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Abstract— In this paper, analysis of effective 

transmission range or path length based on Hata 
propagation loss model for wireless sensor 
networks in the C-band and Ku-band is presented. 
The effective path length is determine using a 
form of bisection iterative approach based on link 
budget expression and rain fade depth. The 
simulation was conducted for links operating in 
three different frequencies, namely; Ku-band 
frequency of 11 GHz, C-band frequency of 7 GHz 
and C-band frequency of 3.5 GHz. The results 
show that, for the 3.5 GHz link, it took about 5 
cycles for the algorithm to converge to the 
effective path length of 8.596610809 Km with 

tolerance error in the order of 𝟏𝟎−𝟔. Also, for the 7 
GHz link,   it took about 3 cycles for the algorithm 
to converge to the effective path length of 
4.360941705 km and, for the 11 GHz link ,it took 
about 4 cycles for the algorithm to converge to the 
effective path length of 2.680715363 km with 

tolerance error in the order of 𝟏𝟎−𝟓. Furthermore, 
among the three frequencies considered, the link 
at 11 GHz has the lowest path length, the highest 
value of fade depth (11.95833946 dB) and the 
lowest propagation loss (134.0416712 dB). On the 
other hand, the link at 3.5 GHz has the highest 
path length, the lowest value of fade depth 
(0.638230094 dB) and the highest propagation 
loss (145.3617712dB). In essence, higher 
frequencies face higher rain fade depth and hence 
have lower effective transmission range.  
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I. INTRODUCTION 

Wireless sensor networks (WSN) are increasingly being 

deployed to monitor and control divers systems 1,2,3,4,5]. 

As such, the demand for such network grows every day, 

resulting in the congestion of the lower frequencies where 

they are usually deployed. Accordingly, WSN are being 

deployed in some higher frequencies due to the higher 

bandwidth offered by the high frequencies [6,7,8,9,10]. In 

this wise, the effect of frequencies on the propagation loss 

and the transmission range of such WSN communication 

link need to be studies.  Among other things, propagation 

loss models play key role in the determination of the 

propagation loss and the maximum transmission range of 

wireless communication link. One of such propagation loss 

models is the Hata model [11,12,13,14,15,16]. 

Hata path loss model is one of the most popular empirical 

propagation loss models that is used to estimate the path 

loss for different propagation environments 

[17,18,19,20,21,22].  The model analytically captures the 

effect of distance, frequency, antenna height and other 

communication link parameters on the path loss that is 

experienced by the signal. In this paper, the focus is on the 

effect of frequency on the propagation loss and more 

importantly, on the optimal or effective transmission range 

of a wireless communication link where the path loss is 

estimated using the Hata model. The actual  computation of 

the optimal link path length is computed using numerical 

iteration approach implemented in Matlab software. The 

rest of the paper therefore presents the salient analytical 

expressions, the requisite flowchart for the iteration method 

and the simulation data, results and discussion. 

II. METHODOLOGY 

The effect of frequency on the effective transmission range 

of line of sight (LOS) microwave link was considered. The 

Hata model was used to determine the propagation loss and 

the effective fade margin. The effective transmission range 

was computed for different frequencies using an iterative 

procedure developed in this paper and presented in 

flowchart format.  

A.  Hata Pathloss Model 

The Hata path loss model can be expressed as [23, 24, 25, 

26, 27, 28 ]; 

𝐿𝑃𝐻𝐴𝑇𝐴  = 𝐴 + 𝐵 ∗ log10(𝑑) −  𝐾                    (1) 

Where 

 𝐴 = 69.55 + 26.16 ∗ log10(𝑓) − 13.82 ∗ log10(ℎ𝑏)  − 𝑎(ℎ𝑚) (2) 

𝐵 = 44.9 −  6.55 ∗ log10(ℎ𝑏)   (3) 

http://www.jmest.org/
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𝐾 = {

 0                                                                                                    𝑓𝑜𝑟 𝑈𝑟𝑏𝑎𝑛 𝐴𝑟𝑒𝑎 

 5.4 +   2 ∗ [log10 (
𝑓

28
)]

2

                                                   𝑓𝑜𝑟 𝑆𝑢𝑏𝑢𝑟𝑏𝑎𝑛 Area

 40.94 +   4.78 ∗ [log10(𝑓)]2  − 18.33 ∗ log10(𝑓)    𝑓𝑜𝑟 𝑂𝑝𝑒𝑛 𝐴𝑟𝑒𝑎/Rural

      (4) 

The antenna height-gain correction factor,  𝑎(ℎ𝑚)  for small 

city, medium city, open / rural area and suburban area is 

give as; 

𝑎(ℎ𝑚) = {

 [1.1 ∗ log10 𝑓 − 0.7] ∗ ℎ𝑚 − [1.56 ∗ log10 𝑓 − 0.8]   𝑓𝑜𝑟 small city, medium city, open / rural area  

 8.28 ∗ [log10(1.54 ∗ ℎ𝑚)]2 − 1.1                           𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒  𝑐𝑖𝑡𝑦  f ≤  200MHz              

 3.2 ∗ [log10(11.75 ∗ ℎ𝑚)]2 − 4.97                         𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒  𝑐𝑖𝑡𝑦   f ≥  400MHz             

 (14) 

 f  is frequency  in MHz ; d is the link distance in 

km 

 150 MHz≤ f≤ 1000MHz; 30m ≤ℎ𝑏 ≤ 200m ;1m≤ 

ℎ𝑚≤ 10 m and 1 km ≤ d ≤ 20km 

B.  Wireless communication link transmission range and 

effective fade depth based on Hata path loss model 

and rain fading 

The maximum transmission range of a wireless 

communication link based on Hata path loss model can be 

found using the link budget equation; 

   PR   =  PT  +  GT + GR   – 𝐿𝑃𝐻𝐴𝑇𝐴 = 𝑓𝑚𝑠+ 𝑃𝑆    (7) 

where; 

PR  = Received Signal Power (dBm) 

PT  = Transmitter Power Output (dBm) 

GT = Transmitter Antenna Gain (dBi) 

GR  = Receiver Antenna Gain (dBi) 

𝐿𝑃𝐻𝐴𝑇𝐴  = path loss based on Hata model 

𝑃𝑠 is the receiver sensitivity in dB  

𝑓𝑚𝑠 is the specified fade margin in dB    

Consequently, with respect to the Hata model, the effective 

transmission range (𝑑𝑒𝐻𝐴𝑇𝐴) is given as ; 

𝐿𝑃𝐻𝐴𝑇𝐴   = 𝐴 + 𝐵 ∗ log10(𝑑) −  𝐾 =   PT    +   GT + GR   −  𝑓𝑚𝑠− 𝑃𝑆   (8) 

𝑑𝑒𝐻𝐴𝑇𝐴 =     10
(

(PT  +   GT+ GR−𝑓𝑚𝑠 −𝑃𝑆)− A+k 

𝐵
)
    (9) 

With respect to 𝑑𝑒𝐻𝐴𝑇𝐴  the  effective Hata model path loss, 

(𝐿𝑃𝐻𝐴𝑇𝐴e
)  is given as: 

𝐿𝑃𝐻𝐴𝑇𝐴e
 = 𝐴 + 𝐵 ∗ log10(𝑑𝑒𝐻𝐴𝑇𝐴) −  𝐾                  (10) 

Effective Received Power  (𝑃𝑅𝑒𝐻𝐴𝑇𝐴) is given as: 

𝑃𝑅𝑒𝐻𝐴𝑇𝐴 = PT   +    GT + GR–  𝐿𝑃𝐻𝐴𝑇𝐴e
    (11) 

Effective Fade Margin  (𝑓𝑚𝑒𝐻𝐴𝑇𝐴) is given as: 

𝑓𝑚𝑒𝐻𝐴𝑇𝐴  =

 (PT   +    GT + GR)– (𝐴 + 𝐵 ∗ log10(𝑑𝑒𝐻𝐴𝑇𝐴) −  𝐾 ) − 𝑃𝑆

   (12) 

The rain fade depth (𝑓𝑑𝑚𝑒𝐻𝐴𝑇𝐴 ) at a transmission range 

(𝑑𝑒𝐻𝐴𝑇𝐴) is given as; 

𝑓𝑑𝑚𝑒𝐻𝐴𝑇𝐴 =   max ((Kv(Rpo)
αv

) ∗ 𝑑𝑒𝐻𝐴𝑇𝐴 , (Kh(Rpo)
αh) ∗

𝑑𝑒𝐻𝐴𝑇𝐴) )             (13) 

C.  The flowchart  for calculation of the effective  

transmission range when path loss is based on Hata 

model   

The effective  transmission range with path loss based on 

Hata model (denoted as, 𝑑𝑜𝑝𝐻𝐴𝑇𝐴) is the value of 𝑑𝑒𝐻𝐴𝑇𝐴  

for which    𝑓𝑚
𝑒𝐻𝐴𝑇𝐴

 = 𝑓𝑑𝑚𝑒𝐻𝐴𝑇𝐴, thus; 

𝑑𝑜𝑝𝐻𝐴𝑇𝐴  =  𝑑𝑒𝐻𝐴𝑇𝐴    at which 𝑓𝑚𝑒𝐻𝐴𝑇𝐴  = 𝑓𝑑𝑚𝑒𝐻𝐴𝑇𝐴    

(15) 

The flowchart (of Figure 1) used to determine the effective 

transmission range,  dopHATA  is based on iterative 

calculation and adjustment of the transmission range 

starting with an initial value computed with the specified 

values of f, ℎ𝑚, ℎ𝑏,  PT  ,   GT, GR and 𝑓𝑚𝑠.  

http://www.jmest.org/
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Figure 1(a) Part I of the flowchart for determination of the effective transmission range,  𝑑𝑒𝐻𝐴𝑇𝐴1 based on iterative calculation 

and adjustment of the transmission range 

𝑇𝑌𝑃 = 2? 

N Y 
𝑇𝑌𝑃 = 1? 

N 

Y 

𝐾 =  5.4 +   2 ∗ [log10 (
𝑓

28
)]

2

 

Terrain =”Sub-urban Area” 

K=0 

Terrain=”Urban Area” 

𝐾 = 40.94 +   4.78 ∗ [log10(𝑓)]2  − 18.33 ∗ log10(𝑓) 

Terrain =”Open or Rural Area” 
 

Start 

Input ϵ, d(0),  PT, GT, GR, 𝑓𝑚𝑠 , 𝑃𝑆, f, 

ℎ𝑚, ℎ𝑏, TYP 

Z2 

𝑎(ℎ𝑚) = [1.1 ∗ log10(𝑓) − 0.7] ∗ ℎ𝑚   −   [1.56 ∗ log10(𝑓) − 0.8] 

𝐴 = 69.55 + 26.16 ∗ log10(𝑓) − 13.82 ∗ log10(ℎ𝑏)  − 𝑎(ℎ𝑚) 

𝐵 = 44.9 −  6.55 ∗ log10(ℎ𝑏) 

𝑑𝑒𝐻𝐴𝑇𝐴1 =     10
(

(PT  +   GT+ GR−𝑓𝑚𝑠 −𝑃𝑆)− A+k 

𝐵
)
 

𝑓𝑑𝑚𝑒𝐻𝐴𝑇𝐴 =   max ((Kv(Rpo)
αv

) ∗ 𝑑𝑒𝐻𝐴𝑇𝐴 , (Kh(Rpo)
αh) ∗ 𝑑𝑒𝐻𝐴𝑇𝐴) )  

 

deHATA2 =     10
(

(PT  +   GT+ GR−fdmeHATA1 −PS)− A+k 

B
)
 

Z1 
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Figure 1(b) Part II of the flowchart for determination of the effective transmission range,  𝑑𝑒𝐻𝐴𝑇𝐴1 based on iterative 

calculation and adjustment of the transmission range 

III.   RESULTS AND DISCUSSION 

The effect of frequency on the effective transmission range 

of microwave link was examine using a sample numerical 

example based on the microwave link parameters presented 

in Table 1.  The simulation was conducted for the same link 

at three different frequencies of 11 GHz, 7 GHz and 3.5 

GHz.  The iteration results for the link at frequency of 11 

GHz are given in Table 2. Also, the iteration results for the 

link at frequency of 7 GHz are given in Table 3 and the 

results for the link at frequency of 3.5 GHz is given in 

Table 4. The comparison of the path length, the effective 

rain fade depth and the propagation loss for the link at 

frequency of 11 GHz, 7 GHz and 3.5 GHz is given in 

Figure 2.  

The results show that, for the 3.5 GHz link (Table 4),  it 

took about 5 cycles for the algorithm to converge to the 

effective path length of 8.596610809 Km with tolerance 

error in the order of 10−6. Also, for the 7 GHz link (Table 

3),   it took about 3 cycles for the algorithm to converge to 

the effective path length of 4.360941705 km with tolerance 

error in the order of 10−6. However, for the 11 GHz link 

(Table 2),   it took about 4 cycles for the algorithm to 

converge to the effective path length of 2.680715363 km 
with tolerance error in the order of 10−5 . Furthermore, 

among the three frequencies considered, the link at 11 GHz 

has the lowest path length, the highest value of fade depth 

(11.95833946 dB) and the lowest propagation loss 

(134.0416712 dB). On the other hand, the link at 3.5 GHz 

has the highest path length, the lowest value of fade depth 

(0.638230094 dB) and the highest propagation loss 

(145.3617712dB). In essence, higher frequencies face 

higher rain fade depth and hence have lower effective 

transmission range.  
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Table 1  The simulation input data for the microwave link parameters used in the study 

f (MHz) 
Transmitter 

power, PT(dB) 
Transmitter antenna 

Gain, GT(dB) 
Receiver antenna 

gain, GR(dB) 
Receiver sensitivity, Ps 

(dB) Fade Margin (dB) 

11000 12.5 25 25 -86 12.5 

            

kh ah kv av 
Percentage 

Availability, Pa (%) 
Rain Rate at 0.01 % outage probability, 

R0.01 mm/hr 

0.01772 1.214 0.01731 1.1617 99.99 95 

 

Table 2   The iteration results for the link at frequency of 11 GHz 

S/N Path Length   
Propagation Loss  by 
Hata Urban Model Received Power 

Effective Fade 
Margin   

Effective  Rain Fade 
Depth Error 

0 4 140.0218417 -80.02184173 5.978158267 17.84350495 1.19E+01 

1 2.881057228 135.1186356 -75.11863557 10.88136443 12.85203973 1.97E+00 

2 2.658202644 133.9156534 -73.91565336 12.08434664 11.85791301 -2.26E-01 

3 2.681169995 134.0442052 -74.04420519 11.95579481 11.96036752 4.57E-03 

4 2.680715363 134.0416712 -74.04167124 11.95832876 11.95833946 1.07E-05 

 

Table 3 The iteration results for the link at frequency of  7  GHz 

S/N Path Length    
Propagation Loss  by 
Hata Urban Model Received Power 

Effective Fade 
Margin   

Effective  Rain Fade 
Depth Error 

0 4 137.6172323 -77.61723233 8.38276767 6.504852138 -1.88E+00 

1 4.382613899 138.9822493 -78.98224927 7.017750732 7.127063848 1.09E-01 

2 4.361567143 138.9103173 -78.91031733 7.089682671 7.092837338 3.15E-03 

3 4.360941705 138.9081744 -78.90817445 7.09182555 7.091820243 -5.31E-06 

 

Table 4  The iteration results for the link at frequency of 3.5  GHz 

S/N Path Length   
Propagation Loss  by 
Hata Urban Model Received Power 

Effective Fade 
Margin   

Effective  Rain Fade 
Depth Error 

0 7 142.2917052 -82.29170522 3.708294779 0.519694419 -3.19E+00 

1 11.20699789 149.3240942 -89.32409421 -3.324094212 0.832030608 4.16E+00 

2 8.826403938 145.7559505 -85.75595049 0.244049505 0.655290409 4.11E-01 

3 8.564981252 145.3066916 -85.30669158 0.693308419 0.635881851 -5.74E-02 

4 8.597013788 145.3624716 -85.36247164 0.637528363 0.638260012 7.32E-04 

5 8.596610809 145.3617712 -85.3617712 0.638228802 0.638230094 1.29E-06 
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Figure 2  Comparison of the path length, the effective rain fade depth and  the propagation loss for the link at 

frequency of 11 GHz, 7 GHz and 3.5  GHz 

IV.  CONCLUSION 

The effect of frequency on the optimal path length or 

effective transmission range of microwave link is studied. 

The path length is determined based on Hata propagation 

loss model along with rain fade depth computed using the 

ITU rain fade model. A form of bisection numerical 

iteration flowchart was developed and used to compute the 

optimal transmission range of the wireless link in the C-

band and in the Ku-band. The computation was 

implemented in Matlab software. The results showed that 

communication links operating at higher frequencies face 

higher rain fade depth and hence have lower effective 

transmission range.  
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