance is showed in Fig. 18. 

RulersTransClosure = (Father  Mother)* = (Father  

Mother)*6 (= (Father  Mother)*7 = …) 

Level Descendant Ancestor 

1 36 35 

1 33 35 

1 23 35 

1 35 19 

1 15 42 

1 19 26 

1 26 22 

1 22 5 

1 5 241 

1 241  

1 240 239 

1 239  

1 42 71 

1 71 75 

1 75 218 

1 218 46 

1 46  

1 36 493 

1 33 485 

1 23 15 

1 35 255 

1 19 248 

1 26 58 

1 22 243 

1 5 240 

1 42 44 

1 71 57 

1 75 73 

2 36 19 

2 33 19 

2 23 19 

2 35 26 

2 15 71 

2 19 22 

2 26 5 

2 22 241 

2 42 75 

2 71 218 

2 75 46 

2 23 42 

2 5 239 

2 42 218 

2 71 46 

3 36 26 

3 33 26 

3 23 26 

3 35 22 

3 15 75 

3 19 5 

3 26 241 

3 23 71 

3 23 44 

3 42 46 

4 36 5 

4 33 5 

4 23 5 

4 35 241 

4 15 46 

4 23 75 

4 33 57 

5 36 241 

5 33 241 

5 23 241 

5 23 218 

5 23 73 

5 36 240 

5 33 240 

5 23 240 

6 36 239 

6 33 239 

6 23 239 

6 23 46 

Fig. 18. (Father  Mother)*’s fixpoint for RULERS 

instance in Fig. 1 

It is obvious that (Father  Mother)* contains the 
pair <23, 46> (see its last instance line), so Radu cel 
Frumos (id 23) has also been discovered as 
descending too from Bogdan I (id 46), the Moldavia’s 
founder, but does not contain a pair <36, 46>, i.e. 
Vlad Ţepeş (the Impaler) “Dracula” (id 36) was not 
descending from Bogdan I; this, finally, is proving not 
only that the answer to the question whether HRH 
Prince Charles of Wales also descends from the 
founders of both Wallachia and Moldavia is negative 
(i.e. partially true -for Wallachia- but partially false -for 
Moldavia), but, much more important, that, indeed, (f 

 g)*  f*  g* (i.e. (f  g)* is richer than f*  g*). 

Please note first that, in fact, MatBase actual 
algorithm for computing transitive closures is more 
powerful and complicated: as its metacatalogue also 
stores (fundamental) functions, (computed) function 
products, and their members, only the ids of the 
desired function product is needed instead of the first 
three parameters of the 
computeBinarySelfProductTransClosure method 
from Fig. 17; but the major advantage of this 
approach is the fact that MatBase can compute 
transitive closures for relations and function products 
of any arity (i.e. not only for binary ones). 

B.2. The need for deleting duplicates in each step 
of the computation 

Formalizing genealogical trees, both Father and 
Mother are acyclic. However, the graph of their 
product may contain cycles (i.e. generally, the union 
of tree-type graphs is no more tree-like, but a lattice-
type one).  
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Especially in royal houses, it is frequently the 
case that somebody is a descendant of a same 
person several times, on several branches of his/her 
family. For example, to keep it simple, let us recall 
that the famous pharaoh Akhenaten (founder of the 
monotheism), son of Amenhotep III and Tiye, married 
one of his sisters (which was common not only in 
ancient Egypt). Consequently, their famous son 
Tutankhamun was twice descending from both his 
grandparents. 

If not deleted in the Algorithm above, such 
duplicates (on a same level) are only polluting the 
final answer with more and more duplicates (on each 
lower levels). 

There may be, however, such duplicates on 
different levels as well; for example, let x be a father 
of y and z, w a descendant of y, and v a child of w 
and z: then, v is a descendant of x twice, once as his 
grandfather (through z) and once as his grand-

grandfather (through y and w). This means that, on a 
level l, the above algorithm adds to the result a pair 
<v, x> and then, on level l + 1, would add it once 
more.  

Consequently, the above Algorithm would never 
stop if such duplicates were not deleted. 

B.3. Computing transitive closures for self-
function products of any arity 

In fact, MatBase is able to compute transitive 

closures for any f1  …  fn : R  R
n
 product (n being 

a strictly positive natural), as (f1  …  fn)* = (Gf1   … 

 Gfn)*. Fig. 19 presents this generalized algorithm, 
also based on the associativity of the union operator. 
Note that, as MatBase does not allow definition of 
function products having different domains, there is 
no need for checking that anymore. 

Corresponding extended Datalog and RA 
counterparts are trivially obtainable for any n > 2. 

Algorithm computeProductTransClosure 

Input: id F of an integer function product f1  …  fn, n > 0, whose graph is stored by a table R, having an integer  

column as its surrogate primary key; 

transClosure, a1, a2 –the (distinct) names of the desired table and its two columns for storing the result; 

        nulls? – a tuple of the type <0 or 1 or 2, …, 0 or 1 or 2>, where each element is describing user request for  

nulls processing for the corresponding member functions of F (using same codes meaning as in  

Fig. 13); 

Output: transClosure instance, storing the transitive closure of F = f1  …  fn; 

Strategy: 

if F does not correspond to a function then return error(“wrong parameter: there is no function having this id!”); 

R = domain(F); n = arity(F);  

loop for i = 1, n, 1 

    if codomain(F[i])  INT then return error(“impossible to compute transitive closure: i-th F’s member data type  

is not an integer one!”); 

end loop; 

if existsTable(transClosure) then execute (“DELETE FROM “ & transClosure) 

else execute(“CREATE TABLE “ & transClosure & “([Level] INT, “ & a1 & “ INT, “ & a2 & “ INT);”); 

oldcard = 0;  // transClosure is empty 

if codomain(f1) = R or n = 1 then x = primaryKeyName(R); 

else begin n = n -1; x = F[1];  

      loop for i = 1, n, 1 

F[i] = F[i +1]; 

      end loop; 

        end;  

loop for i = 1, n, 1 

    execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & x & “, “ & F[i] & “ FROM “ & R &  

iif(nulls?[i]=0, “ WHERE “ & F[i] & “ NOT IS NULL”,)); // initialize result with <x, fi(x)> pairs 
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end loop; 

level = 2;  // next step will add second level “ancestors” 

card = execute(“SELECT Count(*) FROM “ & transClosure); 

while card  oldcard 

    oldcard = card;  // prevent infinite looping 

    loop for i = 1, n, 1 

        execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &  

“, “ & R & “.” & F[i] & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.”  

& a2 & “=“ & R & “.” & x & “ WHERE [Level]=“ & level – 1 & iif(nulls?[i]=1, “ AND “ & R & “.” & F[i] &  

“ NOT IS NULL”,)); 

    end loop; 

    execute(“DELETE FROM “ & transClosure & “ WHERE x IN (SELECT y FROM (SELECT Min(Descendent),  

Min(Ancestor), Count(Descendent) AS NumberOfDups, Max(x) AS y FROM “ & transClosure &  

“ GROUP BY Descendent, Ancestor HAVING Count(Descendent)>1);”) 

    card = execute(“SELECT Count(*) FROM “ & transClosure); 

    level = level + 1;  // prepare next level “ancestors” 

end while; 

end algorithm computeProductTransClosure; 

Fig. 19: MatBase algorithm for computing function products (of any arity) transitive closures 

Theorem 2: Algorithm computeProductTransClo-
sure from Fig. 19 has the following four properties: 

(i) its complexity is O(n * level), where n is the 
arity of the input function product (i.e. the number of 
its member functions) and level is the maximum of all 
lengths of the corresponding n digraphs 

(ii) it is sound (i.e. it is not generating anything 
else but elements of the transitive closure of the input 
function product)  

(iii) it is complete (i.e. it generates all elements of 
the transitive closure of the input function product) 

(iv) it is optimal (i.e. it computes the transitive 
closure of the input function product in the least 
number of steps possible) 

Proof: (similar to the one of Theorem 1 above) 

(i) Trivial, as it has only three finite loops (hence, 
as it is also deleting any duplicates in each iteration, 
it never loops infinitely): the first two of them 
depending on the finite input function product arity n, 
and the last one depending on the maximum longest 
path (level – 2 at the end of the loop execution, as 
the final iteration does not add any new elements to 
the result, thus corresponding to the second fixpoint, 
and as one more execution of the last statement of 
the loop takes place before discovering that the while 
condition has become true) in the digraphs of the 
input function members (trivially, as db instances are 
finite, any such length is finite), and also on the inner 
fourth loop, which is executed in each iteration of the 
third one for n times (and even if some such 

executions would not add any new elements to the 
result, so no disk writes are necessary, only read 
ones are). 

(ii) Obviously, the second loop only adds the n 
input function members digraphs; then, in each 
iteration of the third loop, for any pair <x,y> in the 
current result approximation and <y, z> in the current 
corresponding i–th function member digraph, it is 
only added the pair <x, z>, according to the 
transitivity rule.  

(iii) Obviously, the second and the fourth (i.e. the 
inner to the third one) loops are executed for each 
member function of the input function product, while 
the third one is executed up until no further 
transitively computable pairs may be added to the 
result: the first statement of this loop makes sure that 
variable oldcard is storing the current result cardinal, 
the last but one one is updating variable card value to 
the cardinal of the result after adding current iteration 
elements, and the while statement condition ensures 
that the process repeats only as long as these two 
values are not equal (i.e. as long as the previous 
iteration was adding at least one new element to the 
result).  

(iv) Obviously, as soon as the previous third loop 
iteration did not add any new elements to the result, 
the process stops (i.e. the algorithm only computes 
the first two fixpoints, which is the minimum possible 
in order to discover the least fixpoint). Moreover, the 
algorithm never generates duplicates on a same level 
(as it joins to the input relation only the current result 
elements that were added in the previous iteration of 
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the third loop), which is minimizing disk accesses for 
both reading and writing operations. q.e.d. 

Obviously, corresponding extensions of Proposi-
tions 1 and 2 above for n functions (n > 2) are trivial 
and their proofs obvious. 

MatBase users may call this method also for 
computing transitive closures of dyadic relations (i.e. 
over a same set), by considering its canonical 
Cartesian projections as the members of a function 

product (defining its scheme) of the type F = f1  f2 : R 

 S
2
 (S  R).  

In fact, trivially, MatBase is able to compute 
transitive closures for any integer function product f1 

 …  fn : R  INT
n
 (n being a strictly positive 

natural), as (f1  …  fn)* = (Gf1   …  Gfn)*. 

III. COMPUTING DYADIC RELATION AND FUNCTION 
PRODUCT CLOSURES FOR THEIR DOMAIN 
ELEMENTS 

As seen in Fig. 3 and 4 above, a simpler (and 
faster) way to compute somebody’s ascendance is 
by using Datalog programs instantiations.  

For example, given any relation S  R  R and 

any given x  R, we define x’s transitive closure x* = 

S*|x = { y  R | <x,y>  S*}; in particular, given any 

self-function f : R  R (having graph Gf = {<x, f(x)> | 

x  R}) and any given x  R, x* = Gf *|x = { y  R | 

<x,y>  Gf *}. Trivially, given another (not necessarily 

distinct) g : R  R (having graph Gg = {<x, g(x)> | x  
R}), corresponding x’s transitive closure for the 

function product (f  g)* = (Gf   Gg)* is x* = (Gf  

Gg)*|x = { y  R | <x,y>  (Gf  Gg)*}. 

Obviously, by translating, for example, the 
program instantiation from Fig. 3 above into RA, the 
following equation is obtained: 

36*  =  Ancestor  Father (Father(x = 36(RULERS)))  

Ancestor  Father(Father(36*  Ancestor = x x, Father(x = 36 

(RULERS)))) 

Fig. 20. Recursive RA equation corresponding to the 
instantiation in Fig. 3 

Fig. 21 presents MatBase’s algorithm for 
computing such instantiation closures. 

Similarly, Fig. 22 presents MatBase’s algorithm 
for computing instantiation closures for function 
products of any arity.

Algorithm computeDyadicRelInstantiationTransClosure 

Input: c1, c2 – the two columns of a table R storing the desired relation’s graph instance; 

 transClosure, a1, a2 – the (distinct) names of the desired table and its two columns for storing the result; 

 nulls? – 0, if no null values are desired in c2, or  

  1, if no null values are desired in c2 except for those in R (which is the default value), or  

  2, if all null values are desired in c2;  

 x – the value of the surrogate key of R for which the closure is computed; 

Output: table transClosure instance, storing the corresponding transitive closure; 

Strategy: 

R = domain(c1); 

if R  domain(c2) or codomain(c1)  INT or codomain(c2)  INT then  

  return error(“impossible to compute transitive closure: c1 and c2 are either not columns of a same table or have  

incompatible data types!”); 

if existsTable(transClosure) then execute (“DELETE FROM “ & transClosure) 

else execute(“CREATE TABLE “ & transClosure & “([Level] INT, “ & a1 & “ INT, “ & a2 & “ INT);”); 

oldcard = 0; // transClosure is empty 

execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & c1 & “, “ & c2 & “ FROM “ & R &  

“ WHERE x =“  & x & iif(nulls?=0, “ AND “ & c2 & “ NOT IS NULL”,));    // initialize with <“son”, “father”> pairs 

level = 2; // next step will add second level “ancestors” 

card = execute(“SELECT Count(*) FROM “ & transClosure); 

while card  oldcard 

    oldcard = card; // prevent infinite looping 

    execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &  
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“, “ & R & “.” & c2 & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.” & a2 & “=“  

& R & “.” & c1 & “ WHERE [Level]=“ & level – 1 & “ AND x = “ & x & iif(nulls?=1, “ AND “ & R & “.” & c2 &  

“ NOT IS NULL”,)); 

    card = execute(“SELECT Count(*) FROM “ & transClosure); 

    level = level + 1; // prepare next level “ancestors” 

end while; 

end algorithm computeDyadicRelInstantiationTransClosure; 

Fig. 21. MatBase algorithm for computing transitive closures of dyadic relations’ elements 

 

Algorithm computeFunctProductInstantiationTransClosure 

Input: id F of an integer function product f1  …  fn, n > 0, whose graph is stored by a table R, having an integer  

column as its surrogate primary key; 

transClosure, a1, a2 – the (distinct) names of the desired table and its two columns for storing the result; 

nulls? – a tuple of the type <0 or 1 or 2, …, 0 or 1 or 2>, where each element is describing user request for  

nulls processing for the corresponding member functions of F (using same codes meaning as in 

Fig. 13); 

x – the value of the surrogate key of R for which the closure is computed; 

Output: transClosure instance, storing the transitive closure of F = f1  …  fn for the element x; 

Strategy: 

if F does not correspond to a function then return error(“wrong parameter: there is no function having this id!”); 

R = domain(F); n = arity(F);  

loop for i = 1, n, 1 

    if codomain(F[i])  INT then return error(“impossible to compute transitive closure: i-th F’s member data type  

is not an integer one!”); 

end loop; 

if existsTable(transClosure) then execute (“DELETE FROM “ & transClosure) 

else execute(“CREATE TABLE “ & transClosure & “([Level] INT, “ & a1 & “ INT, “ & a2 & “ INT);”); 

oldcard = 0;  // transClosure is empty 

if codomain(f1) = R or n = 1 then x = primaryKeyName(R); 

else begin n = n -1; x = F[1];  

      loop for i = 1, n, 1 

F[i] = F[i +1]; 

      end loop; 

        end;  

loop for i = 1, n, 1 

    execute(“INSERT INTO “ & transClosure & “ SELECT 1 AS [Level], “ & x & “, “ & F[i] & “ FROM “ & R &  

iif(nulls?[i]=0, “ WHERE x =“ & x & “ AND “ & F[i] & “ NOT IS NULL”,)); // initialize with <x, fi(x)> pairs 

end loop; 

level = 2;  // next step will add second level “ancestors” 

card = execute(“SELECT Count(*) FROM “ & transClosure); 

while card  oldcard 
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    oldcard = card;  // prevent infinite looping 

    loop for i = 1, n, 1 

        execute(“INSERT INTO “ & transClosure & “ SELECT “ & level & “ AS [Level], “ & transClosure & “.” & a1 &  

“, “ & R & “.” & F[i] & “ FROM “ & R & “ INNER JOIN “ & transClosure & “ ON “ & transClosure & “.” & a2  

& “=“ & R & “.” & x & “ WHERE [Level]=“ & level – 1 & “ AND x =” & x & iif(nulls?[i]=1, “ AND “ & R & “.”  

& F[i] & “ NOT IS NULL”,) ); 

    end loop; 

    execute(“DELETE FROM “ & transClosure & “ WHERE x IN (SELECT y FROM (SELECT Min(Descendent),  

Min(Ancestor), Count(Descendent) AS NumberOfDups, Max(x) AS y FROM “ & transClosure & “ GROUP  

BY Descendent, Ancestor HAVING Count(Descendent)>1);”) 

    card = execute(“SELECT Count(*) FROM “ & transClosure); 

    level = level + 1;  // prepare next level “ancestors” 

end while; 

end algorithm computeFunctProductInstantiationTransClosure; 

Fig. 22. MatBase algorithm for computing transitive closures of function products’ elements

These two latter algorithms also enjoy the same 
four properties as those from Fig. 13 and 19, 
respectively (i.e their complexities are O(longest 
digraph path for element x) and O(n * levelx), 
respectively, and they are sound, complete, and 
optimal). The corresponding proofs are left to the 
reader, as they are only slight simplifications of those 
of the two Theorems above. 

CONCLUSION 

The main contribution of this paper is not only 
presenting how should be theoretically computed 
transitive closures for both dyadic relations, self-

functions, function products of the type f1  …  fn : R 

 S
n
 (by computing the transitive closure of the 

union of their members’ graphs), and for their domain 
elements, but also introducing the elegant way in 
which MatBase, a prototype intelligent db and kb 
management system developed by the author, is 

actually computing them, both in Datalog, RA, and 
a pseudo-code embedding SQL. 

 Moreover, it is proved that MatBase algorithms 
for computing transitive closures (both for n-ary 
homogeneous relations and function products, as 
well as for their instance elements) are linear, solid, 
complete, and optimal. In the sequel, it is also proved 
that the union of the transitive closures of the 
members of any function product is always included 
in the transitive closure of their product, but the 
reverse is not true: generally, the transitive closure of 
a function product is richer than the union of its 
members’ transitive closures. 

Note that no commercially available, nor prototype 
system is offering to its users the possibility to 
compute transitive closures for function products and 
that this facility is crucial in order to be able to 
correctly answer such questions as the one in the 

subtitle of this paper, without first designing and 
running costly preliminary queries. 

Anecdotically, examples also show that HRH 
Prince Charles of Wales, who has among his 
maternal ancestors Vlad Călugărul, a stepbrother of 
Vlad „Dracula” „the Impaler”, is descending from 
Wallachia’s founder, Basarab I (of Cuman origin by 
his father), but not from Moldova’s one, Bogdan I, 
although most of „Dracula”’s stepbrothers and sisters 
are also, by their mother, descending from Bogdan I.  
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