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Abstract—This paper presents an algorithm of 
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conditions, we prove the global and superlinear   
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I.  INTRODUCTION  

Successive quadratic programming is currently 
considered to be one of the most promising 
approaches for solving constrained nonlinear 
optimization problems [1,9,10,12-14]. An attractive 
feature of the method is that it possesses a fast local 
convergence property, provided that the data of 
quadratic programming subproblems are suitably 
chosen. In order to obtain global convergence, the 
method is often designed by making use of an exact 
penalty function . It has been observed, however, that 
the use of a nonsmooth exact penalty function may 
deteriorate the desirable local convergence property. 
This unfavorable phenomenon, comm0nly called the 
Maratos effect, has recently drawn much attention, and 
some remedies have been proposed to retain a rapid 
rate of convergence. 

 In the next section we describe how the modified 
quadratic programming subproblems are obtained 
from the second-order approximations to the problem. 
We formally state the algorithm in Section 3 and 
establish some convergence results in Section 4. 

II. MOTIVATION 

Consider the nonlinear programming problem 

Minimize ( )f x  

subject  to  

( ) 0, 1, 2, , ,

( ) 0, 1, , ,

i

i

c x i m

c x i m m

 

  
        (2.1) 

where the functions f  and , 1, ,ic i m ,are twice 

continuously differentiable. We define the exact 

penalty function rF  by  

 
1 1

( ) ( ) max 0, ( ) + ( )
m m

r i i

i i m

F x f x r c x c x

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 
   

 
     (2.2) 

where 0r  . It well known [6] that ,if r  is sufficiently 

large, then local minima of (2.2) normally coincide with 

those of (2.1). 

In the following, we let x  be the current estimate to an 

opimal solution of (2.1) .The quadratic programming 
subproblem solved to determine a search direction in 
the methods of Han [10] and [12] takes the form  

minimize 
1

2

T Tg d d Bd  

subject to 
0, 1,2, , ,

0, 1, , ,

T

i i

T

i i

c g d i m

c g d i m m

  

   
 (2.3) 

where ( ) , ( )i ig f x c c x   and ( )i ig c x  ,and 

the matrix B is anapproximation to the Hessian of the 
Lagrangian  

1

( , ) ( )+ ( )
m

i i

i

L x u f x u c x


              (2.4) 

With respect to x .The solution d  of (2.3) is then used 

to obtain the next iterate x
as  

x x d   ,                          (2.5) 

where the step size   is selected in such a way that 

the exact penlty function (2.2) is decreased. For 
example, we may choose   if it satisfies the condition 

( ) ( ) ( , ) ( )r r r rF x d F x F x d F x      
 

  (2.6) 

where  is a constant such that 0 1   and 

( , )rF x d  is defined by  

1
( , ) ( )

2

T T

rF x d f x g d d Bd    
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1 1
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m m

T T
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Note that, if B is positive definite and r is sufficiently 
large, then the quantity ( , ) ( )r rF x d F x  is negative 

and (2.6) is achieved by choosing   to be small 

enough [14]. Global convergence of the iterates thus 
generated may be established under appropriate 
conditions [10,14]. In order to ensure a fast ultimate 

convergence, however, the step size 1   needs to 

be accepted by the line search criterion (2.6) 
eventually. 

Unfortunately, the last property does not necessarily 
hold for the original Han-Powell methods, especially 
when the current point x  is very close to the constraint 

surface. This is due to the fact that the exact penalty 

function rF has a discontinuity of the first derivatives 

across that surface. To cope with this difficulty, let us 
consider the following second-order approximation to 
(2.1): 

minimize  
1

2

T Tg d d Bd  

subject  to  

1
0, 1,2, , ,

2

1
0, 1, , ,

2

T T

i i i

T T

i i i

c g d G d i m

c g d G d i m m

   

    

 (2.8) 

where G  and iG  denote the Hessian matrices 

2 ( )f x  and 2 ( )ic x , respectively. Problem (2.8) itself 

is not second derivatives. Therefore, try to modify (2.8) 
into an ordinary quadratic programming problem. 

To this end, let us consider the Kuhn-Tucker  

conditions for problem (2.8) 
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Rearranging terms, we may rewrite these conditions 
as  

1
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     (2.9) 

Now we replace some of the unknown quantities in 
(2.9) by those that appear in (2.3) or that are obtained 
by solving (2.3). Specifically, we put  

1

1
( )

2

m

i i i

i

p g u g g


           (2.10) 

and  

1
( ) , 1,2, , ,

2
i i ia g g i m   (2.11) 

where 
iu  are optimal Lagrange multipliers of (2.3) and 

ig  denote ( )ic x d   for 1 1,2, ,i m .Note that  

1 1

1
( )

2

m m

i i i

i i

p g u G d u o d
 

      (2.12) 

And 

 1
( ) , 1,2, ,

2
i i ia g G d o d i m          (2.13) 

Thus it seems reasonable to substitute p  and 

, 1, 2,ia i m  for 
1

1

2

m

i i

i

g u G d


   and  

1
, 1,2, ,

2
i ig G d i m   

respectively. Also, we may naturally replace 

1

m

i i

i

G u G


  by the matrix B , which appears in (2.3) as 

an approximation to the Hessian of the Lagrangian. As 
a result, we derive the following conditions from (2.9): 

1

, , 0
m

T

i i i i i

i

Bd u a p a c u


     
 

0, 1,2, , ,

, 1, , .

T

i i i

T

i i

u c a d i m

a d c i m m

    

   

(2.14) 

It is then straightforward to get a quadratic 
programming problem whose Kuhn-Tucker conditions 
are (2.14),that is , 

minimize 
1

2

T Tp d d Bd  

subject to 
0, 1,2, , ,

0, 1, , .

T

i i

T

i i

c a d i m

c a d i m m

  

   
(2.15) 

where p  and , 1,2,ia i m ,are given by (2.10) 

and (2.11), respectively. Let 
*d  and 

*u denote a 

solution of (2.15) and corresponding Lagrange 
multipliers, respectively. 

If the multipliers 
iu  are bouned, then, by (2.12) and 

(2.13), we may expect that the solution 
*d of (2.15) is 

almost equal to the solution 
*d of (2.3), when d  is 

sufficiently small. Thus the iteration 
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*x x d               (2.16) 

is supposed to exhibit the same local convergence 

property as that of (2.5) with 1  . In addition, (2.12) 

suggest that 
*d  is a good approximation to the 

solution of (2.8), so that 
*x d  will satisfy the 

constraints of (2.1) to second order in case x  lies on 

the constraint boundary. This implies x
 given by 

(2.16) is eventually accepted by the line search 
criterion and hence that the Marators effect does not 
occur. These matters will be closely examined later on. 

We should note that 
*d  is not necessarily a descent 

direction of the exact penalty function rF  defined by 

(2.2). So we perform a one-dimensional search along 
the arc  

2 *( ) ( )x x d d d            (2.17) 

with the search criterion  

( ( )) ( ) ( , ) ( )r r r rF x F x F x d F x     
 

  (2.18) 

where 0 1   and ( , )rF x d  is given by (2.7). Since 

( )x x d    for   small enough, search along arc 

( )x   by a procedure of Armijo type will yield a 

sufficient decrease of rF , which is essential to ensure 

global convergence of an algorithm. Obviously, if the 
step size   is one, then (2.17) reduces to (2.16). Note 

that search arcs similar to (2.17) are also employed by 
Mayne and Polak [11] and Gabay [8]. 

III. ALGORITHM 

Suppose that the parameters r and  in (2.2) and 

(2.18) are appropriately selected. Also,let   be a real 

number such that 0 1  . Then a prototype of the 

algorithm may be sated as follows: 

Step1. Choose a starting point x  and a matrix B . 

Step2. Solve (2.3) to obtain d . If 0d  , then stop. 

Step3. Solve (2.15) to obtain
*d . 

Step4. Find
j  ,where j  is the smallest 

nonnegative integer such that (2.18) is satisfied. 

Step5. Set 
2 *( )x x d d d     ,update the 

matrix B  and return to Step 2. 

 Some comments on this algorithm are in order. 

Because the purpose of introducing 
*d is to avoid the 

Maratos effect, it is clearly superfluous to solve (2.15) 
on every iteration. To be more practical, the algorithm 
should therefore be modified in such a way that (2.15) 
is solved only when it is needed. A possible 

modification of the algorithm is to calculate 
*d when 

the point x d  does not satisfy (2.6) and, at the same 

time, 0, 1,2, ,T

i ic a d i m   .are much better than 

0, 1,2, ,T

i ic g d i m   ,as approximations to 

( ), 1,2, ,ic x d i m  . 

More specifically, let  1 max ( )T

i i ic a d c x d     and 

 2 max ( )T

i i ic g d c x d     , where the maximum is 

taken over active constraints. Then we solve (2.15) if 

the inequality 1 2    is satisfied for some 

prescribed constant (0,1) . This strategy requires 

the evaluation of constraint gradients at x d  in order 

to decide whether (2.15) is to be solved. Nevertheless, 
we may expected that the overall efficiency of the 
algorithm is improved compared with those using only 

d ,because the calculation of 
*d can be viewed as an 

alternative to reducing the step length and using the 

search direction d . 

The algorithm assumes that problems (2.3) and 
(2.15) are always solvable. However,this assumption is 
rather restrictive, because the constraints of these 
subproblems may be inconsistent, even if the given 
problem is feasible, To cope with such difficulties, a 
practical implementation of the algorithm should 
include a suitable technique of resolving constraint 
inconsistency, such as those suggested by Powell 
[12],Bartholomew-Biggs [1] and Tone [15]. 

In order that the algorithm works efficiently, we have to 

specify a formula of updating the matrices B in such a 

way that B approximates the Hessian of the 
Lagrangian (2.4). Although there are many possibilities 
of doing this, the modified BFGS formula presented by 
Powell [12,13] seems most suitable, because it 

preserves the positive definiteness of B and it yields 
superlinear convergence of the iteration (2.5) with 

1  under certain conditions. 

IV. CONVERGENCE 

In this section we discuss convergence properties of 
the algorithm presented at the beginning of the 

previous section. for simplicity, notation such as  x
will be used to represent a sequence generated by the 
algorithm. 

We first consider the global behavior of the algorithm. 
To establish a global convergence theorem, we need 
the following assumptions: 

(a)  Problems (2.3) and (2.15) are always feasible. 

(b) the matrices  B are symmetric, positive  

semidefinite, and uniformly bounded. 
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(c) The sequences    ,x d and  d produced by the 

algorithm are bounded.  

(d) The penalty parameter r is large enough to satisfy  

 
1

sup max i
i m

r u
 

 . 

Where iu  are optimal Lagrange multipliers of (2.3) and 

‘sup’ is taken with respect to the sequence generated 
by the algorithm. Note that this condition assumes the 

boundedness of  u . 

Theorem1. Let the above assumptions be satisfied. 
Then the algorithm either terminates at a Kuhn-Tucker 

point of (2.1) or generates an infinite sequence  x  

whose limitpoints are Kuhn-Tucker points of (2.1). 

Proof. Because the algorithm terminates only if 0d 
, it is easily seen that , when the generated sequence 
is finite, the last iterate x  is a Kuhn-Tucker point. 

Suppose that 0d   and let ( )x   be defined by 

(2.17). Then it can shown that  

( ( )) ( ) ( , ) ( ) ( )r r r rF x F x F x d F x o      
 

 

This implies that Step 4 of the algorithm can always 

find an 0   satisfying (2.18). Moreover, by 

assumption (c) , there exists for each 0   a positive 

constant ( )   such that (2.18) holds for any 

[0, ( )]   , whenever ( ) ( , )r rF x F x d   . This 

fact enables us to follow the proof of Theorem 1 in [14] 
and hence the rest of the proof is omitted. 
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