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Abstract—A recent excellent article, 
‘Poisson’s ratio bounds in orthotropic 
materials…’ by Mentrasti, et al has drawn 
our attention to Chapter II of Vijayakumar’s 
five-decade-old Doctoral Thesis. In this 
Chapter II, bounds for Poisson’s ratios of 
orthotropic material are considered by 
applying the well-known energy and 
volume criteria with emphasis on upper 
bounds for the least Poisson’s ratio. 
Assuming that all six Poisson’s ratios are 
positive, true for structural materials, none 
of them is greater than unity and three or 
more of them are less than 1/2. The upper 
bound for the least Poisson’s ratio from 
the volume criteria gives a better upper 
bound than that of energy criteria.   
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1. INTRODUCTION 

   Ever since Hooke enunciated the law of 
proportionality of stress and strain, elastic 
properties of materials received considerable 
attention from experimental and theoretical 
physicists and engineers [1, 2, 3]. Recent 
trends in modern technology and rapid 
progress in the material sciences demand a 
thorough investigation of the elastic behaviour 
of anisotropic materials. 
   It is well known that the positive-definiteness 
of quadratic strain-energy function of a given 
material within the elastic range imposes 
certain restrictions on   the possible values of 
elastic constants. Knowledge of these 
restrictions and the consequent relationships 
between elastic constants is of significance for 
experimental and theoretical investigations. 
They are useful in separating out extraneous 

values which sometimes appear when elastic 
constants are deduced from sound wave 
measurements. Further, these restrictions are 
helpful in restricting the compilation of 
analytical and design information on structural 
components to physically sensible ranges of 
material constants. 
   In a recent article [4], non-trivial constraints 
in a particularly expressive form of the domain 
of existence, named Tetrahedron-Ellipsoid 
locus, are presented in the space of three 
independent Poisson’s ratios. Several notable 
restrictions for the elastic behaviour of 
orthotropic composite materials have been 
established. An extensive, experimental 
investigation is carried out to detect    several 
Poisson’s ratios directly measured by means 
of physical strain gauges and Digital Image 
Correlation.  
   In view of the above mentioned article [4], a 
relook at Chapter II entitled, ‘Bounds for 
Poisson’s ratios of orthotropic materials’, in 
Vijayakumar’s doctoral thesis [5] has become 
relevant now. In this Chapter II, bounds for 
Poisson’s ratios in relation to Young’s moduli, 
E1 ≤ E2 ≤ E3 without any loss of generality,  
are presented with emphasis on upper 
bounds, νe and νv, for the least Poisson’s ratio 
by the well-known energy and volume criteria, 
namely, 

(1) The strain  energy density function in 
terms of stresses of a given material is 
positive for an arbitrary stress system 

(2) The first order change in volume of an 
element of a given medium is positive 
for an arbitrary tensile stress system. 
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An earlier attempt of this nature by Bert [6] 
was highly restrictive and contained a basic 
error in the analysis. In chapter II of doctoral 
thesis [5], positive least Poisson’s ratio is 
mathematically identified and upper bounds 
(νe, νv,) are derived. Validity of these upper 
bounds is verified with some experimental 
data of elastic constants [7] reported earlier. 

   II   SOME BASIC RELATIONS 

   Let 0-1, 0-2, 0-3 be the three mutually 
orthogonal axes of elastic orthotropic body of 
a given material and let E1, E2, E3 be the 
corresponding Young’s moduli. From the well-
known quadratic form of strain-energy density 
functions, the stress-strain relationships can 
be put in the form, (using the summation 
convention over the repeated indices, i, j, k = 
1, 2, 3)  

εi = (σi /Ei) - 
1

2
 [νji (σj /Ej) + νki (σk /Ek)],     

i ≠ j ≠ k                (1) 

γij = γji = τij / Gij,  i ≠ j                             (2)                            

νij / Ei = νji / Ej   i ≠ j                              (3) 

For given Young’s moduli, we have from 
relations (3) that three of the six Poisson’s 
ratios are independent. To specify the least 
Poisson’s ratio, one should, therefore, bring in 
two more relations among them. Bert [6] 
specified these two relationships by assuming 
νij = νik and on this restrictive physical basis, 
determined the maximum variation of the least 
Poisson’s ratio by both energy and volume 
criteria. (It is to be noted, however, that some 
of the numerical results [6] are not correct on 
account of a basic error in his analytical 
procedure). In our analysis, we shall use only 
the mathematical condition that it is the least 
Poisson’s ratio to provide the necessary 
relationships. 

   Before proceeding with the analysis, it is 
convenient to introduce some additional 
notation: 

νij / Ei = αij  i ≠ j =1, 2, 3               (4) 

Kij = √ (Ei / Ej)     i ≠ j =1, 2, 3              (5) 

Aij = αij √ (Ei Ej) = √ (νij νji) = νij / Kij    

i ≠ j =1, 2, 3               (6) 

   From equations (3), we have αij = αji and 
from equations (6), Aij = Aji from which it is 
clear that if Aij are bounded, all Poisson’s 
ratios are also bounded. 

   III ENERGY CRITERION 

   By the energy criterion, the strain-energy 
density 

U0 = 
1

2
 Σ σi εi + 

1

4
 Σ τij γij               (7) 

is positive for any arbitrary stress system. 
Using relations (1), (2) and (3), U0 can be 
written as 

U0 = 
1

2
 U1 +  

1

4
 U2 

in which 

U1 =   Σ (σi
2
/Ei) + Σ αij σi σj,               (8a) 

U2 = Στij
2
 / Gij                (8b) 

   Since U2 ≥ 0 due to Gij being positive, U0 ≥ 
0 if and only if U1 ≥ 0 for arbitrary stresses [σ1, 
σ2, σ3].    

   Using relations (6) and the transformations 

σi’ =  σi /√Ei                  (9) 

σ1” = σi’ – A12 σ2’ − A31 σ3’,             (10) 

we have, henceforth superscript 
2 
of a quantity 

denoting square of the quantity,  

U1 = σ1’’
2
 + (1 – A12

2
) σ2

’2
 + (1 – A23

2
) σ3‘

2
           

– 2(A23 + A31A12) σ2’ σ3’              (11) 
 

which has to be positive for arbitrary stresses. 
Then, it follows that 
 
A12

2
 ≤ 1     and       A23

2
 ≤ 1                 (12) 

If A12
2

 = 1, say, it would also follow that 

A23 + A31 A12 = 0,               (13) 
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so that one of the Aij is negative.  

   If one assumes that all νij are positive (a 
valid assumption for orthotropic structural 
materials in their aggregate forms), no Aij < 0 
and A12

2
 ≠ 1. Hence, one concludes that A12 < 

1. By the symmetry in U1, it follows that all Aij 
are less than unity. Hence, referring to 
equations (5) and (6), one concludes that 

νji
2
 < Ei / Ej                (14) 

To seek further information, affect another 
transformation 

σ2”= σ2’− (A23 + A31 A12) σ3’/ (1 – A12
2
)  (15) 

so that one may rewrite 

U1 = 1”
2
 + (1 – A12

2
) 2“

2
 +  

+ [1 – (A12
2
 + A23

2
 + A31

2
 + 2 A12 A23 A31)] 3‘

2
 / 

(1 – A12
2
)                                       (16) 

The condition U1 ≥ 0 now yields the constraint 

A12
2
 + A23

2
 + A31

2
 + 2 A12 A23 A31 ≤ 1          (17) 

   Considering the case A12 = A23 = A31 = A0, it 
is readily seen that at least one of them 

cannot exceed A0 and that A0 =  
1

2
 . 

   The inequality (17) can be restated as 
constraints  

(νij
2 
/Kij

2
 + νjk

2
/Kjk

2
 + νki

2
/Kki

2
 + 2 νij νjk νki)  ≤ 1,                            

 
                             i ≠ j ≠ k =1, 2, 3              (18) 
    
with any three independent Poisson’s ratios. 
Since we have assumed that all ij ≥ 0, these 
relations imply that  

 νij
2
 /Kij

2
 + νjk

2
 / Kjk

2 
≤ 1, i ≠ j ≠ k =1, 2, 3      (19) 

   Therefore, for a given set of ratios of 
Young’s moduli, variation of any two Poisson’s 
ratios is subjected to the corresponding 
inequality in equation (19). For specified 
values of these two ratios, the variations of the 
remaining Poisson’s ratio from the relations 
(18) are given by 

  νki / Kki  = νik / Kik  ≤  [(1 – νij
2
 / Kij

2
)  

(1– νjk
2
 / Kjk

2
)]

1/2
 −

 
(νij / Kij) (νjk //Kjk)            (20) 

 
Further, the inequality sign in the equation 
(18) is satisfied for 
 

νij/ Kij = (νjk/ Kjk) = (νki/ Kki) = 
1

2
      (21) 

Hence, 

min (νij, νjk, νki)  ≤ 
1

2
 max (Kij , Kjk ,. Kki)     

  i ≠ j ≠ k =1, 2, 3             (22)  

   To obtain an upper bound for the least 
Poisson’s ratio, we stipulate, without any loss 
of   generality, that E1 ≤ E2 ≤ E3. Then from 
equation (2), the least Poisson’s ratio is one 
among ν12, ν23 and ν13. The corresponding 
constraint in equation (18) is  

[(ν12
 
/K12)

2
 + (ν23/K23)

2
 + (ν13/K13)

2
 

 +2ν12   ν23 ν13 / K13
2
] ≤ 1                      (18a)  

 
   Considering the equality relation in the 
above, with ν12 = ν23 =ν13 = ν and K13 = (K12 
K23), we obtain 

Φ (ν) = [2 ν 
3
 + (1 + K12

2
 + K23

2
) ν

2
  

− K12
2
 K23

2
] = 0      (23) 

 
   For given values of K12 and K13 which are 
not greater than unity, it is shown below that 
the equation (23) possesses only one positive 
root ‘νe’, the upper bound to the least 
Poisson’s ratio by the energy criteria. For this 
purpose, above cubic equation, with K13

2
 = E1/ 

E3, K12
2
 = E1/ E2, K23

2
 = E2/ E3, and using K13 = 

K12K23, is expressed as  

[2ν
3
/ (K13K12K23) + (1/K13

2 
+ 1/K12

2
   

+ 1/K23
2
) ν

2
 − 1 = 0                                     (24) 

 
   Note that isotropic material corresponds to 
K13 = 1. In this case, equation (24) becomes 
(2 ν

3 
+   3 ν 

2
 −1) = 0 which is 

(1 + ν) 
2
 (2 ν − 1) = 0                                   (25) 

   It shows that ν = 
1

2
  is the only one positive 

root. Hence, energy criteria also gives the 
same well known upper bound of the 
Poisson’s ratio by the volume criteria. It is 
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likely that mod |ν | < 1 if Young’s moduli of 
orthotropic material are close to the isotropic 
modulus E.   
   For K13 ≠1, the equation (24) can be put in 
the form, with  

a = 2 / (K13K12K23), b = 
1

3
 [1/K13

2 
+ 1/K12

2
 + 

1/K23
2
], and   x = (a ν + b), 

 
x 

3
  + 3 H x  + G  = 0                                  (26)   

in which H = − b
2
 and G = − a

2
 + 2 b

3
. 

The nature of roots of equation (26) is      
dependent [6] on the expression q 

2
 which is    

[− (G
2
 + 4H

3
)]. 

   We show, now, that q
2
 = 0 for isotropic 

materials (i.e., for E1 = E2 = E3), and is positive 
for other materials. 

Let Bij = (1 /Kij) 
2/3

, (i, j = 1, 2, 3). Then, 

q
2
 = − (G

2
 + 4H

3
) = (4 a

2
 b 

3
 − a

4
) = [16 /  

(K13 K12 K23)
4
] [(b / B13 B12 B23)

3
 −1]             (27) 

Therefore, q 
2
 ≥ 0 according as b ≥ B13 B12 B23. 

However, 

2 B13 B12 B23 = [B13
3

 + B12
3
 +   B23

3
 −  

−3 B13 B12 A23] 

 = [(B13 + B12 +   B23) {(B13 − B12)
2
 + (B12 −  

−B23)
2

 + (B23 − B13)
2
}]                       (28) 

   From relation (18a) we have that at least 
one of the Poisson’s ratios ν12, ν23, ν13 is not 
greater than ‘νe’, that is, νe is an upper bound 
for the least Poisson’s ratio. Figure 1 shows 
the dependence of νe on E1/ E3 (= K13

2
), the 

ratios of Young’s moduli.      

1V  VOLUME CRITERION 

   By the volume criterion, the first order 
change in volume ∆V0 = (ε1 + ε2 + ε3)   is to be 
positive for arbitrary tensile stress system. 
Using relations (1) and (2), we rewrite ∆V0 
with (i ≠ j ≠ k =1, 2, 3), as 

 

     ∆V0 = ∑ (1−  
1

2
 ν ij − 

1

2
 ν ik) (σi / Ei)            (29) 

This is positive for arbitrary tensile stress 
system, if and only if 

Ni = 
1

2
 (ν ij + ν ik) ≤ 1,   i ≠ j ≠ k =1, 2, 3    

That is, 

N1 =  
1

2
 (ν 12 + ν 13) ≤ 1,             (30a) 

N2 =  
1

2
 (ν 21 + ν 23) ≤ 1,             (30b) 

N3 =  
1

2
 (ν 31 + ν 32) ≤ 1,              (30c) 

   It can be seen from the above relations that 
the volume criterion by itself yields no bounds 
for individual Poisson’s ratios but only for the 
two dimensional Poisson parameters Ni ≤ 1. 

  However, by assuming ij ≥ 0 as before, one 
can obtain upper bounds for individual 
Poisson’s ratios. Then, from inequalities (30), 
we have that none of the six Poisson’s ratios 
is greater than unity and at least three of them 
are not greater than (1/2). 

   To get an upper bound for the least 
Poisson’s ratio we stipulate again that E1 ≤ E2 
≤ E3 and rewrite the relations (30) as 

ν12 + ν13 ≤ 1, [ν12 / K12
2
] + ν23 ≤ 1,  

[ν13 / K13
2
]
 
+ [ 23 / K23

2
]
 
  ≤ 1,                        (31) 

  The above relations imply that 

ν12 ≤ (K12)
2
 = E1/E2,    ν23 ≤ (K23)

2
 = E2/E3,     

ν13 ≤ (K13)
2
 = E1/E3             (32) 
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   In view of these relations, the first relation in 
(30) can be expressed as 

12 + 13 ≤ min [1, (K12
2
 + K13

2
)]

  
          (33) 

Hence, for specified values of two of these 
Poisson’s ratios 12, 23, 13 subjected to the 
corresponding inequality in (22), one can 
easily obtain the maximum variation for the 
remaining Poisson’s ratios. Further, we also 
have that  

ν12 ((or ν13) ≤  
1

2
 min [1, (K12

2
 + K13

2
)], or  

ν12 (or ν23) ≤ K12
2 
/ (1 + K12

2
), or  

ν13 (or ν23) ≤ (K13
2 
K23

2
) / (K13

2
 +

 
K23

2
]   

≤ K13
2
/ (1 + K12

2
)            (34)  

Since the least Poisson’s ratio, ‘ν‘, is one 
among ν12, ν23, ν13, we have from above, 

ν ≤ min [
1

2
 ,  

1

2
 (K12

2
 + K13

2
), K12

2
/ (1 + K12

2
),  

K13
2
/ (1 + K12

2
)]                                 (35) 

 
   From above inequality, with E1 ≤ E2 ≤ E3 
without any loss of generality, one concludes 
that  

ν ≤ K13
2
 / (1 + K12

2
), that is, 

ν ≤ (1/E3) / [(1/E1) + (1/E2)]         (36) 

Hence an upper bound, ‘νv‘, for the least 
Poisson’s ratio from volume criterion [8] is 

ν v = (1/E3) / [(1/E1) + (1/E2]               (37) 

The dependence of νv on E1 / E3 and E2 / E3 is 
shown in Figure 1. 

   Referring to equations (20, 23), it can be 
easily shown that Φ (νv) ≤ 0 and Φ (ν e) = 0, 
while Φ (ν) increases monotonically from, 

(– E1 / E3) to 

1

4
 (2 + E1 / E2 + E2 / E3 − E1/ E3)                   (38) 

as ν increases from 0 to 
1

2
. 

   Hence, νv ≤ νe ≤  
1

2
 so that the volume 

criterion yields a better upper bound for the 
least Poisson’s ratio. 
 
   Illustrative Example: Consider experimental 
values of elastic constants of Beech wood [9]:  
 
Young’s Moduli: [E1, E2, E3] =  
[1/878, 1/447, 1/72.6] 10

13
 dynes /cm

2
 

 
[α12, α23, α 31] = [α21, α32, α13]  
= [325, 33, 38] 10

-13
 cm

2
 / dyne 

 
From the above data, one obtains all six 
Poisson’s ratios:  
 
ν13 = 38/878, ν31 = 38/72.6, ν12 = 325/878, ν21 
= 325/447, ν23 = 33/447, ν32 = 33/72.6. 
 
In this case, we have that four (ν13, ν12, ν23, 
ν32) of the six Poisson’s ratio are less than ½ 
and ν13 is the least. From the volume criterion, 
we have (ν13) max is from 
 
min [ν23, ν12, (K13

2
 − K12

2 
ν23), (1 − ν12), K13

2
] = 

min [(33 / 447), (325, 39.6, 553, 72.6) / 878] = 
39.6 / 878  
 
Upper bound νv = (1/E3) / [(1/ E1) + (1/E2)]  
 

= 
72.6

1325
 > (ν13)max (= 

39.6

878
 )   

 
   Since ν23 and ν12 are greater than νv for this 
material, one can easily conclude, without 
measuring either ν13 or ν31 that ν13 is the least 

Poisson’s ratio and [ (K13)
2
 - (K12)

2
 ν23 ] =  

39.6

878
 

is an upper bound for ν13 which is 38/878. 
 
CONCLUDING REMARKS 
 
   We have obtained the bounds of Poisson’s 
ratios of orthotropic materials, using energy 
and volume criterion. By energy criterion, we 
have shown that all Poisson’s ratios are 
bounded and νij ≤ Kij. Volume criterion yields 
that only the two-dimensional Poisson 
parameters Ni are bounded by unity, but does 
not yield bounds for individual Poisson’s 
ratios. 
   Assuming νij ≥ 0, it has been shown that 
volume criterion yields more restrictive 
variations of νij and upper bounds for νij are 
less than the corresponding bounds by the 
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energy criterion. With the same assumption, 
volume criterion is shown to yield that three of 
the six Poisson’s ratios are not greater than 
1/2, and none of the ratios can exceed unity or 
Kij [=√ (Ei / Ej)]. Also, an upper bound νv by 
volume criterion for the maximum variation of 
the least Poisson’s ratio is shown to be, with 
E1 ≤ E2 ≤ E3, νv = (1/ E3) / [(1/ E1) + (1/ E2)] 
   Finally, one notes that the validity of any set 
of Young’s moduli and Poisson’s ratios 
deduced by experiment or otherwise are 
subject to the bounds in Figure 1 and more 
generally to the inequalities (18) and (20). 
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