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Abstract—In this paper, the development of 

closed-form approximation of the eccentric 

anomaly for circular and elliptical Keplerian orbit 

is presented. The derivation of the closed-form 

solution to the transcendental equation in respect 

of the eccentric anomaly, E of Keplerian orbit 

given in terms of the M (the mean anomaly) and e 

(the first eccentricity) is presented.  The closed-

form solution is a composite function that 

approximates the eccentric anomaly in the 

following two cases;  𝟎 . 𝟓 ≤ 𝒆 ≤ 𝟏    and  𝟎 . 𝟎𝟎𝟏 ≤

𝒆 ≤ 𝟎. 𝟓   or M < 1°. A sample numerical 

computation for M= 35° =1.396263402 radian and e 

= 0.99 yielded a value of E=1.600430567 radians or  

91.69791688°. The closed-form approximation has 

an error of  0.382069122° or 0.006668 radian which 

amounts to a percentage error of  0.416660634%. 

The results of the computation of E for    M =30° 

and  0.58  ≤ e ≤ 1;    for M =30° and  0.01 ≤ e ≤0 and 

for M =30° and  0.001 ≤ e ≤ 0.01 showed  good 

approximation of the eccentric  anomaly with 

percentage error that is less than ± 1%. In all, the 

closed-form solution can be exercised in all other 

combinations of M and e. It is believed that the 

percentage error performance will not deviate 

much from what is presented in this paper. Also, 

in the worst case, the value of E obtained can 

serve as a good approximation for the initial value 

that can be used in any iterative solution for the 

eccentric anomaly, E .  In that case, the initial 

value of E obtained using this closed-form 

approximation will greatly reduce the 

convergence cycle of the iteration algorithm. 

Keywords— Eccentric Anomaly,    Keplerian 
Orbit, First Eccentricity, Mean Anomaly, Closed-
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I.  INTRODUCTION 
In planetary studies, Kepler developed some laws that are 

very useful in the determination of essential parameters 

used to characterize the orbits and the orbital motions of 

satellites [1,2,3,4,5,6,7]. One of such laws gave rise to 

transcendental expression that relates the eccentric  

anomaly (E) to the first eccentricity (e) and the mean 

anomaly (M) [8,9,10,11,12,13]. Over the year, researchers 

have tried to provide solution to the Kepler’s transcendental 

equation and most of the published solution approaches 

focused on the derivation of initial value of E for iterative 

solution [14,15,16,17,18,19,20,21]. In that case, the 

expression derived in those approaches only serve as the 

initial value of E which will then be employed in an 

iterative solution to determine the required or actual value 

of E.   

Conversely, in this paper, a composite function is derived 

which is a closed-form approximation of E in the Kepler’s 

transcendental equation for the eccentric  anomaly (E). The 

closed-form solution is for circular and elliptic Keplerian 

orbit in which the value of first eccentricity, e is between 0 

and 1. The detailed mathematical analysis used in the 

development of the closed-form approximation is 

presented. Also, some numerical examples are presented 

along with performance analysis of the estimation error. 

II.  METHODOLOGY 
The first eccentricity, e of circular and elliptic Keplerian 
orbit is between 0 and 1.  Also, the eccentric  anomaly, E of 
Keplerian orbit is given in terms of the M (the mean 
anomaly) and e( the first eccentricity) as follows; 

𝐸  = 𝑀 + 𝑒(sin (𝐸))   (1) 

The popular approach employed in solving the Keplerian 
equation for E is iterative method. In this paper, a closed-
form approximation for the determination of E is 
presented. The solution applies to circular and elliptic 
Keplerian orbit where 0 ≤ 𝑒 ≤  1.   
The fundamental idea behind the closed-form solution is 
that for any given value of e and M, the value of E  is such 
that  M  ≤ 𝐸 ≤  𝑀 + 𝑒, where M and e are in radians and  
for the circular and elliptical orbits, 0 ≤ 𝑒 ≤  1.   Hence, 
generally,  E can be expressed as;  

𝐸 = 𝑀 + 𝑒(sin (𝑀 + 𝜑))        where 0 ≤ 𝜑 ≤  𝑒 (2) 

In order to determine𝜑, the following expression is used; 

𝑀 + 𝜑 = 𝑀 + 𝑒(sin (𝑀 + 𝜑))        where 0 ≤ 𝜑 ≤  𝑒 (3) 

Hence,  
 𝜑 =  𝑒(sin (𝑀 + 𝜑))        where 0 ≤ 𝜑 ≤  𝑒 (4) 
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𝜑

𝑒
=  sin (𝑀 + 𝜑)        where 0 ≤ 𝜑 ≤  𝑒  (5) 

According to law of trigonometry,  
sin(A + B) = sin A cos B + cos A sin B  (6) 

Hence,  
sin(𝑀 + 𝜑) = sin(𝑀) cos( 𝜑) + cos(𝑀) sin (𝜑)  (7) 

Now, since, 0 ≤ 𝜑 ≤  𝑒 ≤ 1, and the angles are all in 
radian, then,  cos( 𝜑)  and cos( 𝜑) can be approximated 
by a linear function of the form; 

cos( 𝜑) = 𝐴(𝜑) + 𝐵  (8) 
sin  (𝜑) = 𝐶(𝜑) + 𝐷               (9) 

Then,  
sin(𝑀 + 𝜑) =

sin(𝑀) (( 𝐴)(𝜑) + 𝐵)  + cos(𝑀) ((𝐶)(𝜑) + 𝐷)  (10) 

       sin(𝑀 + 𝜑) = (𝜑)(𝐴) sin(𝑀) + (𝐵) sin(𝑀) +
(𝜑) (𝐶)cos(𝑀) + (𝐷) cos(𝑀)   (11) 

Therefore, 
𝜑 

𝑒
 = (𝜑) (𝐴)sin(𝑀) + (𝐵) sin(𝑀) + (𝜑) (𝐶)cos(𝑀) +

(𝐷) cos(𝑀)   (12) 
Hence, 

𝜑 

𝑒
− (𝜑) (𝐴)sin(𝑀) − (𝜑) (𝐶)cos(𝑀) =  (𝐵) sin(𝑀) +

(𝐷) cos(𝑀)   (13) 

𝜑 =  
(𝐵) sin(𝑀)   +   (𝐷) cos(𝑀) 

(
1

𝑒
)−(𝐴)sin(𝑀)−(𝐶)cos(𝑀)

   (14) 

𝜑 =  
(𝐵) sin(𝑀)   +   (𝐷) cos(𝑀) 

(
1

𝑒
)−(𝐴)sin(𝑀)−(𝐶)cos(𝑀)

   (15) 

𝐸2 = M + (𝑒) sin[M + 𝑒{sin(M + 𝜑)}]            (16) 
The values of A and B were obtained from trend line fitted 

to the graph of cos(x) versus x for 0 ≤ 𝑥 ≤ 1, where x is in 

radians.  Also, the values of  C and D were obtained from 

trend line fitted to the graph of sin (x) versus x for 0 ≤ x ≤
e ≤ 1, where x is in radians.  In order to improve on the 

accuracy of the solution, the values of x were considered in 

the following two (2) range of values;  

i. 0 .5 ≤ 𝑥 ≤ 𝑒 ≤ 1  

ii. 0 .001 ≤ 𝑥 ≤ 𝑒 ≤ 0.5  or M < 1° 

The values of A, B , C and D obtained for the two  range of 

values of x are given in Table 1. 

 

 

 

1 The values of coefficient A, B , C and D obtained for the two range of values of x 

 Range of value for e A B C D 

1 
0 .5 ≤ 𝑒 ≤ 1 

 
-0.584013113 1.173439404 0.809460441 0.077357763 

2 

0 .01 ≤ 𝑒 ≤ 0.5 

Or 

M < 1.1° 
 

-0.248393819 1.019165175 0.961260155 0.004043021 

 
III.  APPLICATION OF THE CLOSED-FORM SOLUTION FOR 

SOLVING THE KEPLERIAN EQUATION FOR 
ECCENTRIC  ANOMALY. 

The closed-form solution can be employed as follows; 

Step 1: Given M and e, then, using the data in Table 1 
determine the value of A, B, C and D based on 
the value of e 

For instance, if e = 0.99, then  from Table 1,  the 

values of A, B, C and D are given as  A = -

0.584013113; B = 1.173439404; C =0.809460441; 

D = 0.077357763. 

Step 2: Determine φ using Eq 13, where for instance, M= 

35° =1.396263402 radian and e = 0.99 , then, 
𝜑 =

 
(1.173439404) sin(0.573576436 )   +   (0.07735776) cos(0.819152044) 

(
1

0.99
)−(−0.584013113)sin(0.573576436 )−(0.809460441)cos(0.819152044)

=

𝟎.𝟕𝟑𝟔𝟒𝟐𝟒𝟗𝟔𝟏

𝟎.𝟔𝟖𝟐𝟎𝟎𝟓𝟗𝟗𝟔
= 1.079792503 

Step 3: Determine 𝐸  using Eq 2 [ 𝐸 = 𝑀 + 𝑒(sin (𝑀 +
𝜑)) ] which gives,  

𝐸 = 0.610865238
+ 0.99(sin(0.610865238
+ 1.079792503)) 

𝐸 = 0.610865238 +  sin (1.690657741) =0.610865238 + 
0.982896965 = 1.593762203 radians = 91.32° 
The solution by secant method yielded a value of 

E=1.600430567 radians =  91.69791688°. Hence, the 

closed form approximation has an error of 0.382069122° or 

0.006668 radian which amounts to a percentage error of  

0.416660634%.  

Furthermore, the results of the computation of E for M =30° 

and  0.58  ≤ e ≤ 1 are shown in Table 1. Again, the results 

of the computation of E for M =30° and  0.01 ≤ e ≤0.58 are 

shown in Table 2 while the results of  the computation of E 

for M =30° and  0.001 ≤ e ≤ 0.01 are shown in Table 3. The 

results showed a good approximation of the eccentric  

anomaly with percentage error that is less than ± 1%.  

In all, the close-form solution can be exercised in all other 

combinations of M and e . It is believed that the percentage 

error performance will not deviate much from what is 

presented in this paper. Also, in the worst case, the value of 

E obtained can serve as a close approximation for the initial 

value that can be used in the iterative solution.  In that case, 

the value of E obtained as the initial value for the iteration 

will greatly reduce the convergence cycle number of the 

iteration algorithm. 
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Table 1 The results of  the computation of E for M =30° and  0.58  ≤ e ≤ 1 

For   0.58  ≤ e ≤ 1 

M (Degree) M (radian) e e(sin(M+ϕ)) E E (degree) Ea e e% 

30 0.523599 0.58 0.497304094 1.020903 58.49343 1.016868 -0.00403 -0.39675 

30 0.523599 0.6 0.520870669 1.044469 59.84369 1.041495 -0.00297 -0.28562 

30 0.523599 0.7 0.642274076 1.165873 66.79959 1.167416 0.001544 0.132225 

30 0.523599 0.8 0.766558931 1.290158 73.92059 1.292908 0.002751 0.212748 

30 0.523599 0.9 0.888215817 1.411815 80.89102 1.412321 0.000506 0.035849 

30 0.523599 1 0.999727611 1.523326 87.28017 1.522429 -0.0009 -0.05892 

 
Table 2   The results of  the computation of E for M =30° and  0.01 ≤ e ≤0.58 

For   0.01 ≤ e ≤0.58 

M 

(Degree) 
M 

(radian) 
e e(sin(M+ϕ)) E E (degree) 

Ea e e% 

30 0.523599 0.1 0.054704 0.578302 33.13428 0.578255 -4.7E-05 -0.00815 

30 0.523599 0.2 0.119944 0.643543 36.87228 0.643617 7.47E-05 0.011599 

30 0.523599 0.3 0.197602 0.721201 41.32177 0.721826 0.000625 0.086526 

30 0.523599 0.4 0.289705 0.813303 46.59885 0.814571 0.001268 0.155674 

30 0.523599 0.5 0.398046 0.921644 52.80633 0.922007 0.000362 0.039292 

30 0.523599 0.58 0.496837 1.020435 58.46665 1.016868 -0.00357 -0.35079 

 
Table 3   The results of  the computation of E for M =30° and  0.001 ≤ e ≤ 0.01 

For   0.001 ≤ e ≤ 0.01 

M 

(Degree) 
M 

(radian) 
e e(sin(M+ϕ)) E E (degree) 

Ea e e% 

30 0.523599 0.001 0.0005 0.524099 30.02867 0.524099 -1.1E-08 -2.1E-06 

30 0.523599 0.003 0.001504 0.525103 30.08617 0.525103 -1E-07 -1.9E-05 

30 0.523599 0.005 0.002511 0.52611 30.14388 0.52611 -2.8E-07 -5.2E-05 

30 0.523599 0.007 0.003522 0.527121 30.20179 0.52712 -5.3E-07 -0.0001 

30 0.523599 0.008 0.004029 0.527627 30.23082 0.527627 -6.9E-07 -0.00013 

30 0.523599 0.01 0.005045 0.528643 30.28904 0.528642 -1.1E-06 -0.0002 

 
IV. CONCLUSION 

A closed-form solution for calculating the eccentric  
anomaly of circular and elliptical Keplerian orbit is 
presented.  A linear function approximation of cosine and 
sin function for angles in the range of 0 to 1 radian was 
also employed in deriving the closed-form solution. The 

closed-form solution is a composite function that 

approximates the eccentric anomaly based on the value of 

mean anomaly and the first eccentricity of the orbit. 
In all, the values of eccentric  anomaly obtained from the 
closed-form solution were compared with the actual 
values of eccentric  anomaly and the results show that the 
percentage error is less than 1 %.  As such, the closed-form 
solution is a good approximation of the eccentric  anomaly  
and can be used instead of the tedious iterative solution 
approach. 

 
 
 

REFERENCES 

1) Hsiang, W. Y., Chang, H. C., Yao, H., & Lee, P. 

S. (2014). Reestablishing Kepler_s first two laws 

for planets from the non_stationary Earth. arXiv 

preprint arXiv:1411.1441.  

2) Hsiang, W. Y., Chang, H. C., Yao, H., & Lee, P. 

S. (2015). Re-establishing Kepler’s first two laws 

for planets in a concise way through the non-

stationary Earth. European Journal of 

Physics, 36(4), 045006.  

3) Osserman, R. (2001). Kepler's Laws, Newton's 

Laws, and the Search for New Planets. The 

American Mathematical Monthly, 108(9), 813-

820.  

4) Wanner, G. (2010). Kepler, Newton and numerical 

analysis. Acta Numerica, 19, 561-598.  

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 2 Issue 6, June - 2015 

www.jmest.org 

JMESTN42353753 13568 

5) Schutz, B., Tapley, B., & Born, G. H. 

(2004). Statistical orbit determination. 

Elsevier.  

6) Osler, T. J. (2001). An unusual approach to 

Kepler’s first law. American Journal of 

Physics, 69(10), 1036-1038.  

7) Vogt, E. (1996). Elementary derivation of Kepler’s 

laws. American Journal of Physics, 64(4), 392-

396. 

8) Pimienta-Penalver, A. R. (2013). Accurate Kepler 

equation solver without transcendental function 

evaluations. State University of New York at 

Buffalo. 

9) Chobotov, V. A. (2002). Orbital mechanics. 

American Institute of Aeronautics and 

Astronautics. 

10) Thorvaldsen, S. (2010). Early Numerical Analysis 

in Kepler's New Astronomy. Science in 

Context, 23(1), 39. 

11) Brouwer, D., & Clemence, G. M. (2013). Methods 

of celestial mechanics. Elsevier. 

12) Montenbruck, O., & Gill, E. (2000). Introductory 

Astrodynamics. In Satellite Orbits (pp. 15-51). 

Springer, Berlin, Heidelberg. 

13) Brown, C. D. (1998). Spacecraft mission design. 

American Institute of Aeronautics and 

astronautics. 

14) Charles, E. D., & Tatum, J. B. (1997). The 

convergence of Newton–Raphson iteration with 

Kepler's equation. Celestial Mechanics and 

Dynamical Astronomy, 69(4), 357-372. 

15) Swerdlow, N. M. (2000). Kepler's iterative 

solution to Kepler's equation. Journal for the 

History of Astronomy, 31(4), 339-341. 

16) Rasheed, M. S. (2010). An Improved Algorithm 

For The Solution of Kepler‘s Equation For An 

Elliptical Orbit. Engineering & Technology 

Journal, 28(7), 1316-1320. 

17) Rasheed, M. S. (2013). Comparison of Starting 

Values for Implicit Iterative Solutions to 

Hyperbolic Orbits Equation. 

18) Ng, E. W. (1979). A general algorithm for the 

solution of Kepler's equation for elliptic 

orbits. Celestial mechanics, 20(3), 243-249. 

19) Markley, F. L. (1995). Kepler equation 

solver. Celestial Mechanics and Dynamical 

Astronomy, 63(1), 101-111. 

20) Taff, L. G., & Brennan, T. A. (1989). On solving 

Kepler's equation. Celestial Mechanics and 

Dynamical Astronomy, 46(2), 163-176. 

21) Mortari, D., & Elipe, A. (2014). Solving Kepler’s 

equation using implicit functions. Celestial 

Mechanics and Dynamical Astronomy, 118(1), 1-

11. 

 

http://www.jmest.org/

