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Abstract—KYAMOS LTD is a newly founded 
startup operating in the Computer Aided 
Engineering industry and its mission is to provide 
cloud computing software for scientists, 
engineers and non-engineers using cloud-based, 
InfiniBand GPU computing. KYAMOS utilizes built-
in, state-of-the-art software in an attempt to attract 
new users, or existing users of either open source 
or proprietary commercial software which realize 
that, much cheaper and faster with better 
accuracy simulations are possible, using state of 
the art algorithms. In this paper, we first conduct a 
brief introduction to computational fluid dynamics 
simulations, and discuss the different types of 
differential equations used in the macroscopic 
world. Then we discuss the theory behind 
adaptive mesh techniques, its advantages and 
disadvantages and present an algorithm that 
produces nearly ideal mesh element qualities. 
Then we describe the finite element Galerkin 
formulation of the Poisson equation using an 
iterative Conjugate Gradient method and its 
parallelization into CUDA aware MPI. Finally, we 
conduct validation results for the Poisson 
equation in uniform geometries and test the 
scaling of our computer software to multiple 
threads and GPUs.  

Keywords—KYAMOS software, High 
Performance Computing, CUDA, Multiphysics, 
GPU; 

I.  INTRODUCTION 

Multiphysics simulations deal with the usage of 
computer simulations to mimic the real behavior of 
physics phenomena and their application to 
engineering systems that aid in the design process. 
Thus, save costs by avoiding expensive experimental 
testing and by providing detailed insight into the design 
process. Multiphysics simulations are used by 
engineers, non-engineers, scientists, researchers and 
consultancy firms.  

The multiphysics simulations industry exists for 
more than 25 years and a number of both free and 
proprietary software have been released through the 
years. It is a mature industry which is highly 
competitive and very important industry in making the 
world a better place by designing cheaper systems, 
more environmentally friendly and optimized for 
security and aesthetic purposes using the available 
software.  

Generally, to simulate multiphysics phenomena in 
the macroscopic world, in most of the cases, we revert 
to the solution of different types of partial differential 
equations of 2

nd
 order, which generally fall within three 

main categories, the hyperbolic, elliptic and parabolic 
types. Even though there are some analytical solutions 
of the above equations, many times their solution is 
not linear and can only be solved using computer 
simulations. 

 The hyperbolic equations of order n are partial 
differential equations that have a well-posed, initial-
value problem for the first n-1 derivatives. Many of the 
differential equations of mechanics are hyperbolic. The 
hyperbolic equation solutions behave like a wave and 
an initial perturbation, needs time to be propagated 
within the domain. Examples of hyperbolic application 
include fluid flows, aerodynamic flows, contaminants 
through a porous media and atmospheric flows [1]. 
When compared to parabolic and elliptic equations, the 
solutions to hyperbolic equations tend to be more 
complex due to the fact that the phenomena are more 
complex.  

A parabolic partial differential equation is widely 
used in the simulation  of heat conduction and other 
diffusion equations such as the Burger’s equation. It is 
an initial-boundary condition problem and it is 
transient.  

Examples of elliptic equations of 2
nd

 order which 
are non-trivial are the Laplace and  Poisson equations. 
It describes phenomena that do not change with time, 
where the solution is defined by the boundary 
conditions, such as Dirichlet and Neumann boundary 
conditions. The solution of elliptic equations involves 
the solution of a system of linear equations which can 
be solved using direct solution methods such as 
Gaussian elimination, and indirect simulations such as 
the Conjugate Gradient and the Gauss-Seidel 
methods. 

 For the accurate simulation of computational fluid 
simulations, a mesh decomposition of the geometrical 
domain is necessary. The element quality of the 
decomposed individual elements has a direct impact 
on the quality, as well as the stability of the results. 
Since we are tackling to solve the most challenging 
and complicated problems in the industry, which 
usually involves non-uniform geometries, we have 
chosen as basis elements, triangles in two and 
tetrahedrals in three-dimensions, that can capture non-
uniform geometries, efficiently. However, most of the 
times, the quality of the mesh, which is a measure of 
the geometrical uniformity is very bad and needs to be 
corrected. On top of that, the mesh sizing has a major 
impact on the computational times and generally a 
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finer resolution on the mesh will result in more 
accurate, converged results, however; at the same 
time, it will result in increased computational times, 
most of the times, too much too handle, with nowadays 
computer capabilities. Hence, a new innovative 
method of adaptive meshing is proposed, where mesh 
resolution changes dynamically and automatically, by 
meshing at the appropriate places where the solution 
changes, and coarsens the mesh at places that high 
resolution is not necessary. In the next section, an 
adaptive mesh algorithm, which also includes element 
quality improvement algorithm, is presented. 

 

II.  ADAPTIVE MESHING 

A. Introduction 

In the majority of the methods used for the solution 
of partial differential equations, a mesh exists which is 
used to define the geometry of the problem and the 
necessary resolution, varying from uniform to non-
uniform and in many dimensions. One-dimensional 
space is separated by nodes and edges, two-
dimensional space is separated by equilaterals, 
triangles or polysurfaces, and three-dimensional space 
is separated by blocks and polyhedral such as 
tetrahedral, hexahedral and so on.  Adaptive meshing 
utilizes an error indicator to instruct the simulation to 
automatically pose extra refinement in specific places 
and coarsen other areas, such that one is able to 
capture the physics with the correct resolution where it 
matters, and avoid tedious simulations of no 
significance. Even though as a principle sounds an 
excellent idea, it has some major pitfalls which make 
its usage not always so efficient and fundamental. 
These drawbacks emanate from the extra computing 
time and effort to generate the various meshes and to 
interpolate the results from one mesh to the other. 
Specifically, you will need error indicators that will 
dictate the level of adaptation and this is not always 
trivial to catch, since it depends on the physics 
involved and can be different for each specific 
problem, and also a lot of time is spent on the 
interpolation between meshes. This causes two issues 
with the first being that it is very time consuming to 
interpolate from on mesh to the other, since you need 
to identify each element of one mesh in which element 
of the other mesh it resides and apply interpolation. 
This is usually done more efficiently with a reference to 
a regular grid, where both meshes can refer to, such 
that to make this recognition easier. Secondly, during 
the interpolation process, numerical diffusion is 
introduced in the results, if the resolution between the 
meshes is any different. This introduces a major 
drawback in the accuracy of the results, which can 
only be avoided, if there is overlapping between the 
interest regions of the two meshes, hence increasing 
the mesh necessary because of the overlapping 
necessity. Finally, every time the mesh is changed, all 
the metrics that have already being setup and 
calculated for a specific problem such as centroids, 
midfaces, normal vectors, any already setup sparse 
structures, need to be calculated from the beginning, 
which adds another extra and significant burden to the 
simulations. If one decides to re-mesh as late as 

possible, this could help things out. Also, one needs to 
decide when to re-mesh appropriately. Since one 
cannot reside too often because it is expensive, one 
can lose track of the accuracy of the simulations.  

 Finally, in adaptive meshing, it is also important to 
be able to generate good quality meshes that have no 
acute angles that will cause instability in the 
formulations. Both in finite elements and finite 
volumes, where non-uniform elements exist, this is an 
extra issue that can be tackled using h and r-
refinement, however this process is also time costly as 
well.  

In the case of a multiphysics model, for example the 
simultaneous solution of the Poisson equation with the 
charge continuity equations in plasma applications, 
one needs to take into consideration error estimators 
for each of the different partial differential equations to 
be numerically analyzed, hence the error indicator 
must be normalized, usually from 0 to 1, such that 
there is universal reference of the mesh refinement 
that needs to be performed to satisfy all partial 
differential equations needs for accurate and efficient 
simulations. In case that one of the variables of a 
partial differential equation needs re-meshing, all the 
partial differential equations need to also refine, even if 
this is not necessary.  

B. Adaptive mesh theory 

 There are four main methods used for mesh 
adaptation [2-5], which are the h-
refinement/coarsening, the r-refinement, the p-
refinement and the m-refinement [6]. In the h-
refinement/coarsening, addition/removal of mesh 
nodes, as well as edge swapping techniques are used 
(for triangular meshes for example, the longest edge 
bisection, and the regular split techniques [7]), 
resulting in an overall increase/decrease in the number 
of unknowns of the existing mesh. In the r-refinement, 
the total number of existing nodes remains the same, 
with the only difference that the mesh nodes are 
relocated to achieve optimum element quality within a 
fixed number of degrees of freedom. In the r-
refinement method, the geometry of the domain, the 
structure of the mesh, and the identification and 
labeling of nodes and elements must remain the same, 
even though mesh nodes are reallocated. In the p-
refinement, a fixed mesh is used, and the polynomial 
degree of the ansatz space is increased by employing 
higher order numerical schemes to improve local 
accuracy, as well as to approximate troublesome 
derivatives. Finally, in the m-refinement method, 
depending on the behavior of the approximated 
solution, one switches into a different physical model 
by solving different differential equations to achieve a 
better solution for the problem.    

 The leading author of this paper in a previous paper 
[8] has utilized this adaptive mesh algorithm in a 
specific plasma application to simulate real physical 
problems of plasmas. Here, the actual algorithm that 
has been applied for mesh quality improvement is 
presented. 

http://www.jmest.org/
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C. Mesh Quality 

 Here we present in short, an adaptive mesh 
generator and mesh quality algorithm that has proven 
to work efficiently in the simulation of plasma related 
problems in two-dimensional cartesian and cylindrical 
axisymmetric coordinates, and could be extended in 
three dimensions with similar principles into tetrahedral 
element meshes as well.    

1) h-refinement techniques 

 These techniques involve node addition and 
removal, and edge swapping and removal both on the 
boundary and non-boundary nodes such that the 
optimum connectivity is achieved for the nodes, which 
is a non-boundary node to be connected to six other 
nodes and a boundary node to be connected to four 
nodes. The authors have devised a nine-step 
algorithm that has the capability to produce ideal 
element connectivity in all the mesh elements. 

2)  r-refinement techniques 

 Mesh smoothing techniques improve the mesh 
quality by relocating the vertices of the mesh. There 
are many algorithms and techniques both for simple 
and complex geometric domains. Examples of 
techniques dealing with simple geometric domains are 
the optimal Delaunay triangulation (ODT) proposed by 
Chen [9], whereas for complex domains, one has the 
Laplacian smoothing [10], the smart Laplacian 
smoothing [11], the Centroidal Voronoi Tessellation 
(CVT)-Based Smoothing [12], the Optimal Delaunay 
Triangulation (ODT)-Based Smoothing [13], the Angle-
Based Smoothing [14] and the Well-Centered 
Triangulation (WCT) Smoothing [15]. A detailed 
comprehensive review of the various smoothing 
techniques, as well as extensions of the above 
algorithms can be found in the work of Erten et al. [16]. 
In this paper, the Laplacian smoothing by relocating 
the vertices at the center of the polygon is used which 
is the simplest method of smoothing, with the 
drawback that inverted elements may be generated. 
To avoid the generation of inverted elements, the 
Smart Laplacian Smoothing is utilized, where the point 
is relocated only when there is an improvement in the 
overall quality of the mesh. This adds an extra 
computational cost which is not considerable, and 
guarantees that no inverted elements will be created. 

3)  Implementation procedure 

 Some features of the mesh refinement procedure 
are based on the ones used by Lohner [17, 18] and 
Berger et al. [19-21]. However, new features are 
exploited when compared to the above work with 
regard to the mesh improvement procedure by 
including different refinement and mesh quality 
treatment techniques. Furthermore, the coarsening of 
the mesh is achieved differently by exploiting three 
different meshes at any time. These are: (a) the 
adapted initial mesh before remeshing, (b) the 
reference coarse mesh which is the same throughout 
the simulation, and (c) the final adapted mesh after 
remeshing to be used in the simulation. It must be 
pointed out that the reference coarse mesh is not used 
in the actual simulation, since it is an intermediate tool 

used to decide on the amount of mesh refinement and 
to achieve coarsening of the mesh. The usage of the 
above three meshes allows one to perform coarsening 
of the mesh and at the same time to minimize 
interpolation errors by interpolating between two 
meshes which do not differ greatly. The main steps 
used to implement the adaptive mesh algorithm can be 
found in [8].  

 The authors have developed an element quality 
improvement algorithm that guarantees in two-
dimensions the improvement of the quality of any 
existing mesh to nearly ideal standards for uniform and 
non-uniform geometric domains. The element quality 
improvement algorithm uses a combination of edge 
swaps, node reallocation, and node addition/removal 
methods, such that the quality of existing bad quality 
meshes is greatly improved. Typical bad element 
qualities can be even of 0.5 or less, which are 
expected to cause spurious oscillations and in the long 
run instability in the results. To achieve this, as a first 
step, the author has developed methods that will 
ensure that most interior nodes are connected to six 
nodes, and a small number of them to five or seven 
nodes. As far as the boundary nodes are concerned, 
the boundary nodes are treated in such a way to 
ensure that they are all connected to four nodes, 
unless their curvature varies abruptly, where they are 
allowed to be connected to any number other than four 
nodes. The first step of improving the connectivity of 
an existing bad quality mesh is implemented using 
nine cases of the h-refinement/coarsening techniques 
developed by the author. Bad quality meshes are 
defined as meshes in which one or more triangular 
elements have large difference in the length of its three 
sides, thereby largely deviating from the ideal case of 
an equilateral triangle. 

4) Interpolation between meshes tool 

For an adaptive mesh algorithm to be efficient, 
results need to be interpolated often from one mesh to 
the other. It is imperative that this method is done as 
quickly and accurately as possible, since wrong 
interpolation can cause instabilities on the results. 
Furthermore, long times consumed to perform such 
interpolation between meshes, can make the adaptive 
mesh developed disadvantageous, when compared to 
non-adaptive mesh techniques. 

If one needs to interpolate the results of Mesh1 to 
Mesh2, first one needs to identify the element of 
Mesh2 (in this case triangular elements) at which each 
node of Mesh1 resides. One way to achieve this is to 
use a non-adaptive interpolation technique, which is to 
pass through each element of Mesh2, and check 
whether each node of Mesh1 resides in that triangle. 
This results in a number of operations equal to the 
number of nodes of Mesh1 multiplied by the elements 
of Mesh2. In highly demanding simulations, the above 
method can be highly time consuming.  

Alternative general methods of finding the point 
location in triangles include the Jump and Walk [22], 
and the Quad-tree data structure methods [23]. The 
Jump and Walk method picks a small group of sample 
points within the mesh and starts to walk from the 
sample point which is the closest to the requested 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 12, December - 2020  

www.jmest.org 

JMESTN42353642 13211 

point, until the triangle containing the location point is 
found. The Quad-tree data structure method separates 
the two-dimensional space into consecutive four 
quadrants or regions by using a tree data structure in 
which each internal node has exactly four children.  

The author uses an alternative simplistic approach 
by using an adaptive interpolation technique. Since 
one knows beforehand the geometric domain in which 
the mesh resides, a square box is defined that 
includes the above geometric domain of the problem. 
This square box is subdivided into many square boxes 
in both directions, with each square box numbered 
sequentially from left to right and bottom to top. This 
division is performed only once and the uniform 
division and labeling of the geometric domain allows 
one to use it as a reference domain to find 
approximately nodes of the two meshes that reside in 
similar geometric domains. This is achieved by 
passing from each node of Mesh1, and registering in 
which box each node of Mesh1 resides. Also, by 
passing from each element of Mesh2, and then 
through each of their nodes, one can also identify at 
which square box each triangle of Mesh2 
approximately resides. Now instead of having to 
search for each node of Mesh1 through all the 
elements of Mesh2, one only needs to search through 
the elements which are within or close to that box. This 
reduces the amount of operations significantly. 
However, in the above procedure, there will be boxes 
that will register no triangular elements because it may 
be the case that one element covers one whole square 
box. So, it is not enough to just search through that 
box, but also in the surrounding boxes as well, until a 
match is found, where a node of Mesh1 resides in a 
triangle of Mesh2. The algorithm developed by the 
author of this paper, that discovers which near boxes 
to search in, is basically an algorithm that takes 
anticlockwise each box around the initial box that the 
node of Mesh1 resides, until it finds a match between 
node and element. The way to decide whether a node 
resides within an element is done by using the 
barycentric coordinates. The barycentric coordinates of 
a node p relative to a triangle are found by the cross 
product between one vector joining one of the 
triangle’s vertices q and point p, and an edge vector of 
the triangle starting from the above triangle vertex q, 
divided by the total area of the triangle. 

If a node is situated within a triangle, by calculating 
its barycentric coordinates, they should add up to one. 
If the node is situated outside the triangle, the 
barycentric coordinates always add up to a number 
greater than one. This would be a straight forward 
task, if computers were holding numbers accurately. 
However, due to precision problems, the coordinates 
of the nodes are not exact; thereby values just greater 
than the value of one will appear. This inevitably 
creates problems, since there is no way of identifying 
how much bigger than one, the sum of barycentric 
coordinates should be. A way to avoid this is to 
distinguish between boundary and interior nodes that 
are situated within the mesh. The interior nodes must 
not be moved, since when interpolating from one mesh 
to the other, there will be nodes which they will find no 
triangle to reside in. The way to avoid this problem is 

to pass through each node through each boundary 
element and calculate the barycentric value, and use 
the element of Mesh2 that produces the smallest value 
for the barycentric coordinates. This makes the 
procedures slightly slower, but guarantees that the 
interpolation is successful. Another matter to address 
is that once each node is found in which triangle it 
resides, then it is a must that the barycentric 
coordinates do not exceed the value of 1, since if that 
happens, oscillations on the results will appear during 
the interpolation process. To avoid this, it is necessary 
to move these points such that they reside on the 
closest boundary node, such that the addition of 
barycentric coordinates of a node relative to a triangle 
are always one. 

5) Mesh Quality Results 

 Fig. 1a and 1b show the Delaunay triangulation and 
its geometric dual, the Voronoi diagram of a mesh that 
has been created in a commercial mesh generation 
software before, and after the treatment of the mesh 
with the element quality improvement algorithm, 
respectively. The Voronoi diagrams were chosen to be 
included due to their capacity to show the space (by 
separating it into cells) at which any point in this space 
is closest to the node of that cell, which is also the 
same node found in Delaunay triangulation, that the 
author uses in finite elements. In the case of a mesh 
with ideal elements, it would be expected that the 
Voronoi cells would be exact regular hexagons, 
depicting the equidistance of a mesh node to its 
surrounding six nodes. A close look at the two meshes 
before and after the mesh quality improvement 
operation shows the improvement in the regularity of 
the Voronoi cells, especially in the transition region 
from the finer to the coarser mesh, and vice versa. 

 

Fig. 1a. Schematic diagram of the Delaunay triangulation and its geometric 
dual, the Voronoi diagram (solid blue lines), created in a commercially 
mesh generation software. 
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Fig. 1b. Schematic diagram of mesh after the element quality improvement 
algorithm developed including its Delaunay triangulation (multicolour solid 
lines) and its geometric dual the Voronoi diagram (solid blue lines). 

 Fig. 2a shows a bar chart displaying the number of 
elements that have similar element quality values of a 
mesh created in the commercial software, and Fig. 2b 
shows a bar chart displaying the number of elements 
that have similar element quality values of the mesh 
created in the commercial software, after being treated 
by the element quality improvement algorithm. Fig. 2a 
shows that in the mesh, a few bad quality elements 
exist that are expected to cause instabilities and 
oscillations in the results [13]. After the mesh quality 
treatment algorithm is applied, it is shown that not only 
the average value of the element quality of the mesh 
increases, but most importantly the bad elements 
disappear, achieving minimum element quality values 
of around 0.85. This can be easily shown by counting 
the total number of elements above a certain value 
which shows that an improvement in the element 
quality has been achieved overall, even for the 
elements which their values are very close to 1. 

 

Fig. 2a. Bar chart displaying the number of elements that have similar 
element quality values of the mesh created in a commercially mesh 
generation software. 

 

Fig. 2b. Bar chart displaying the number of elements that have similar 
element quality values of the mesh created in a commercially mesh 
generation software after being treated by the element quality improvement 
algorithm. 

In order to test the element quality improvement 
algorithm in non-regular geometries, the case of a 
point-plane configuration has been tested due to the 
geometrical complexity of the point. Fig. 3a and 3b 
show the Delaunay triangulation of the mesh before 
and after being treated by the element quality 
improvement algorithm. On both diagrams, the 
element quality values that are less than 0.85 are 
displayed. In Fig. 3a, it is shown that many elements 
are below the threshold value especially at the 
proximity of the point, whereas after the treatment, Fig. 
3b shows that no single element has element quality 
value less than 0.85. Since the nodes that define the 
boundary hyperboloid point cannot be moved 
randomly, but only using the hyperbolic equation to 
calculate the curve defining the point boundary, all the 
parameters of the analytical equation to form the 
hyperboloid point must be known in advance, such that 
boundary nodes are moved without changing the 
geometry of the mesh during the mesh jiggling, and 
node addition/removal operations.    

  

Fig. 3a. Schematic diagram of the Delaunay triangulation of a point-plane 
configuration mesh created in a commercially mesh generation software. 
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Fig. 3b. Schematic diagram of the Delaunay triangulation of a point-plane 
configuration mesh created in a commercially mesh generation software. 

 

The strong asset of the mesh quality improvement 
algorithm is that typical two-dimensional meshes have 
been treated by the mesh quality improvement 
algorithm, and have shown to have minimum element 
quality values of around 0.85, which is ideal as far as 
element quality of any mesh is concerned. The above 
algorithm has been tested in a series of random 
meshes, with both regular and irregular domains such 
as point-planes, and it has been shown to always 
guarantee the best element qualities. 

 

III. MPI AND CUDA 

KYAMOS software is built based on excellent, 
speed and accuracy, and user-friendliness and tackles 
complicated multiphysics simulations, using GPU 
InfiniBand computing, under a state of the art, software 
protocol for conducting simulations. 

In order to scale the computer simulations to 
multiple CPUs and GPUs, one needs a protocol that 
will connect the various nodes together. One option is 
to place as many cores on one computer, which 
currently the maximum being 64 cores, 128 threads 
into a single computer and perform shared computing, 
which means sharing one computers architecture, 
simultaneously. Even though this is attractive and 
utilized through the OPENMP protocol in high 
performance computing simulations, it is self-limiting, 
due to the limitation in the number of CPU cores we 
can put on a single machine. The other option is to 
utilize multiple number of these machines; however, 
we need a way to connect these machines and 
perform distributive computing. This can be achieved 
through a communication protocol such as the 
Message Passing Interface (MPI). Since 
communication time is of outmost important, we wish 
to minimize communication between nodes, one builds 
its problem in such a way to minimize such 
communication using partitioning of the mesh. A mesh 
partitioning tool can be used to split the elements in 

different equal partitions according to the number of 
CPUs and GPUs, necessary. Generally, it is a good 
practice to allocate 1 CPU to 1 GPU, even though 
using the HyperQ protocol, it enables multiple CPU 
threads or processes to launch work on a single GPU 
simultaneously, thereby dramatically increasing GPU 
utilization and hence significantly reducing CPU idle 
times. Once the partitioning is performed, it is a good 
practice to utilize ghost cells such that to minimize 
communication between nodes. The values of the 
ghost cells are updated at the end of each repeatable 
calculation and each processor can go its way to 
calculate independently the results, until the next 
update is necessary. For this exchange process to be 
efficient though, one needs to separate for each 
partition, the elements which are not shared with any 
nodes, and gather the elements which are expected to 
be sent to the various partitions and then gather the 
elements which are going to be received from each 
partition. Hence a complicated repartitioning from the 
initial mesh is necessary. One of the issues that may 
arise is the fact that it maybe that one element in a 
partition needs to be sent to 2 or more partitions, which 
this causes a major issue using the MPI routines since 
a single value can only be sent to one of the partitions, 
at least in an efficient way. To solve this problem, we 
first identify these elements and we ensure that these 
elements are duplicated in the mesh partitions as 
many times they need to be sent. This provides a very 
little overhead, however at the same time, solves a 
major issue in inter-communication and updating 
between the various partitions. 

In the case of the Poisson solution, we are utilizing 
an iterative solver, the Conjugate Gradient method to 
calculate the result for the voltage. To achieve this, we 
setup the Poisson solver in such a way such that each 
partition provides its own contribution to the calculation 
of the voltage, since there will be common nodes that 
will need the contribution for multiple partitions for the 
solution, which is very different with the approach used 
for the simulation of the convection-diffusion equation, 
which each centered element being responsible to 
calculate is own nodes, only borrowing any 
neighboring values for the calculation of its mesh 
elements. The approach used in the Poisson seems to 
be more attractive since no extra added elements are 
needed to be duplicated in the domain and less 
calculations are necessary, since the addition of these 
duplicated elements provides additional overhead that 
should be ideally avoided.    

Regarding CUDA capabilities, we utilize Tesla K80 
cards which have a compute capability of 3.7, and are 
able to conduct parallel simulations at high scale, 
specifically 4.113 TFlops at single precision and 1.371 
TFlops at double precision. Each Tesla K80 card has 2 
GPUs of 12 Gb RAM at GDDR5. It has a base clock of 
562 MHz and boost up to 824 MHz. It utilizes a 384-bit 
memory bus and has a bandwidth of 240.6 GB/s. They 
have the capacity to conduct stream calculations which 
allow the simultaneous calculations of independent 
functions in the software, GPU Boost technology to 
overclock the graphic cards for faster simulations, peer 
to peer access between multiple GPUs, which allows 
memory access from GPU memory to GPU memory, 
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bypassing the host memory within a node, and 
Remote Direct Memory Access (RDMA) to allow GPU 
to GPU memory direct access through the InfiniBand 
network.  Finally, NVIDIA GPUs have the ability to 
support dynamic parallelism which allows one thread 
to launch a number of other threads, which is very 
useful in multiple for nested loops.  

 

IV. INFINIBAND AND SWITCHES 

Another way to minimize communication time is to 
use faster communication hardware. One of the major 
breakthroughs has come recently from an Israeli 
company called Mellanox  which is now bought by the 
leader in GPU computing, NVIDIA. They have 
managed to build switches that have very low latency, 
and high bandwidth that make the communication 
times attractive.  

The InfiniBand technology is developing rapidly 
mainly to Mellanox technologies. The SDR InfiniBand 
technology  at 8 Gbps were introduced to the market in 
2002 with latency 5 μs, then the DDR InfiniBand at 16 
Gbps followed in 2005 with latency 2.5 μs, the QDR 
InfiniBand technology at 32 Gbps immersed in 2008 
with latency 1.3 μs, then the FDR10 at 40 Gbps and 
FDR at 56 Gbps in 2011 with latency 0.7 μs, the EDR 
technology in 2014 at 100 Gbps with latency 0.5 μs, 
the HDR at 200 Gbps in 2017 and the NDR at 400 
Gbps is expected after 2020. All the above speeds 
depict the throughput using 4 links.   

KYAMOS software uses FDR technology to 
connect the various nodes together, with one of the 7 
PCIE slots on the motherboard sacrificed for 
communication purposes. 

 

V. FINITE ELEMENT FORMULATION OF POISSON 

EQUATION IN CUDA AWARE MPI 

In the finite element Galerkin context, after the 
domain is discretized, the unknown potential within 
each element can be approximated according to Jin 
[24] with a linear shape function in three-dimensions 
as follows: 
 

 𝜑𝑒(𝑥, 𝑦, 𝑧) = 𝑎𝑒 + 𝑏𝑒𝑥 + 𝑐𝑒𝑦 + 𝑑𝑒𝑧 
 

  (1) 

where a
e
, b

e
, c

e
 and d

e
 are constant coefficients to be 

determined within each element e. Since tetrahedral 
elements are used in this case, four equations can be 
written for the potential at the tetrahedron four nodes, 
where the shape functions should obey the following 
relations:  
 

 𝜑1
𝑒(𝑥, 𝑦, 𝑧) = 𝑎𝑒 + 𝑏𝑒𝑥1

𝑒 + 𝑐𝑒𝑦1
𝑒 + 𝑑𝑒𝑧1

𝑒 
 

   (2) 

 

 𝜑2
𝑒(𝑥, 𝑦, 𝑧) = 𝑎𝑒 + 𝑏𝑒𝑥2

𝑒 + 𝑐𝑒𝑦2
𝑒 + 𝑑𝑒𝑧2

𝑒 
 

(3) 

 

 𝜑3
𝑒(𝑥, 𝑦, 𝑧) = 𝑎𝑒 + 𝑏𝑒𝑥3

𝑒 + 𝑐𝑒𝑦3
𝑒 + 𝑑𝑒𝑧3

𝑒 
 

(4) 

 

 𝜑4
𝑒(𝑥, 𝑦, 𝑧) = 𝑎𝑒 + 𝑏𝑒𝑥4

𝑒 + 𝑐𝑒𝑦4
𝑒 + 𝑑𝑒𝑧4

𝑒 
 

(5) 

   From the above four equations, one can obtain the 
linear elemental shape function constant coefficients 
by solving the above four equations for a

e
, b

e
, c

e
 and 

d
e
 in terms of 𝜑1

𝑒(𝑥, 𝑦), 𝜑2
𝑒(𝑥, 𝑦), 𝜑3

𝑒(𝑥, 𝑦) and  𝜑4
𝑒(𝑥, 𝑦) 

to give the following equations: 
 

 

𝑎𝑒 =
1

6𝑉𝑒

[
 
 
 
𝜑1

𝑒 𝜑2
𝑒

𝑥1
𝑒 𝑥2

𝑒

𝜑3
𝑒 𝜑4

𝑒

𝑥3
𝑒 𝑥4

𝑒

𝑦1
𝑒 𝑦2

𝑒

𝑧1
𝑒 𝑧2

𝑒

𝑦3
𝑒 𝑦4

𝑒

𝑧3
𝑒 𝑧4

𝑒 ]
 
 
 
 

 

(6) 

 

 
𝑎𝑒 =

1

6𝑉𝑒
(𝑎1

𝑒𝜑1
𝑒 + 𝑎2

𝑒𝜑2
𝑒 + 𝑎3

𝑒𝜑3
𝑒 + 𝑎4

𝑒𝜑4
𝑒) 

 

(7) 

 
   Similarly, for b, c and d coefficients: 
 

 𝑏𝑒 =
1

6𝑉𝑒
(𝑏1

𝑒𝜑1
𝑒 + 𝑏2

𝑒𝜑2
𝑒 + 𝑏3

𝑒𝜑3
𝑒 + 𝑏4

𝑒𝜑4
𝑒) 

 

(8) 

 

 𝑐𝑒 =
1

6𝑉𝑒
(𝑐1

𝑒𝜑1
𝑒 + 𝑐2

𝑒𝜑2
𝑒 + 𝑐3

𝑒𝜑3
𝑒 + 𝑐4

𝑒𝜑4
𝑒) 

 

(9) 

 

 𝑑𝑒 =
1

6𝑉𝑒
(𝑑1

𝑒𝜑1
𝑒 + 𝑑2

𝑒𝜑2
𝑒 + 𝑑3

𝑒𝜑3
𝑒 + 𝑑4

𝑒𝜑4
𝑒) 

 

(10) 

where the volume of the tetrahedral element is: 
 

 
𝑉𝑒 =

1

6
[

1 1
𝑥1

𝑒 𝑥2
𝑒

1 1
𝑥3

𝑒 𝑥4
𝑒

𝑦1
𝑒 𝑦2

𝑒

𝑧1
𝑒 𝑧2

𝑒

𝑦3
𝑒 𝑦4

𝑒

𝑧3
𝑒 𝑧4

𝑒

] 

 

 

(11) 

   If one substitutes equations (7, 8, 9, 10) into (1), it 
becomes: 

 
𝜑𝑒(𝑥, 𝑦, 𝑧) = ∑ 𝑁𝑗

𝑒(𝑥, 𝑦, 𝑧)𝜑𝑗
𝑒

4

𝑗=1`

 

 

 

(12) 

where the interpolation function is calculated as: 
 

 𝑁𝑗
𝑒(𝑥, 𝑦, 𝑧) =

1

(6𝑉𝑒)(𝑎𝑗
𝑒 + 𝑏𝑗

𝑒𝑥 + 𝑐𝑗
𝑒𝑦 + 𝑑𝑗

𝑒𝑧)
 

 

 

(13) 

The governing equation for the Poisson equations is: 
 

 −∇. (𝜀(∇𝛷)) = 𝜌, 𝒙⃗⃗ ∈ 𝛺 (14) 

with the Robin boundary condition: 
 

 n̂. 𝑏∇𝛷 = 𝜁(𝑔 − 𝛷), 𝒙⃗⃗ ∈ 𝑑𝛺  (15) 

where  𝑛̂  is the outward unit normal vector to the 
closed loop surface A, ζ is a positive value parameter, 
and g is the Dirichlet boundary condition. Depending 
on the choice of  ζ and b,  one can apply different 
boundary conditions of the Robin type. When ζ = 0, 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 12, December - 2020  

www.jmest.org 

JMESTN42353642 13215 

one applies homogeneous Neumann boundary 
condition equal to 0. When b = 0, one can apply 
Dirichlet boundary conditions since ζ becomes 
irrelevant and we have that the value of the 
dependent variable Φ is set to the Dirichlet boundary 
condition. When both ζ and b have positive values, a 
Robin boundary condition is imposed. The left term 
represents the normal derivative at the boundary. 
   Performing the divergence operation on 𝜀(∇𝑉) and 

substituting 𝜀 = 𝜀𝛰𝜀𝑟 gives: 
 

 −
𝜕(𝜀𝑟∇𝛷)

𝜕𝑥
−

𝜕(𝜀𝑟∇𝛷)

𝜕𝑧
−

𝜕(𝜀𝑟∇𝛷)

𝜕𝑧
=

𝜌

𝜀°
 (16) 

where εr is the relative permittivity of the medium and 
εo is the permittivity of free space. 

   Performing the 𝛻 operator on 𝛷 gives: 
  

 
−

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑥

)

𝜕𝑥
−

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑦

)

𝜕𝑦
−

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑧

)

𝜕𝑧
=

𝜌

𝜀°
 

 

(17) 

 
  Therefore, according to finite element Galerkin 
method, one needs to take the residual of the 
governing equation and try to minimize it.  Hence, the 
residual of the Poisson equations is: 
 

 
𝑟 = −

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑥

)

𝜕𝑥
−

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑦

)

𝜕𝑦
−

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑧

)

𝜕𝑧
−

𝜌

𝜀°
 

 

(18) 

   The weighted residual within a tetrahedral finite 
element is as follows: 
 

 𝑅𝑖
𝑒 = ∭ 𝑁𝑗

𝑒𝑟𝑒𝑑𝑥𝑑𝑦𝑑𝑧 𝑖 = 1,2,3,4
Ω𝑒

   (19) 

 
   Substituting the residual formula (18) into the above 
equation (19), results in: 
 

 
𝑅𝑖

𝑒 = ∭ 𝑁𝑗
𝑒 [−

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑥
)

𝜕𝑥
−

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑦
)

𝜕𝑦
−

Ω𝑒

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧
)

𝜕𝑧
−

𝜌

𝜀°
] 𝑑𝑥𝑑𝑦𝑑𝑧  

 

(20) 

 
   The following identity of partial differentiation for the 
x-directions holds: 
 

 𝜕 (𝜀𝑟
𝜕𝜑𝑒

𝜕𝑥
𝑁𝑗

𝑒)

𝜕𝑥
= 𝑁𝑗

𝑒
𝜕 (𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥
)

𝜕𝑥
+ 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
 

 

(21) 

 
 

 
𝑁𝑗

𝑒 [
𝜕 (𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥
)

𝜕𝑥
] =

𝜕 (𝜀𝑟
𝜕𝜑𝑒

𝜕𝑥
𝑁𝑗

𝑒)

𝜕𝑥
− 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
  

 

(22) 

  
   Similarly, for y: 
 

 𝑁𝑗
𝑒 [

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑦
)

𝜕𝑦
] =

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑦
𝑁𝑗

𝑒)

𝜕𝑦
− 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
   

 

(23) 

 

   Similarly, for z: 
 

 𝑁𝑗
𝑒 [

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧
)

𝜕𝑧
] =

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧
𝑁𝑗

𝑒)

𝜕𝑧
− 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
     (24) 

 
   Substituting the last three equations into equation 
(20), yields: 

 
𝑅𝑖

𝑒 = ∭ (𝜀𝑟
𝜕𝜑𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+ 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+

Ω𝑒

𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
−

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑥
𝑁𝑗

𝑒)

𝜕𝑥
−

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑦
𝑁𝑗

𝑒)

𝜕𝑦
−

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧
𝑁𝑗

𝑒)

𝜕𝑧
−

𝜌

𝜀°
𝑁𝑗

𝑒)  𝑑𝑥𝑑𝑦𝑑𝑧  

 
 
 

(25) 

 
   The divergence theorem is as follows: 
 

 ∭ (
𝜕𝑈

𝜕𝑥
+

𝜕𝑉

𝜕𝑦
+

𝜕𝑊

𝜕𝑧
)  𝑑𝛺 =

𝛺

 

∮ [(𝑈𝑥 + 𝑉𝑦 + 𝑊𝑧〗]
𝛢

. 𝑛̂𝑑𝐴  

 

(26) 

 
where A is the enclosed surface for the control 
volume. 
   By applying the divergence theorem on the last 
three terms of equation (25) yields a formula: 
 

 ∬ (𝑁𝑗
𝑒𝐷⃗⃗ )

𝐴𝑒 . 𝑛𝑒̂𝑑𝐴 = ∭ (
𝜕(𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥
𝑁𝑗

𝑒)

𝜕𝑥
+

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑦
𝑁𝑗

𝑒)

𝜕𝑦
+

Ω𝑒

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧
𝑁𝑗

𝑒)

𝜕𝑧
)  𝑑𝑥𝑑𝑦𝑑𝑧  

 
 

(27) 

 where: 

 𝐷⃗⃗ = 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥
𝒊 + 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑦
𝒋 + 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑧
𝒌⃗⃗  

 

(28) 

 
   Substituting the above equation (27) into equation 
(25) gives: 
 

 𝑅𝑖
𝑒 = ∭ (𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+ 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+

Ω𝑒

𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
−

𝜌

𝜀°
𝑁𝑗

𝑒)  𝑑𝑥𝑑𝑦𝑑𝑧 −∬ 𝑁𝑗
𝑒𝐷⃗⃗ 

𝐴𝑒 . 𝑛𝑒̂𝑑𝐴  

 

(29) 

 

   Regarding the last term ∬ 𝑁𝑗
𝑒𝐷⃗⃗ 

𝐴𝑒 . 𝑛𝑒̂𝑑𝐴 of the above 

equation, there is only contribution from the boundary 
elements and none from the inside elements of the 
mesh. If one assumes in the entire geometry domain, 
Dirichlet and Neumann boundary conditions, which is 
usually the case, then there is no contribution from 
this term in the finite element formulation and this term 
can be neglected. 
   Assuming such a case, the equation for the residual 
becomes: 
 

 𝑅𝑖
𝑒 = ∭ (𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+ 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+

Ω𝑒

𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
−

𝜌

𝜀°
𝑁𝑗

𝑒)  𝑑𝑥𝑑𝑦𝑑𝑧  

 

(30) 
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   Substituting the elemental shape functions from 
equation (12) yields:  
 

 𝑅𝑖
𝑒 = ∭ (𝜀𝑟

𝜕(∑ 〖𝑁𝑗
𝑒(𝑥,𝑦,𝑧)𝜑𝑗

𝑒)4
𝑗=1` 〗

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+

Ω𝑒

𝜀𝑟

𝜕(∑ 𝑁𝑗
𝑒(𝑥,𝑦,𝑧)𝜑𝑗

𝑒4
𝑗=1` )

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+

𝜀𝑟

𝜕(∑ 𝑁𝑗
𝑒(𝑥,𝑦,𝑧)𝜑𝑗

𝑒4
𝑗=1` )

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
−

𝜌

𝜀°
𝑁𝑗

𝑒)  𝑑𝑥𝑑𝑦𝑑𝑧  

 
 

(31) 

   Since the voltage within an element 𝜑𝑗
𝑒 is constant, 

it can come out of the differential and the equation 
becomes: 
 

 𝑅𝑖
𝑒 = ∭ [−𝜀𝑟

𝜕(∑ 𝑁𝑗
𝑒(𝑥,𝑦,𝑧)4

𝑗=1` )

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
−

Ω𝑒

𝜀𝑟

𝜕(∑ 𝑁𝑗
𝑒(𝑥,𝑦,𝑧)4

𝑗=1` )

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
−

𝜀𝑟

𝜕(∑ 𝑁𝑗
𝑒(𝑥,𝑦,𝑧)4

𝑗=1` )

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
] 𝜑𝑗

𝑒𝑑𝑥𝑑𝑦𝑑𝑧 −

∭
𝜌

𝜀°
𝑁𝑗

𝑒𝑑𝑥𝑑𝑦𝑑𝑧
Ω𝑒   

 
 

 

(32) 

 
   Applying the residual formula to all four nodes of the 
tetrahedral element from i=1,2,3,4, yields: 
 

 ∑ 𝑅𝑖
𝑒4

𝑖=1 = ∑ ∑ ∭ [𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+

Ω𝑒
4
𝑗=1`

4
𝑖=1

𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+ 𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
] 𝜑𝑗

𝑒𝑑𝑥𝑑𝑦𝑑𝑧 −

∑ ∭
𝜌

𝜀°
𝑁𝑗

𝑒𝑑𝑥𝑑𝑦𝑑𝑧
Ω𝑒  4

𝑖=1   

 
 

(33) 

  
which can be written in a global matrix form as: 
 

  𝑅𝑒 = [𝐾𝑒][𝜑𝑒] − [𝐶𝑒] (34) 

 
where the elemental 4x4 matrix can be calculated as: 
 

 𝐾𝑖𝑗
𝑒 = ∑ ∑ ∭ [𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+ 𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+

Ω𝑒
4
𝑗=1`

4
𝑖=1

𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
] 𝑑𝑥𝑑𝑦𝑑𝑧  

 
 

(35) 

 

 
𝐶𝑖

𝑒 = ∑∭
𝜌

𝜀°
𝑁𝑗

𝑒𝑑𝑥𝑑𝑦𝑑𝑧

Ω𝑒

 

4

𝑖=1

 
 

(36) 

  In equation (35), the triple integral along the three-
dimensions yields the volume of the tetrahedral 
element on the denominator, however the derivatives 
of the two shape functions yield a term of 1/(36 Ve

2
) 

and when combined together, yield a term of 1/36Ve 
as a result in the denominator, hence the elemental 
assembly matrix becomes: 
 

 𝐾𝑖𝑗
𝑒 =

1

36𝑉𝑒
𝜀𝑟(𝑏𝑖𝑏𝑗 + 𝑐𝑖𝑐𝑗 + 𝑑𝑖𝑑𝑗) 

 

(37) 

 
which represents a 4x4 matrix for each element in the 
three-dimensional tetrahedral mesh. Similarly, Ce, the 
load vector, after the two volumes from the volume 

integral on the numerator and the shape function on 
the denominator cancel each other out, it can be 
approximated by: 
 

 𝐶𝑖
𝑒 ≅

𝜌𝑐

𝜀°

𝑉𝑒
4

 

 

 

(38) 

where the value of ρc is evaluated approximately at 
the centroid of the tetrahedral element. Now all the 
contributions from the elemental matrix are assembled 
into a global matrix R as follows: 
 

 
𝑅 = ∑[𝑅𝑒̅̅̅̅ ]

𝑛

𝑒=1

= ∑[𝐾𝑒]̅̅ ̅̅ ̅̅ [𝜑𝑒]̅̅ ̅̅ ̅̅ − [𝐶𝑒]̅̅ ̅̅ ̅̅
𝑛

𝑒=1

= [0] 
 

(39) 

 
where n is the number of total volume elements. Since 
the global residual elemental matrix must be minimum 
and must be set to zero, one has as a result the 
stiffness matrix and the load vector: 
 

 [𝐾][𝜑] = [𝐶] (40) 

   There is generally a confusion in the literature 
regarding the interpolation coefficients within the 
interpolation functions for the mathematical 
formulation of the Poisson equation both in two and 
three-dimensions. Some formulations, when 
calculating the a, b, c and d coefficients, the mean 
only the distances between points, hence a division by 
6Ve is necessary to calculate the interpolation 
function, likewise with our case, whereas in other 
formulations, the a, b, c and d coefficients represent 
the distances between points divided by 6Ve. 
 

VI. CONJUGATE GRADIENT METHOD 

The Laplace and Poisson equations are 2
nd

 order 
diffusion elliptic equations which are time independent 
and provide a solution for example for an electric field 
or gas pressure. The Poisson equation can be solved 
in the context of finite elements using the Galerkin 
finite element method, which creates a matrix form 
which consists of a linear set of equations of the form 
Ax =b that needs to be solved. The solution of this 
equation can be solved using direct or indirect 
methods which are usually iterative methods. One of 
the most well-known methods for solving a linear 
system of equations is the conjugate gradient method 
that takes an iterative approach. The conjugate 
gradient method is based on the assumption that the 
matrix A is symmetric and positive definite. For a 
matrix to be symmetric, this means that A=A

T
 and for 

the matrix to be positive definite, then x must be real 
and the following relation should hold: x

T
Ax > 0 for all 

non-zero vectors of x that belong to R
n
 and one needs 

to know vector b. Two vectors are conjugate when 
they are orthogonal to the inner product. Hence, two 
non-zero vectors u and v are conjugate to the A matrix 
if the following expression holds: 

 𝑢𝑇𝐴𝑣 = 0 (41) 
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Due to the fact that A is symmetric and positive 
definite, an inner product can be defined which 
involves u and v. Now we assume a set of m mutually 
conjugate vectors with respect to the matrix A as 
follows: P = (p1,…, pm) can form the basis for R

n
 and 

the solution of Ax=b can be expresses as a series of 
these basis vectors as: 

 
x ∗ = ∑𝛼𝜄𝑝𝑖

𝑚

𝑖=1

 
 

(42) 

which leads to: 

 
a𝑘 =

< 𝑝𝑘, b >

< 𝑝𝑘, 𝑝𝑘 >𝐴
 

(43) 

Hence one needs to find a series of m conjugate 
vectors and calculate the ak coefficients.  

The conjugate gradient method can be simplified 
and implemented in an iterative approach by careful 
choice of the vectors pk so that not all pk vectors are 
necessary. Hence we start with an initial guess, 
usually xo = 0. The solution depicted by x* happens 
also to be a unique minimizer of the quadratic function: 

 
𝑓(x) =

1

2
𝑥𝑇𝐴𝑥 − 𝑥𝑇𝑏 

 

(44) 

where   𝑥 ∈ 𝑅𝑛. The 1
st
 derivative of f(x) becomes: 

 ∇ 𝑓(x) = 𝐴𝑥 − 𝑏 (45) 

which is identical to the solution of our linear system 
and since the 2

nd
 derivative is:    ∇2 𝑓(x) = 𝐴, where A 

is positive definite, this means that a unique minimizer 
exists for the solution of the above equation. Since the 
gradient of f(x) =Ax-b and since we are taking an initial 
guess value of xo, our initial po = b-Axo, is also the 
residual of the equation above but also the negative of 
the gradient of f(x=xo).  

Let’s define the residual at step n; rn = b - Axn, 

where rn is the negative gradient of the quadratic 
function f(x) at x = xn. One must ensure though that all 
search directions are conjugate, hence orthogonal to 
each other and this can be ensured by calculating the 
next search direction to be a function of the current 
residual and all the previous search directions as 
follows: 

 

 
p𝑛 = r𝑛 − ∑

𝑝𝑖
𝑇𝐴𝑟𝑛

𝑝𝑖
𝑇𝐴𝑝𝑖

𝑖<𝑛

𝑝𝑖 
 

(46) 

and the next location is found by the following 
equation: 

 𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑛𝑝𝑛  (47) 

with an calculated by:  

 
a𝑛 =

𝑝𝑛
𝑇𝑟𝑛

𝑝𝑛
𝑇𝐴𝑝𝑛

 
 

(48) 

Now since we are following a partitioned 
implementation of the conjugate gradient method using 
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distributive computing, one needs to take into 
consideration the various partitions within the mesh 
and how to implement efficiently this algorithm. The 
formulation of the Poisson equation is based on the 
linear Galerkin finite element approximations. 

The conjugate gradient method in the context of 
finite element Galerkin method in distributive 
computing can be summarized in the flowchart shown 
below. Using the above finite element formulation of a 
mass and consistent matrix as well as source term, the 
resulting matrix is of the form Ax=b  which takes the 
form: 

 

[
 
 
 
 
𝐴1 … … … 𝐵1

… 𝐴2 … … 𝐵2

… … … … …
… … … 𝐴𝑝 𝐵𝑝

𝐵1
𝑇 𝐵2

𝑇 … 𝐵𝑝
𝑇 𝐴𝑆]

 
 
 
 

[
 
 
 
 
𝑥1

𝑥2

…
𝑥𝑝

𝑥𝑠]
 
 
 
 

=

[
 
 
 
 
𝑏1

𝑏1

…
𝑏𝑝

𝑏𝑠]
 
 
 
 

 

 

 

(49) 

 

 

 

 

Since we are exploiting a distributed computing 
scheme, the overall matrix is partitioned with 
accordance to partitioning, with the index numbers 1, 2 
and so on, referring to the different partitions of the 
mesh. Since one needs to deal with the dependency 
between neighboring meshes, we utilize the well-
known method of ghost cells such that synchronization 
between processes or partitions is not necessary at all 
times, but only at the end of each time step. Hence the 
index p stands for primary nodes and refers to the 
interior nodes of a partition which do not share any 
dependency with neighboring partitions and index s 
stands for secondary which refers to the nodes which 

 

have dependency with neighboring partitions. It must 
be noted that all the non-interior nodes are 
accumulated at the end of the matrix stacked. To 
achieve this, we go through all the nodes of the 
partition and we identify the type of the node.  

Some useful variables which are crucial in 
implementing our distributed computing algorithm are 
interior nodes which are the nodes not shared with 
other partitions, and the boundary nodes which are the 
nodes shared between two or more partitions. In order 
to distinguish between interior and boundary nodes, 
we use a Node class structure, which holds two 
members, .Type and .Local. If .Type=1, it represents 
an Interior Node and takes a local numbering value 
.Local from 0 and above in increasing order, whereas if 
it is a boundary node, .Type is 2 or higher, and .Local 
takes a value from 0 and above. Additionally, Dirichlet 
boundary conditions take .Type=0 and the .Local=-1 
values.  

Additionally, a Shared vector counts how many 
processes share a specific boundary node and the 
corresponding Node[I].Type value is set as >1 i.e. it 
can have values of 2 or 3 or 4 and above. This shared 
value is used to know how much fraction of the total 
contribution each processor has in the InnerProduct 
function. 

The MaxCommon value denotes the maximum 
number of nodes that one process shares with any of 
the other processors which is connected to. This 
vector is used to communicate using MPI the boundary 
nodes contribution between processes, i.e. for 
example if process 0 shares with process 1, ten 
boundary nodes and with process 2, fifteen boundary 
nodes, then MaxCommon value will be 15. 

The matrix for the interior nodes Ap is a square 
matrix of size InteriorNodes, whereas the matrix Bp is 
a rectangular matrix of size InteriorNodes x 
InteriorBoundaryNodes. 

The matrix As is a square matrix that will hold 
values for the interior boundary nodes and it will be of 
size: InteriorBoundaryNodes x InteriorBoundaryNodes. 

The vectors bp and bs denote the RHS source 
terms vectors for the primary and secondary nodes 
and have size InteriorNodes and 
InteriorBoundaryNodes, respectively, whereas xp and 
xs denote the actual solution of the variable for the 
primary and secondary nodes, again with sizes 
InteriorNodes and InteriorBoundaryNodes, 
respectively.  

 

VII. CAPACITANCE AND TOTAL ENERGY IN POISSON 

DOMMINATED PHENOMENA 

The total stored energy in a capacitor (We) is 
calculated as follows: 

 
𝑊𝑒 = 

1

2
∫∫∫𝐷⃗⃗ . 𝐸⃗ 

𝑣

𝜕𝑉 
 

(5
0) 

 
and: 

 𝐷⃗⃗ = 𝜀𝛦⃗  (5
1) 

where 𝐷⃗⃗  is the electric field density, 𝐸⃗  the electric field 
strength, 𝜕𝑉 is the elemental volume and v represents 
the volume of the capacitor and ε is the dielectric 
permittivity of the material. 
 
   Substituting equation (50) into (51), yields: 

 
𝑊𝑒 = 

1

2
∫∫∫𝜀𝛦⃗ . 𝐸⃗ 

𝑣

𝜕𝑉 
(5

2) 

 
   Also: 

 𝛦⃗ = −∇V (5
3) 

 
where V is the voltage. 
 
   Substituting equation (53) into equation (52) results 
in: 
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𝑊𝑒 = 

1

2
∫∫∫ 𝜀∇𝑉. ∇𝑉

𝑣𝑛

𝜕𝑥 𝜕𝑦 𝜕𝑧 
 

(
54) 

 

   The value of ∇V depends on the elemental shape 
functions Ne within each element and so the 
integration domain is split into sub-domains 
corresponding to the tetrahedral elements such as: 

 

𝑊𝑒 = ∑ 𝑊𝑒
𝑛

𝑁𝑒

𝑛=1

  
 

(5
5) 

 
The energy within each element (𝑊𝑒

𝑛) is found by: 

 
𝑊𝑒

𝑛 =
1

2
∫∫∫ 𝜀∇𝑉. ∇𝑉

𝑣𝑛

𝜕𝑥 𝜕𝑦 𝜕𝑧 
 

(56) 

 

where 𝑣𝑛 represents the volume of the n
th
 element in 

the domain. 
 
   The electric field strength is found as follows: 
 

 𝐸⃗ =
1

2𝑉𝑒
(−𝑖 ∑ 𝑏𝑖

4
𝑖=1 𝑉𝑖 −

𝑗 ∑ 𝑐𝑖
4
𝑖=1 𝑉𝑖 − 𝑘⃗ ∑ 𝑑𝑖

4
𝑖=1 𝑉𝑖) = −∇𝑉  

 

(
57) 

 
where 𝑏𝑖, 𝑐𝑖 𝑑𝑖 are the elemental shape functions in x, 
y and z-directions. 
 

   Substituting for ∇V from equation (57) into equation 
(56), yields: 
 

 
𝑊𝑒

𝑛 =
1

2
∭  

𝑣𝑛

𝜀

6𝑉𝑒
3 [∑  

4

𝑖=1

(𝑖 𝑏𝑖 + 𝑗 𝑐𝑖 + (𝑘⃗ 𝑑𝑖)𝑉𝑖   

∑ 

4

𝑗=1

(𝑖 𝑏𝑗 + 𝑗 𝑐𝑗 + (𝑘⃗ 𝑑𝑗)𝑉𝑗   

∑  4
𝑘=1 (𝑖 𝑏𝑘 + 𝑗 𝑐𝑘 + (𝑘⃗ 𝑑𝑘)𝑉𝑘]  

 

 

 

 

(5
8) 

 
   Since b, c, d and V are constant within an element, 
equation (58) can be written: 
 

 
𝑊𝑒

𝑛 =
1

2
∭  

𝑣𝑛

𝜀

6𝑉𝑒
3 [∑  

4

𝑖=1

 ∑  

4

𝑗=1

 ∑  

4

𝑘=1

  

(𝑏𝑖𝑏𝑗𝑏𝑘 + 𝑐𝑖𝑐𝑗𝑐𝑘+𝑑𝑖𝑑𝑗𝑑𝑘)𝑉𝑖𝑉𝑗𝑉𝑘𝜕𝑥𝜕𝑦𝜕𝑧]  

 

(
59) 

 
   Performing the triple integration, gives: 

 
𝑊𝑒

𝑛 =
𝜀

12𝑉𝑒
3 ∑ 

4

𝑖=1

 ∑  

4

𝑗=1

 ∑  

4

𝑘=1

 

 (𝑏𝑖𝑏𝑗𝑏𝑘 + 𝑐𝑖𝑐𝑗𝑐𝑘+𝑑𝑖𝑑𝑗𝑑𝑘)𝑉𝑖𝑉𝑗𝑉𝑘  

 

(6
0) 

 

   Using equation (60) and equation (55), the total 
stored energy within the capacitor is calculated by 
integrating all the energy from all the elements in the 
domain.  
 
   But the total energy 𝑊𝑒 within the capacitor is also 
equal to: 

 
𝑊𝑒 =

1

2
𝐶𝑉2 

 

(6
1) 

where C is the capacitance and V is the potential 
difference between the two plates of the capacitor. 
Consequently, the total capacitance can then be 
found by using the following expression: 

 
𝐶 =

2𝑊𝑒

𝑉2
 

(6
2) 

VIII. CUDA AWARE MPI POISSON RESULTS 

A. Time test 

In order to benchmark the capabilities of the CUDA 
aware MPI solver, we have benchmarked the 
following case. We start with a cubic box of size 1 m 
and apply Dirichlet boundary conditions of 0 and 100 
V at the cathode and anode, respectively, with εr = 1. 
Then, we vary the number of processors and calculate 
the time taken to conduct a successful simulation for a 
mesh constructed in NETGEN mesh software. The 
mesh size is chosen to be large such as to bottleneck 
a single GPU card with 68,430 Nodes in the mesh. 
For the benchmarking simulations, 18 GPU Tesla K80 
cards were used and an AMD EPYC 32core/64 thread 
processor has been used. 
 
Table No1: Running time with mesh variation and benchmarking of 
3D Poisson equation with a mesh size of 68,430 Nodes. 

 
ProcNo 2 4 8 10 14 

Time 7 min, 57.7s 1m, 57.4s 62.8s 51, 6s 46.5s 

ProcNo 16 18 20 32  

Time 44.95s 42.39s 45.6s 1min 1.9s  

 

In the above table, one can see that using 2 
processors, it takes very long time and when 4 
processors are used, the time taken is highly reduced. 
The trend continuous for the case of 8 threads but at a 
much slower rate and continues until using 18 threads, 
where it takes the minimum time. Thereafter, thread 
initiation and communication times of the threads take 
over, increasing the computed times of the 
simulations, up to 32 threads.   

Additionally, we have constructed a series of six 
mesh sizes and benchmarked the time taken 
according to the number of processors. During the 
simulations, a single Tesla K80, CUDA enabled device 
was used with HyperQ technology for simultaneous 
access of the various threads. The results are shown 
in Fig. 4 below. 
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Fig. 4 Scaling test for the Poison solver for 6 different meshes under 
3 different CPU units (blue-2, red 6, green 12). 

Since the software is based mostly in conducting 
simulations on the GPU, one can see that the number 
of processors has a negative effect on the simulations, 
whereas the capability of the GPU is what matters. 
Since the GPU can handle single-handedly the size of 
all 6 meshes, it will be faster than any scaling of the 
threads and even the usage of multiple GPUs. To 
conclude, since our algorithms are implemented for 
nearly all the simulations to be performed on the GPU, 
it is not expected that any scaling will apply with the 
GPUs. The multiple GPUs are used in order to be able 
to solve larger computational problems, where a single 
GPU, bottlenecks because of processing power and/or 
available graphic card memory. 

 

B. Accuracy test – Average errors 

In order to test the accuracy of the CUDA aware 
MPI Poisson solver that we have constructed, we 
present the Poisson test result for a benchmark 
solution of a box of size 1 m, when applied with a 
voltage difference of 100 V between top and bottom 
plates. The analytical solution in free air is 
straightforward and poses an ideal scenario to test the 
accuracy and convergence of a Poisson solver. Table 
2 shows the error which is the Mean Percentage 
Absolute Error (MPAE) comparison between analytical 
and actual solution in an attempt to calculate the 
average errors for both the voltage and electric field. It 
is shown that on average, the voltage has an error of 
3.08 % and the electric field has on average, an error 
of 5.12 %. The convergence criteria used here were 
automatic and was decided by calculating the mesh 
tolerance which is the shortest distance between 
edges, and then multiple by 0.8 for finding the mesh 
tolerance. Thereafter, the convergence criteria were 
decided according to the criterion from the above flow 

chart: √𝛾𝜅+1 < 𝑇𝑜𝑙 ∗ 𝑇𝑜𝑙). The fact that we have used 
6 different meshes meant that there was a different 
criterion for all 6 meshes since they each have their 
own tolerance; hence it does not necessarily mean 
that a finer mesh will produce more accurate results, 
especially if the mesh sizes are not very different, 
likewise with this case.  

 

Table No2. Table plot of the voltage and electric field MPAE error  
when compared with analytical solution for 6 different meshes of 
varying accuracy. 

Mesh No1 No2 No3 No4 No5 No6 

Verror (%) 2.24 1.58 3.82 5.56 3.16 2.07 

Eerror(%) 3.85 4.51 5.93 6.87 5.15 4.39 

 

Fig. 5 Three-dimensional scatter plot of the voltage in a cubic box of 
size 1 m, when applied a voltage difference of 100 V. 

 Finally, in Fig. 5, we show the three-dimensional 
scatter plot of the result for the voltage. One can see 
from the graph that the results are as expected since 
the voltage increases linearly from the cathode to the 
anode from 0 to 100 V. 

 

IX. CONCLUSIONS 

KYAMOS software aims to realize the formulation, 
development, validation, and optimization of 
engineering problems by utilizing high performance 
computing through cloud-based distributed GPUs and 
state-of-the-art mathematical algorithms. Two 
necessary techniques to achieve this are the adaptive 
meshing with element quality improvement technique, 
and the efficient solution of partial differential 
equations. In this paper, we demonstrated the solution 
of elliptic dominated problems accurately and 
efficiently using state of the art software protocols, 
such as the CUDA aware MPI. To conclude, through 
state-of-the-art algorithms, and implementation 
procedures, we aim in disrupting the market due to: 
(a) low pricing schemes from utilization of free open 
source software for the viewing, geometry, mesh and 
plot editors, (b)  fast and accurate algorithms 
developed in state of the art CUDA aware MPI 
protocol and hopefully become leaders in the CAE 
industry in the long run.    
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