
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13208

KYAMOS Software – CUDA aware MPI Solver
for Poisson equation

Antonis P. Papadakis*, Aimilios Ioannou and Wasif Almady

KYAMOS LTD, 37 Polyneikis Street, Strovolos, 2047, Nicosia, Cyprus

*ceo@kyamosmultiphysics.com

Abstract—KYAMOS LTD is a newly founded
startup operating in the Computer Aided
Engineering industry and its mission is to provide
cloud computing software for scientists,
engineers and non-engineers using cloud-based,
InfiniBand GPU computing. KYAMOS utilizes built-
in, state-of-the-art software in an attempt to attract
new users, or existing users of either open source
or proprietary commercial software which realize
that, much cheaper and faster with better
accuracy simulations are possible, using state of
the art algorithms. In this paper, we first conduct a
brief introduction to computational fluid dynamics
simulations, and discuss the different types of
differential equations used in the macroscopic
world. Then we discuss the theory behind
adaptive mesh techniques, its advantages and
disadvantages and present an algorithm that
produces nearly ideal mesh element qualities.
Then we describe the finite element Galerkin
formulation of the Poisson equation using an
iterative Conjugate Gradient method and its
parallelization into CUDA aware MPI. Finally, we
conduct validation results for the Poisson
equation in uniform geometries and test the
scaling of our computer software to multiple
threads and GPUs.

Keywords—KYAMOS software, High
Performance Computing, CUDA, Multiphysics,
GPU;

I. INTRODUCTION

Multiphysics simulations deal with the usage of
computer simulations to mimic the real behavior of
physics phenomena and their application to
engineering systems that aid in the design process.
Thus, save costs by avoiding expensive experimental
testing and by providing detailed insight into the design
process. Multiphysics simulations are used by
engineers, non-engineers, scientists, researchers and
consultancy firms.

The multiphysics simulations industry exists for
more than 25 years and a number of both free and
proprietary software have been released through the
years. It is a mature industry which is highly
competitive and very important industry in making the
world a better place by designing cheaper systems,
more environmentally friendly and optimized for
security and aesthetic purposes using the available
software.

Generally, to simulate multiphysics phenomena in
the macroscopic world, in most of the cases, we revert
to the solution of different types of partial differential
equations of 2

nd
 order, which generally fall within three

main categories, the hyperbolic, elliptic and parabolic
types. Even though there are some analytical solutions
of the above equations, many times their solution is
not linear and can only be solved using computer
simulations.

 The hyperbolic equations of order n are partial
differential equations that have a well-posed, initial-
value problem for the first n-1 derivatives. Many of the
differential equations of mechanics are hyperbolic. The
hyperbolic equation solutions behave like a wave and
an initial perturbation, needs time to be propagated
within the domain. Examples of hyperbolic application
include fluid flows, aerodynamic flows, contaminants
through a porous media and atmospheric flows [1].
When compared to parabolic and elliptic equations, the
solutions to hyperbolic equations tend to be more
complex due to the fact that the phenomena are more
complex.

A parabolic partial differential equation is widely
used in the simulation of heat conduction and other
diffusion equations such as the Burger’s equation. It is
an initial-boundary condition problem and it is
transient.

Examples of elliptic equations of 2
nd

 order which
are non-trivial are the Laplace and Poisson equations.
It describes phenomena that do not change with time,
where the solution is defined by the boundary
conditions, such as Dirichlet and Neumann boundary
conditions. The solution of elliptic equations involves
the solution of a system of linear equations which can
be solved using direct solution methods such as
Gaussian elimination, and indirect simulations such as
the Conjugate Gradient and the Gauss-Seidel
methods.

 For the accurate simulation of computational fluid
simulations, a mesh decomposition of the geometrical
domain is necessary. The element quality of the
decomposed individual elements has a direct impact
on the quality, as well as the stability of the results.
Since we are tackling to solve the most challenging
and complicated problems in the industry, which
usually involves non-uniform geometries, we have
chosen as basis elements, triangles in two and
tetrahedrals in three-dimensions, that can capture non-
uniform geometries, efficiently. However, most of the
times, the quality of the mesh, which is a measure of
the geometrical uniformity is very bad and needs to be
corrected. On top of that, the mesh sizing has a major
impact on the computational times and generally a

http://www.jmest.org/
https://en.wikipedia.org/wiki/Poisson_equation

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13209

finer resolution on the mesh will result in more
accurate, converged results, however; at the same
time, it will result in increased computational times,
most of the times, too much too handle, with nowadays
computer capabilities. Hence, a new innovative
method of adaptive meshing is proposed, where mesh
resolution changes dynamically and automatically, by
meshing at the appropriate places where the solution
changes, and coarsens the mesh at places that high
resolution is not necessary. In the next section, an
adaptive mesh algorithm, which also includes element
quality improvement algorithm, is presented.

II. ADAPTIVE MESHING

A. Introduction

In the majority of the methods used for the solution
of partial differential equations, a mesh exists which is
used to define the geometry of the problem and the
necessary resolution, varying from uniform to non-
uniform and in many dimensions. One-dimensional
space is separated by nodes and edges, two-
dimensional space is separated by equilaterals,
triangles or polysurfaces, and three-dimensional space
is separated by blocks and polyhedral such as
tetrahedral, hexahedral and so on. Adaptive meshing
utilizes an error indicator to instruct the simulation to
automatically pose extra refinement in specific places
and coarsen other areas, such that one is able to
capture the physics with the correct resolution where it
matters, and avoid tedious simulations of no
significance. Even though as a principle sounds an
excellent idea, it has some major pitfalls which make
its usage not always so efficient and fundamental.
These drawbacks emanate from the extra computing
time and effort to generate the various meshes and to
interpolate the results from one mesh to the other.
Specifically, you will need error indicators that will
dictate the level of adaptation and this is not always
trivial to catch, since it depends on the physics
involved and can be different for each specific
problem, and also a lot of time is spent on the
interpolation between meshes. This causes two issues
with the first being that it is very time consuming to
interpolate from on mesh to the other, since you need
to identify each element of one mesh in which element
of the other mesh it resides and apply interpolation.
This is usually done more efficiently with a reference to
a regular grid, where both meshes can refer to, such
that to make this recognition easier. Secondly, during
the interpolation process, numerical diffusion is
introduced in the results, if the resolution between the
meshes is any different. This introduces a major
drawback in the accuracy of the results, which can
only be avoided, if there is overlapping between the
interest regions of the two meshes, hence increasing
the mesh necessary because of the overlapping
necessity. Finally, every time the mesh is changed, all
the metrics that have already being setup and
calculated for a specific problem such as centroids,
midfaces, normal vectors, any already setup sparse
structures, need to be calculated from the beginning,
which adds another extra and significant burden to the
simulations. If one decides to re-mesh as late as

possible, this could help things out. Also, one needs to
decide when to re-mesh appropriately. Since one
cannot reside too often because it is expensive, one
can lose track of the accuracy of the simulations.

 Finally, in adaptive meshing, it is also important to
be able to generate good quality meshes that have no
acute angles that will cause instability in the
formulations. Both in finite elements and finite
volumes, where non-uniform elements exist, this is an
extra issue that can be tackled using h and r-
refinement, however this process is also time costly as
well.

In the case of a multiphysics model, for example the
simultaneous solution of the Poisson equation with the
charge continuity equations in plasma applications,
one needs to take into consideration error estimators
for each of the different partial differential equations to
be numerically analyzed, hence the error indicator
must be normalized, usually from 0 to 1, such that
there is universal reference of the mesh refinement
that needs to be performed to satisfy all partial
differential equations needs for accurate and efficient
simulations. In case that one of the variables of a
partial differential equation needs re-meshing, all the
partial differential equations need to also refine, even if
this is not necessary.

B. Adaptive mesh theory

 There are four main methods used for mesh
adaptation [2-5], which are the h-
refinement/coarsening, the r-refinement, the p-
refinement and the m-refinement [6]. In the h-
refinement/coarsening, addition/removal of mesh
nodes, as well as edge swapping techniques are used
(for triangular meshes for example, the longest edge
bisection, and the regular split techniques [7]),
resulting in an overall increase/decrease in the number
of unknowns of the existing mesh. In the r-refinement,
the total number of existing nodes remains the same,
with the only difference that the mesh nodes are
relocated to achieve optimum element quality within a
fixed number of degrees of freedom. In the r-
refinement method, the geometry of the domain, the
structure of the mesh, and the identification and
labeling of nodes and elements must remain the same,
even though mesh nodes are reallocated. In the p-
refinement, a fixed mesh is used, and the polynomial
degree of the ansatz space is increased by employing
higher order numerical schemes to improve local
accuracy, as well as to approximate troublesome
derivatives. Finally, in the m-refinement method,
depending on the behavior of the approximated
solution, one switches into a different physical model
by solving different differential equations to achieve a
better solution for the problem.

 The leading author of this paper in a previous paper
[8] has utilized this adaptive mesh algorithm in a
specific plasma application to simulate real physical
problems of plasmas. Here, the actual algorithm that
has been applied for mesh quality improvement is
presented.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13210

C. Mesh Quality

 Here we present in short, an adaptive mesh
generator and mesh quality algorithm that has proven
to work efficiently in the simulation of plasma related
problems in two-dimensional cartesian and cylindrical
axisymmetric coordinates, and could be extended in
three dimensions with similar principles into tetrahedral
element meshes as well.

1) h-refinement techniques

 These techniques involve node addition and
removal, and edge swapping and removal both on the
boundary and non-boundary nodes such that the
optimum connectivity is achieved for the nodes, which
is a non-boundary node to be connected to six other
nodes and a boundary node to be connected to four
nodes. The authors have devised a nine-step
algorithm that has the capability to produce ideal
element connectivity in all the mesh elements.

2) r-refinement techniques

 Mesh smoothing techniques improve the mesh
quality by relocating the vertices of the mesh. There
are many algorithms and techniques both for simple
and complex geometric domains. Examples of
techniques dealing with simple geometric domains are
the optimal Delaunay triangulation (ODT) proposed by
Chen [9], whereas for complex domains, one has the
Laplacian smoothing [10], the smart Laplacian
smoothing [11], the Centroidal Voronoi Tessellation
(CVT)-Based Smoothing [12], the Optimal Delaunay
Triangulation (ODT)-Based Smoothing [13], the Angle-
Based Smoothing [14] and the Well-Centered
Triangulation (WCT) Smoothing [15]. A detailed
comprehensive review of the various smoothing
techniques, as well as extensions of the above
algorithms can be found in the work of Erten et al. [16].
In this paper, the Laplacian smoothing by relocating
the vertices at the center of the polygon is used which
is the simplest method of smoothing, with the
drawback that inverted elements may be generated.
To avoid the generation of inverted elements, the
Smart Laplacian Smoothing is utilized, where the point
is relocated only when there is an improvement in the
overall quality of the mesh. This adds an extra
computational cost which is not considerable, and
guarantees that no inverted elements will be created.

3) Implementation procedure

 Some features of the mesh refinement procedure
are based on the ones used by Lohner [17, 18] and
Berger et al. [19-21]. However, new features are
exploited when compared to the above work with
regard to the mesh improvement procedure by
including different refinement and mesh quality
treatment techniques. Furthermore, the coarsening of
the mesh is achieved differently by exploiting three
different meshes at any time. These are: (a) the
adapted initial mesh before remeshing, (b) the
reference coarse mesh which is the same throughout
the simulation, and (c) the final adapted mesh after
remeshing to be used in the simulation. It must be
pointed out that the reference coarse mesh is not used
in the actual simulation, since it is an intermediate tool

used to decide on the amount of mesh refinement and
to achieve coarsening of the mesh. The usage of the
above three meshes allows one to perform coarsening
of the mesh and at the same time to minimize
interpolation errors by interpolating between two
meshes which do not differ greatly. The main steps
used to implement the adaptive mesh algorithm can be
found in [8].

 The authors have developed an element quality
improvement algorithm that guarantees in two-
dimensions the improvement of the quality of any
existing mesh to nearly ideal standards for uniform and
non-uniform geometric domains. The element quality
improvement algorithm uses a combination of edge
swaps, node reallocation, and node addition/removal
methods, such that the quality of existing bad quality
meshes is greatly improved. Typical bad element
qualities can be even of 0.5 or less, which are
expected to cause spurious oscillations and in the long
run instability in the results. To achieve this, as a first
step, the author has developed methods that will
ensure that most interior nodes are connected to six
nodes, and a small number of them to five or seven
nodes. As far as the boundary nodes are concerned,
the boundary nodes are treated in such a way to
ensure that they are all connected to four nodes,
unless their curvature varies abruptly, where they are
allowed to be connected to any number other than four
nodes. The first step of improving the connectivity of
an existing bad quality mesh is implemented using
nine cases of the h-refinement/coarsening techniques
developed by the author. Bad quality meshes are
defined as meshes in which one or more triangular
elements have large difference in the length of its three
sides, thereby largely deviating from the ideal case of
an equilateral triangle.

4) Interpolation between meshes tool

For an adaptive mesh algorithm to be efficient,
results need to be interpolated often from one mesh to
the other. It is imperative that this method is done as
quickly and accurately as possible, since wrong
interpolation can cause instabilities on the results.
Furthermore, long times consumed to perform such
interpolation between meshes, can make the adaptive
mesh developed disadvantageous, when compared to
non-adaptive mesh techniques.

If one needs to interpolate the results of Mesh1 to
Mesh2, first one needs to identify the element of
Mesh2 (in this case triangular elements) at which each
node of Mesh1 resides. One way to achieve this is to
use a non-adaptive interpolation technique, which is to
pass through each element of Mesh2, and check
whether each node of Mesh1 resides in that triangle.
This results in a number of operations equal to the
number of nodes of Mesh1 multiplied by the elements
of Mesh2. In highly demanding simulations, the above
method can be highly time consuming.

Alternative general methods of finding the point
location in triangles include the Jump and Walk [22],
and the Quad-tree data structure methods [23]. The
Jump and Walk method picks a small group of sample
points within the mesh and starts to walk from the
sample point which is the closest to the requested

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13211

point, until the triangle containing the location point is
found. The Quad-tree data structure method separates
the two-dimensional space into consecutive four
quadrants or regions by using a tree data structure in
which each internal node has exactly four children.

The author uses an alternative simplistic approach
by using an adaptive interpolation technique. Since
one knows beforehand the geometric domain in which
the mesh resides, a square box is defined that
includes the above geometric domain of the problem.
This square box is subdivided into many square boxes
in both directions, with each square box numbered
sequentially from left to right and bottom to top. This
division is performed only once and the uniform
division and labeling of the geometric domain allows
one to use it as a reference domain to find
approximately nodes of the two meshes that reside in
similar geometric domains. This is achieved by
passing from each node of Mesh1, and registering in
which box each node of Mesh1 resides. Also, by
passing from each element of Mesh2, and then
through each of their nodes, one can also identify at
which square box each triangle of Mesh2
approximately resides. Now instead of having to
search for each node of Mesh1 through all the
elements of Mesh2, one only needs to search through
the elements which are within or close to that box. This
reduces the amount of operations significantly.
However, in the above procedure, there will be boxes
that will register no triangular elements because it may
be the case that one element covers one whole square
box. So, it is not enough to just search through that
box, but also in the surrounding boxes as well, until a
match is found, where a node of Mesh1 resides in a
triangle of Mesh2. The algorithm developed by the
author of this paper, that discovers which near boxes
to search in, is basically an algorithm that takes
anticlockwise each box around the initial box that the
node of Mesh1 resides, until it finds a match between
node and element. The way to decide whether a node
resides within an element is done by using the
barycentric coordinates. The barycentric coordinates of
a node p relative to a triangle are found by the cross
product between one vector joining one of the
triangle’s vertices q and point p, and an edge vector of
the triangle starting from the above triangle vertex q,
divided by the total area of the triangle.

If a node is situated within a triangle, by calculating
its barycentric coordinates, they should add up to one.
If the node is situated outside the triangle, the
barycentric coordinates always add up to a number
greater than one. This would be a straight forward
task, if computers were holding numbers accurately.
However, due to precision problems, the coordinates
of the nodes are not exact; thereby values just greater
than the value of one will appear. This inevitably
creates problems, since there is no way of identifying
how much bigger than one, the sum of barycentric
coordinates should be. A way to avoid this is to
distinguish between boundary and interior nodes that
are situated within the mesh. The interior nodes must
not be moved, since when interpolating from one mesh
to the other, there will be nodes which they will find no
triangle to reside in. The way to avoid this problem is

to pass through each node through each boundary
element and calculate the barycentric value, and use
the element of Mesh2 that produces the smallest value
for the barycentric coordinates. This makes the
procedures slightly slower, but guarantees that the
interpolation is successful. Another matter to address
is that once each node is found in which triangle it
resides, then it is a must that the barycentric
coordinates do not exceed the value of 1, since if that
happens, oscillations on the results will appear during
the interpolation process. To avoid this, it is necessary
to move these points such that they reside on the
closest boundary node, such that the addition of
barycentric coordinates of a node relative to a triangle
are always one.

5) Mesh Quality Results

 Fig. 1a and 1b show the Delaunay triangulation and
its geometric dual, the Voronoi diagram of a mesh that
has been created in a commercial mesh generation
software before, and after the treatment of the mesh
with the element quality improvement algorithm,
respectively. The Voronoi diagrams were chosen to be
included due to their capacity to show the space (by
separating it into cells) at which any point in this space
is closest to the node of that cell, which is also the
same node found in Delaunay triangulation, that the
author uses in finite elements. In the case of a mesh
with ideal elements, it would be expected that the
Voronoi cells would be exact regular hexagons,
depicting the equidistance of a mesh node to its
surrounding six nodes. A close look at the two meshes
before and after the mesh quality improvement
operation shows the improvement in the regularity of
the Voronoi cells, especially in the transition region
from the finer to the coarser mesh, and vice versa.

Fig. 1a. Schematic diagram of the Delaunay triangulation and its geometric
dual, the Voronoi diagram (solid blue lines), created in a commercially
mesh generation software.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13212

Fig. 1b. Schematic diagram of mesh after the element quality improvement
algorithm developed including its Delaunay triangulation (multicolour solid
lines) and its geometric dual the Voronoi diagram (solid blue lines).

 Fig. 2a shows a bar chart displaying the number of
elements that have similar element quality values of a
mesh created in the commercial software, and Fig. 2b
shows a bar chart displaying the number of elements
that have similar element quality values of the mesh
created in the commercial software, after being treated
by the element quality improvement algorithm. Fig. 2a
shows that in the mesh, a few bad quality elements
exist that are expected to cause instabilities and
oscillations in the results [13]. After the mesh quality
treatment algorithm is applied, it is shown that not only
the average value of the element quality of the mesh
increases, but most importantly the bad elements
disappear, achieving minimum element quality values
of around 0.85. This can be easily shown by counting
the total number of elements above a certain value
which shows that an improvement in the element
quality has been achieved overall, even for the
elements which their values are very close to 1.

Fig. 2a. Bar chart displaying the number of elements that have similar
element quality values of the mesh created in a commercially mesh
generation software.

Fig. 2b. Bar chart displaying the number of elements that have similar
element quality values of the mesh created in a commercially mesh
generation software after being treated by the element quality improvement
algorithm.

In order to test the element quality improvement
algorithm in non-regular geometries, the case of a
point-plane configuration has been tested due to the
geometrical complexity of the point. Fig. 3a and 3b
show the Delaunay triangulation of the mesh before
and after being treated by the element quality
improvement algorithm. On both diagrams, the
element quality values that are less than 0.85 are
displayed. In Fig. 3a, it is shown that many elements
are below the threshold value especially at the
proximity of the point, whereas after the treatment, Fig.
3b shows that no single element has element quality
value less than 0.85. Since the nodes that define the
boundary hyperboloid point cannot be moved
randomly, but only using the hyperbolic equation to
calculate the curve defining the point boundary, all the
parameters of the analytical equation to form the
hyperboloid point must be known in advance, such that
boundary nodes are moved without changing the
geometry of the mesh during the mesh jiggling, and
node addition/removal operations.

Fig. 3a. Schematic diagram of the Delaunay triangulation of a point-plane
configuration mesh created in a commercially mesh generation software.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13213

Fig. 3b. Schematic diagram of the Delaunay triangulation of a point-plane
configuration mesh created in a commercially mesh generation software.

The strong asset of the mesh quality improvement
algorithm is that typical two-dimensional meshes have
been treated by the mesh quality improvement
algorithm, and have shown to have minimum element
quality values of around 0.85, which is ideal as far as
element quality of any mesh is concerned. The above
algorithm has been tested in a series of random
meshes, with both regular and irregular domains such
as point-planes, and it has been shown to always
guarantee the best element qualities.

III. MPI AND CUDA

KYAMOS software is built based on excellent,
speed and accuracy, and user-friendliness and tackles
complicated multiphysics simulations, using GPU
InfiniBand computing, under a state of the art, software
protocol for conducting simulations.

In order to scale the computer simulations to
multiple CPUs and GPUs, one needs a protocol that
will connect the various nodes together. One option is
to place as many cores on one computer, which
currently the maximum being 64 cores, 128 threads
into a single computer and perform shared computing,
which means sharing one computers architecture,
simultaneously. Even though this is attractive and
utilized through the OPENMP protocol in high
performance computing simulations, it is self-limiting,
due to the limitation in the number of CPU cores we
can put on a single machine. The other option is to
utilize multiple number of these machines; however,
we need a way to connect these machines and
perform distributive computing. This can be achieved
through a communication protocol such as the
Message Passing Interface (MPI). Since
communication time is of outmost important, we wish
to minimize communication between nodes, one builds
its problem in such a way to minimize such
communication using partitioning of the mesh. A mesh
partitioning tool can be used to split the elements in

different equal partitions according to the number of
CPUs and GPUs, necessary. Generally, it is a good
practice to allocate 1 CPU to 1 GPU, even though
using the HyperQ protocol, it enables multiple CPU
threads or processes to launch work on a single GPU
simultaneously, thereby dramatically increasing GPU
utilization and hence significantly reducing CPU idle
times. Once the partitioning is performed, it is a good
practice to utilize ghost cells such that to minimize
communication between nodes. The values of the
ghost cells are updated at the end of each repeatable
calculation and each processor can go its way to
calculate independently the results, until the next
update is necessary. For this exchange process to be
efficient though, one needs to separate for each
partition, the elements which are not shared with any
nodes, and gather the elements which are expected to
be sent to the various partitions and then gather the
elements which are going to be received from each
partition. Hence a complicated repartitioning from the
initial mesh is necessary. One of the issues that may
arise is the fact that it maybe that one element in a
partition needs to be sent to 2 or more partitions, which
this causes a major issue using the MPI routines since
a single value can only be sent to one of the partitions,
at least in an efficient way. To solve this problem, we
first identify these elements and we ensure that these
elements are duplicated in the mesh partitions as
many times they need to be sent. This provides a very
little overhead, however at the same time, solves a
major issue in inter-communication and updating
between the various partitions.

In the case of the Poisson solution, we are utilizing
an iterative solver, the Conjugate Gradient method to
calculate the result for the voltage. To achieve this, we
setup the Poisson solver in such a way such that each
partition provides its own contribution to the calculation
of the voltage, since there will be common nodes that
will need the contribution for multiple partitions for the
solution, which is very different with the approach used
for the simulation of the convection-diffusion equation,
which each centered element being responsible to
calculate is own nodes, only borrowing any
neighboring values for the calculation of its mesh
elements. The approach used in the Poisson seems to
be more attractive since no extra added elements are
needed to be duplicated in the domain and less
calculations are necessary, since the addition of these
duplicated elements provides additional overhead that
should be ideally avoided.

Regarding CUDA capabilities, we utilize Tesla K80
cards which have a compute capability of 3.7, and are
able to conduct parallel simulations at high scale,
specifically 4.113 TFlops at single precision and 1.371
TFlops at double precision. Each Tesla K80 card has 2
GPUs of 12 Gb RAM at GDDR5. It has a base clock of
562 MHz and boost up to 824 MHz. It utilizes a 384-bit
memory bus and has a bandwidth of 240.6 GB/s. They
have the capacity to conduct stream calculations which
allow the simultaneous calculations of independent
functions in the software, GPU Boost technology to
overclock the graphic cards for faster simulations, peer
to peer access between multiple GPUs, which allows
memory access from GPU memory to GPU memory,

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13214

bypassing the host memory within a node, and
Remote Direct Memory Access (RDMA) to allow GPU
to GPU memory direct access through the InfiniBand
network. Finally, NVIDIA GPUs have the ability to
support dynamic parallelism which allows one thread
to launch a number of other threads, which is very
useful in multiple for nested loops.

IV. INFINIBAND AND SWITCHES

Another way to minimize communication time is to
use faster communication hardware. One of the major
breakthroughs has come recently from an Israeli
company called Mellanox which is now bought by the
leader in GPU computing, NVIDIA. They have
managed to build switches that have very low latency,
and high bandwidth that make the communication
times attractive.

The InfiniBand technology is developing rapidly
mainly to Mellanox technologies. The SDR InfiniBand
technology at 8 Gbps were introduced to the market in
2002 with latency 5 μs, then the DDR InfiniBand at 16
Gbps followed in 2005 with latency 2.5 μs, the QDR
InfiniBand technology at 32 Gbps immersed in 2008
with latency 1.3 μs, then the FDR10 at 40 Gbps and
FDR at 56 Gbps in 2011 with latency 0.7 μs, the EDR
technology in 2014 at 100 Gbps with latency 0.5 μs,
the HDR at 200 Gbps in 2017 and the NDR at 400
Gbps is expected after 2020. All the above speeds
depict the throughput using 4 links.

KYAMOS software uses FDR technology to
connect the various nodes together, with one of the 7
PCIE slots on the motherboard sacrificed for
communication purposes.

V. FINITE ELEMENT FORMULATION OF POISSON

EQUATION IN CUDA AWARE MPI

In the finite element Galerkin context, after the
domain is discretized, the unknown potential within
each element can be approximated according to Jin
[24] with a linear shape function in three-dimensions
as follows:

 𝜑𝑒(𝑥, 𝑦, 𝑧) = 𝑎𝑒 + 𝑏𝑒𝑥 + 𝑐𝑒𝑦 + 𝑑𝑒𝑧

 (1)

where a
e
, b

e
, c

e
 and d

e
 are constant coefficients to be

determined within each element e. Since tetrahedral
elements are used in this case, four equations can be
written for the potential at the tetrahedron four nodes,
where the shape functions should obey the following
relations:

 𝜑1
𝑒(𝑥, 𝑦, 𝑧) = 𝑎𝑒 + 𝑏𝑒𝑥1

𝑒 + 𝑐𝑒𝑦1
𝑒 + 𝑑𝑒𝑧1

𝑒

 (2)

 𝜑2
𝑒(𝑥, 𝑦, 𝑧) = 𝑎𝑒 + 𝑏𝑒𝑥2

𝑒 + 𝑐𝑒𝑦2
𝑒 + 𝑑𝑒𝑧2

𝑒

(3)

 𝜑3
𝑒(𝑥, 𝑦, 𝑧) = 𝑎𝑒 + 𝑏𝑒𝑥3

𝑒 + 𝑐𝑒𝑦3
𝑒 + 𝑑𝑒𝑧3

𝑒

(4)

 𝜑4
𝑒(𝑥, 𝑦, 𝑧) = 𝑎𝑒 + 𝑏𝑒𝑥4

𝑒 + 𝑐𝑒𝑦4
𝑒 + 𝑑𝑒𝑧4

𝑒

(5)

 From the above four equations, one can obtain the
linear elemental shape function constant coefficients
by solving the above four equations for a

e
, b

e
, c

e
 and

d
e
 in terms of 𝜑1

𝑒(𝑥, 𝑦), 𝜑2
𝑒(𝑥, 𝑦), 𝜑3

𝑒(𝑥, 𝑦) and 𝜑4
𝑒(𝑥, 𝑦)

to give the following equations:

𝑎𝑒 =
1

6𝑉𝑒

[

𝜑1

𝑒 𝜑2
𝑒

𝑥1
𝑒 𝑥2

𝑒

𝜑3
𝑒 𝜑4

𝑒

𝑥3
𝑒 𝑥4

𝑒

𝑦1
𝑒 𝑦2

𝑒

𝑧1
𝑒 𝑧2

𝑒

𝑦3
𝑒 𝑦4

𝑒

𝑧3
𝑒 𝑧4

𝑒]

(6)

𝑎𝑒 =

1

6𝑉𝑒
(𝑎1

𝑒𝜑1
𝑒 + 𝑎2

𝑒𝜑2
𝑒 + 𝑎3

𝑒𝜑3
𝑒 + 𝑎4

𝑒𝜑4
𝑒)

(7)

 Similarly, for b, c and d coefficients:

 𝑏𝑒 =
1

6𝑉𝑒
(𝑏1

𝑒𝜑1
𝑒 + 𝑏2

𝑒𝜑2
𝑒 + 𝑏3

𝑒𝜑3
𝑒 + 𝑏4

𝑒𝜑4
𝑒)

(8)

 𝑐𝑒 =
1

6𝑉𝑒
(𝑐1

𝑒𝜑1
𝑒 + 𝑐2

𝑒𝜑2
𝑒 + 𝑐3

𝑒𝜑3
𝑒 + 𝑐4

𝑒𝜑4
𝑒)

(9)

 𝑑𝑒 =
1

6𝑉𝑒
(𝑑1

𝑒𝜑1
𝑒 + 𝑑2

𝑒𝜑2
𝑒 + 𝑑3

𝑒𝜑3
𝑒 + 𝑑4

𝑒𝜑4
𝑒)

(10)

where the volume of the tetrahedral element is:

𝑉𝑒 =

1

6
[

1 1
𝑥1

𝑒 𝑥2
𝑒

1 1
𝑥3

𝑒 𝑥4
𝑒

𝑦1
𝑒 𝑦2

𝑒

𝑧1
𝑒 𝑧2

𝑒

𝑦3
𝑒 𝑦4

𝑒

𝑧3
𝑒 𝑧4

𝑒

]

(11)

 If one substitutes equations (7, 8, 9, 10) into (1), it
becomes:

𝜑𝑒(𝑥, 𝑦, 𝑧) = ∑ 𝑁𝑗

𝑒(𝑥, 𝑦, 𝑧)𝜑𝑗
𝑒

4

𝑗=1`

(12)

where the interpolation function is calculated as:

 𝑁𝑗
𝑒(𝑥, 𝑦, 𝑧) =

1

(6𝑉𝑒)(𝑎𝑗
𝑒 + 𝑏𝑗

𝑒𝑥 + 𝑐𝑗
𝑒𝑦 + 𝑑𝑗

𝑒𝑧)

(13)

The governing equation for the Poisson equations is:

 −∇. (𝜀(∇𝛷)) = 𝜌, 𝒙⃗⃗ ∈ 𝛺 (14)

with the Robin boundary condition:

 n̂. 𝑏∇𝛷 = 𝜁(𝑔 − 𝛷), 𝒙⃗⃗ ∈ 𝑑𝛺 (15)

where 𝑛̂ is the outward unit normal vector to the
closed loop surface A, ζ is a positive value parameter,
and g is the Dirichlet boundary condition. Depending
on the choice of ζ and b, one can apply different
boundary conditions of the Robin type. When ζ = 0,

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13215

one applies homogeneous Neumann boundary
condition equal to 0. When b = 0, one can apply
Dirichlet boundary conditions since ζ becomes
irrelevant and we have that the value of the
dependent variable Φ is set to the Dirichlet boundary
condition. When both ζ and b have positive values, a
Robin boundary condition is imposed. The left term
represents the normal derivative at the boundary.
 Performing the divergence operation on 𝜀(∇𝑉) and

substituting 𝜀 = 𝜀𝛰𝜀𝑟 gives:

 −
𝜕(𝜀𝑟∇𝛷)

𝜕𝑥
−

𝜕(𝜀𝑟∇𝛷)

𝜕𝑧
−

𝜕(𝜀𝑟∇𝛷)

𝜕𝑧
=

𝜌

𝜀°
 (16)

where εr is the relative permittivity of the medium and
εo is the permittivity of free space.

 Performing the 𝛻 operator on 𝛷 gives:

−

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑥

)

𝜕𝑥
−

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑦

)

𝜕𝑦
−

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑧

)

𝜕𝑧
=

𝜌

𝜀°

(17)

 Therefore, according to finite element Galerkin
method, one needs to take the residual of the
governing equation and try to minimize it. Hence, the
residual of the Poisson equations is:

𝑟 = −

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑥

)

𝜕𝑥
−

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑦

)

𝜕𝑦
−

𝜕 (𝜀𝑟
𝜕𝜑
𝜕𝑧

)

𝜕𝑧
−

𝜌

𝜀°

(18)

 The weighted residual within a tetrahedral finite
element is as follows:

 𝑅𝑖
𝑒 = ∭ 𝑁𝑗

𝑒𝑟𝑒𝑑𝑥𝑑𝑦𝑑𝑧 𝑖 = 1,2,3,4
Ω𝑒

 (19)

 Substituting the residual formula (18) into the above
equation (19), results in:

𝑅𝑖

𝑒 = ∭ 𝑁𝑗
𝑒 [−

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑥
)

𝜕𝑥
−

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑦
)

𝜕𝑦
−

Ω𝑒

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧
)

𝜕𝑧
−

𝜌

𝜀°
] 𝑑𝑥𝑑𝑦𝑑𝑧

(20)

 The following identity of partial differentiation for the
x-directions holds:

 𝜕 (𝜀𝑟
𝜕𝜑𝑒

𝜕𝑥
𝑁𝑗

𝑒)

𝜕𝑥
= 𝑁𝑗

𝑒
𝜕 (𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥
)

𝜕𝑥
+ 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥

(21)

𝑁𝑗

𝑒 [
𝜕 (𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥
)

𝜕𝑥
] =

𝜕 (𝜀𝑟
𝜕𝜑𝑒

𝜕𝑥
𝑁𝑗

𝑒)

𝜕𝑥
− 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥

(22)

 Similarly, for y:

 𝑁𝑗
𝑒 [

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑦
)

𝜕𝑦
] =

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑦
𝑁𝑗

𝑒)

𝜕𝑦
− 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦

(23)

 Similarly, for z:

 𝑁𝑗
𝑒 [

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧
)

𝜕𝑧
] =

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧
𝑁𝑗

𝑒)

𝜕𝑧
− 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
 (24)

 Substituting the last three equations into equation
(20), yields:

𝑅𝑖

𝑒 = ∭ (𝜀𝑟
𝜕𝜑𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+ 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+

Ω𝑒

𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
−

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑥
𝑁𝑗

𝑒)

𝜕𝑥
−

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑦
𝑁𝑗

𝑒)

𝜕𝑦
−

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧
𝑁𝑗

𝑒)

𝜕𝑧
−

𝜌

𝜀°
𝑁𝑗

𝑒) 𝑑𝑥𝑑𝑦𝑑𝑧

(25)

 The divergence theorem is as follows:

 ∭ (
𝜕𝑈

𝜕𝑥
+

𝜕𝑉

𝜕𝑦
+

𝜕𝑊

𝜕𝑧
) 𝑑𝛺 =

𝛺

∮ [(𝑈𝑥 + 𝑉𝑦 + 𝑊𝑧〗]
𝛢

. 𝑛̂𝑑𝐴

(26)

where A is the enclosed surface for the control
volume.
 By applying the divergence theorem on the last
three terms of equation (25) yields a formula:

 ∬ (𝑁𝑗
𝑒𝐷⃗⃗)

𝐴𝑒 . 𝑛𝑒̂𝑑𝐴 = ∭ (
𝜕(𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥
𝑁𝑗

𝑒)

𝜕𝑥
+

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑦
𝑁𝑗

𝑒)

𝜕𝑦
+

Ω𝑒

𝜕(𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧
𝑁𝑗

𝑒)

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧

(27)

 where:

 𝐷⃗⃗ = 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥
𝒊 + 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑦
𝒋 + 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑧
𝒌⃗⃗

(28)

 Substituting the above equation (27) into equation
(25) gives:

 𝑅𝑖
𝑒 = ∭ (𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+ 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+

Ω𝑒

𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
−

𝜌

𝜀°
𝑁𝑗

𝑒) 𝑑𝑥𝑑𝑦𝑑𝑧 −∬ 𝑁𝑗
𝑒𝐷⃗⃗

𝐴𝑒 . 𝑛𝑒̂𝑑𝐴

(29)

 Regarding the last term ∬ 𝑁𝑗
𝑒𝐷⃗⃗

𝐴𝑒 . 𝑛𝑒̂𝑑𝐴 of the above

equation, there is only contribution from the boundary
elements and none from the inside elements of the
mesh. If one assumes in the entire geometry domain,
Dirichlet and Neumann boundary conditions, which is
usually the case, then there is no contribution from
this term in the finite element formulation and this term
can be neglected.
 Assuming such a case, the equation for the residual
becomes:

 𝑅𝑖
𝑒 = ∭ (𝜀𝑟

𝜕𝜑𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+ 𝜀𝑟

𝜕𝜑𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+

Ω𝑒

𝜀𝑟
𝜕𝜑𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
−

𝜌

𝜀°
𝑁𝑗

𝑒) 𝑑𝑥𝑑𝑦𝑑𝑧

(30)

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13216

 Substituting the elemental shape functions from
equation (12) yields:

 𝑅𝑖
𝑒 = ∭ (𝜀𝑟

𝜕(∑ 〖𝑁𝑗
𝑒(𝑥,𝑦,𝑧)𝜑𝑗

𝑒)4
𝑗=1` 〗

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+

Ω𝑒

𝜀𝑟

𝜕(∑ 𝑁𝑗
𝑒(𝑥,𝑦,𝑧)𝜑𝑗

𝑒4
𝑗=1`)

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+

𝜀𝑟

𝜕(∑ 𝑁𝑗
𝑒(𝑥,𝑦,𝑧)𝜑𝑗

𝑒4
𝑗=1`)

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
−

𝜌

𝜀°
𝑁𝑗

𝑒) 𝑑𝑥𝑑𝑦𝑑𝑧

(31)

 Since the voltage within an element 𝜑𝑗
𝑒 is constant,

it can come out of the differential and the equation
becomes:

 𝑅𝑖
𝑒 = ∭ [−𝜀𝑟

𝜕(∑ 𝑁𝑗
𝑒(𝑥,𝑦,𝑧)4

𝑗=1`)

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
−

Ω𝑒

𝜀𝑟

𝜕(∑ 𝑁𝑗
𝑒(𝑥,𝑦,𝑧)4

𝑗=1`)

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
−

𝜀𝑟

𝜕(∑ 𝑁𝑗
𝑒(𝑥,𝑦,𝑧)4

𝑗=1`)

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
] 𝜑𝑗

𝑒𝑑𝑥𝑑𝑦𝑑𝑧 −

∭
𝜌

𝜀°
𝑁𝑗

𝑒𝑑𝑥𝑑𝑦𝑑𝑧
Ω𝑒

(32)

 Applying the residual formula to all four nodes of the
tetrahedral element from i=1,2,3,4, yields:

 ∑ 𝑅𝑖
𝑒4

𝑖=1 = ∑ ∑ ∭ [𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+

Ω𝑒
4
𝑗=1`

4
𝑖=1

𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+ 𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
] 𝜑𝑗

𝑒𝑑𝑥𝑑𝑦𝑑𝑧 −

∑ ∭
𝜌

𝜀°
𝑁𝑗

𝑒𝑑𝑥𝑑𝑦𝑑𝑧
Ω𝑒 4

𝑖=1

(33)

which can be written in a global matrix form as:

 𝑅𝑒 = [𝐾𝑒][𝜑𝑒] − [𝐶𝑒] (34)

where the elemental 4x4 matrix can be calculated as:

 𝐾𝑖𝑗
𝑒 = ∑ ∑ ∭ [𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+ 𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+

Ω𝑒
4
𝑗=1`

4
𝑖=1

𝜀𝑟

𝜕𝑁𝑗
𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
] 𝑑𝑥𝑑𝑦𝑑𝑧

(35)

𝐶𝑖

𝑒 = ∑∭
𝜌

𝜀°
𝑁𝑗

𝑒𝑑𝑥𝑑𝑦𝑑𝑧

Ω𝑒

4

𝑖=1

(36)

 In equation (35), the triple integral along the three-
dimensions yields the volume of the tetrahedral
element on the denominator, however the derivatives
of the two shape functions yield a term of 1/(36 Ve

2
)

and when combined together, yield a term of 1/36Ve
as a result in the denominator, hence the elemental
assembly matrix becomes:

 𝐾𝑖𝑗
𝑒 =

1

36𝑉𝑒
𝜀𝑟(𝑏𝑖𝑏𝑗 + 𝑐𝑖𝑐𝑗 + 𝑑𝑖𝑑𝑗)

(37)

which represents a 4x4 matrix for each element in the
three-dimensional tetrahedral mesh. Similarly, Ce, the
load vector, after the two volumes from the volume

integral on the numerator and the shape function on
the denominator cancel each other out, it can be
approximated by:

 𝐶𝑖
𝑒 ≅

𝜌𝑐

𝜀°

𝑉𝑒
4

(38)

where the value of ρc is evaluated approximately at
the centroid of the tetrahedral element. Now all the
contributions from the elemental matrix are assembled
into a global matrix R as follows:

𝑅 = ∑[𝑅𝑒̅̅̅̅]

𝑛

𝑒=1

= ∑[𝐾𝑒]̅̅ ̅̅ ̅̅ [𝜑𝑒]̅̅ ̅̅ ̅̅ − [𝐶𝑒]̅̅ ̅̅ ̅̅
𝑛

𝑒=1

= [0]

(39)

where n is the number of total volume elements. Since
the global residual elemental matrix must be minimum
and must be set to zero, one has as a result the
stiffness matrix and the load vector:

 [𝐾][𝜑] = [𝐶] (40)

 There is generally a confusion in the literature
regarding the interpolation coefficients within the
interpolation functions for the mathematical
formulation of the Poisson equation both in two and
three-dimensions. Some formulations, when
calculating the a, b, c and d coefficients, the mean
only the distances between points, hence a division by
6Ve is necessary to calculate the interpolation
function, likewise with our case, whereas in other
formulations, the a, b, c and d coefficients represent
the distances between points divided by 6Ve.

VI. CONJUGATE GRADIENT METHOD

The Laplace and Poisson equations are 2
nd

 order
diffusion elliptic equations which are time independent
and provide a solution for example for an electric field
or gas pressure. The Poisson equation can be solved
in the context of finite elements using the Galerkin
finite element method, which creates a matrix form
which consists of a linear set of equations of the form
Ax =b that needs to be solved. The solution of this
equation can be solved using direct or indirect
methods which are usually iterative methods. One of
the most well-known methods for solving a linear
system of equations is the conjugate gradient method
that takes an iterative approach. The conjugate
gradient method is based on the assumption that the
matrix A is symmetric and positive definite. For a
matrix to be symmetric, this means that A=A

T
 and for

the matrix to be positive definite, then x must be real
and the following relation should hold: x

T
Ax > 0 for all

non-zero vectors of x that belong to R
n
 and one needs

to know vector b. Two vectors are conjugate when
they are orthogonal to the inner product. Hence, two
non-zero vectors u and v are conjugate to the A matrix
if the following expression holds:

 𝑢𝑇𝐴𝑣 = 0 (41)

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13217

Due to the fact that A is symmetric and positive
definite, an inner product can be defined which
involves u and v. Now we assume a set of m mutually
conjugate vectors with respect to the matrix A as
follows: P = (p1,…, pm) can form the basis for R

n
 and

the solution of Ax=b can be expresses as a series of
these basis vectors as:

x ∗ = ∑𝛼𝜄𝑝𝑖

𝑚

𝑖=1

(42)

which leads to:

a𝑘 =

< 𝑝𝑘, b >

< 𝑝𝑘, 𝑝𝑘 >𝐴

(43)

Hence one needs to find a series of m conjugate
vectors and calculate the ak coefficients.

The conjugate gradient method can be simplified
and implemented in an iterative approach by careful
choice of the vectors pk so that not all pk vectors are
necessary. Hence we start with an initial guess,
usually xo = 0. The solution depicted by x* happens
also to be a unique minimizer of the quadratic function:

𝑓(x) =

1

2
𝑥𝑇𝐴𝑥 − 𝑥𝑇𝑏

(44)

where 𝑥 ∈ 𝑅𝑛. The 1
st
 derivative of f(x) becomes:

 ∇ 𝑓(x) = 𝐴𝑥 − 𝑏 (45)

which is identical to the solution of our linear system
and since the 2

nd
 derivative is: ∇2 𝑓(x) = 𝐴, where A

is positive definite, this means that a unique minimizer
exists for the solution of the above equation. Since the
gradient of f(x) =Ax-b and since we are taking an initial
guess value of xo, our initial po = b-Axo, is also the
residual of the equation above but also the negative of
the gradient of f(x=xo).

Let’s define the residual at step n; rn = b - Axn,

where rn is the negative gradient of the quadratic
function f(x) at x = xn. One must ensure though that all
search directions are conjugate, hence orthogonal to
each other and this can be ensured by calculating the
next search direction to be a function of the current
residual and all the previous search directions as
follows:

p𝑛 = r𝑛 − ∑

𝑝𝑖
𝑇𝐴𝑟𝑛

𝑝𝑖
𝑇𝐴𝑝𝑖

𝑖<𝑛

𝑝𝑖

(46)

and the next location is found by the following
equation:

 𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑛𝑝𝑛 (47)

with an calculated by:

a𝑛 =

𝑝𝑛
𝑇𝑟𝑛

𝑝𝑛
𝑇𝐴𝑝𝑛

(48)

Now since we are following a partitioned
implementation of the conjugate gradient method using

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13218

distributive computing, one needs to take into
consideration the various partitions within the mesh
and how to implement efficiently this algorithm. The
formulation of the Poisson equation is based on the
linear Galerkin finite element approximations.

The conjugate gradient method in the context of
finite element Galerkin method in distributive
computing can be summarized in the flowchart shown
below. Using the above finite element formulation of a
mass and consistent matrix as well as source term, the
resulting matrix is of the form Ax=b which takes the
form:

[

𝐴1 … … … 𝐵1

… 𝐴2 … … 𝐵2

… … … … …
… … … 𝐴𝑝 𝐵𝑝

𝐵1
𝑇 𝐵2

𝑇 … 𝐵𝑝
𝑇 𝐴𝑆]

[

𝑥1

𝑥2

…
𝑥𝑝

𝑥𝑠]

=

[

𝑏1

𝑏1

…
𝑏𝑝

𝑏𝑠]

(49)

Since we are exploiting a distributed computing
scheme, the overall matrix is partitioned with
accordance to partitioning, with the index numbers 1, 2
and so on, referring to the different partitions of the
mesh. Since one needs to deal with the dependency
between neighboring meshes, we utilize the well-
known method of ghost cells such that synchronization
between processes or partitions is not necessary at all
times, but only at the end of each time step. Hence the
index p stands for primary nodes and refers to the
interior nodes of a partition which do not share any
dependency with neighboring partitions and index s
stands for secondary which refers to the nodes which

have dependency with neighboring partitions. It must
be noted that all the non-interior nodes are
accumulated at the end of the matrix stacked. To
achieve this, we go through all the nodes of the
partition and we identify the type of the node.

Some useful variables which are crucial in
implementing our distributed computing algorithm are
interior nodes which are the nodes not shared with
other partitions, and the boundary nodes which are the
nodes shared between two or more partitions. In order
to distinguish between interior and boundary nodes,
we use a Node class structure, which holds two
members, .Type and .Local. If .Type=1, it represents
an Interior Node and takes a local numbering value
.Local from 0 and above in increasing order, whereas if
it is a boundary node, .Type is 2 or higher, and .Local
takes a value from 0 and above. Additionally, Dirichlet
boundary conditions take .Type=0 and the .Local=-1
values.

Additionally, a Shared vector counts how many
processes share a specific boundary node and the
corresponding Node[I].Type value is set as >1 i.e. it
can have values of 2 or 3 or 4 and above. This shared
value is used to know how much fraction of the total
contribution each processor has in the InnerProduct
function.

The MaxCommon value denotes the maximum
number of nodes that one process shares with any of
the other processors which is connected to. This
vector is used to communicate using MPI the boundary
nodes contribution between processes, i.e. for
example if process 0 shares with process 1, ten
boundary nodes and with process 2, fifteen boundary
nodes, then MaxCommon value will be 15.

The matrix for the interior nodes Ap is a square
matrix of size InteriorNodes, whereas the matrix Bp is
a rectangular matrix of size InteriorNodes x
InteriorBoundaryNodes.

The matrix As is a square matrix that will hold
values for the interior boundary nodes and it will be of
size: InteriorBoundaryNodes x InteriorBoundaryNodes.

The vectors bp and bs denote the RHS source
terms vectors for the primary and secondary nodes
and have size InteriorNodes and
InteriorBoundaryNodes, respectively, whereas xp and
xs denote the actual solution of the variable for the
primary and secondary nodes, again with sizes
InteriorNodes and InteriorBoundaryNodes,
respectively.

VII. CAPACITANCE AND TOTAL ENERGY IN POISSON

DOMMINATED PHENOMENA

The total stored energy in a capacitor (We) is
calculated as follows:

𝑊𝑒 =

1

2
∫∫∫𝐷⃗⃗ . 𝐸⃗

𝑣

𝜕𝑉

(5
0)

and:

 𝐷⃗⃗ = 𝜀𝛦⃗ (5
1)

where 𝐷⃗⃗ is the electric field density, 𝐸⃗ the electric field
strength, 𝜕𝑉 is the elemental volume and v represents
the volume of the capacitor and ε is the dielectric
permittivity of the material.

 Substituting equation (50) into (51), yields:

𝑊𝑒 =

1

2
∫∫∫𝜀𝛦⃗ . 𝐸⃗

𝑣

𝜕𝑉
(5

2)

 Also:

 𝛦⃗ = −∇V (5
3)

where V is the voltage.

 Substituting equation (53) into equation (52) results
in:

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13219

𝑊𝑒 =

1

2
∫∫∫ 𝜀∇𝑉. ∇𝑉

𝑣𝑛

𝜕𝑥 𝜕𝑦 𝜕𝑧

(
54)

 The value of ∇V depends on the elemental shape
functions Ne within each element and so the
integration domain is split into sub-domains
corresponding to the tetrahedral elements such as:

𝑊𝑒 = ∑ 𝑊𝑒
𝑛

𝑁𝑒

𝑛=1

(5
5)

The energy within each element (𝑊𝑒

𝑛) is found by:

𝑊𝑒

𝑛 =
1

2
∫∫∫ 𝜀∇𝑉. ∇𝑉

𝑣𝑛

𝜕𝑥 𝜕𝑦 𝜕𝑧

(56)

where 𝑣𝑛 represents the volume of the n
th
 element in

the domain.

 The electric field strength is found as follows:

 𝐸⃗ =
1

2𝑉𝑒
(−𝑖 ∑ 𝑏𝑖

4
𝑖=1 𝑉𝑖 −

𝑗 ∑ 𝑐𝑖
4
𝑖=1 𝑉𝑖 − 𝑘⃗ ∑ 𝑑𝑖

4
𝑖=1 𝑉𝑖) = −∇𝑉

(
57)

where 𝑏𝑖, 𝑐𝑖 𝑑𝑖 are the elemental shape functions in x,
y and z-directions.

 Substituting for ∇V from equation (57) into equation
(56), yields:

𝑊𝑒

𝑛 =
1

2
∭

𝑣𝑛

𝜀

6𝑉𝑒
3 [∑

4

𝑖=1

(𝑖 𝑏𝑖 + 𝑗 𝑐𝑖 + (𝑘⃗ 𝑑𝑖)𝑉𝑖

∑

4

𝑗=1

(𝑖 𝑏𝑗 + 𝑗 𝑐𝑗 + (𝑘⃗ 𝑑𝑗)𝑉𝑗

∑ 4
𝑘=1 (𝑖 𝑏𝑘 + 𝑗 𝑐𝑘 + (𝑘⃗ 𝑑𝑘)𝑉𝑘]

(5
8)

 Since b, c, d and V are constant within an element,
equation (58) can be written:

𝑊𝑒

𝑛 =
1

2
∭

𝑣𝑛

𝜀

6𝑉𝑒
3 [∑

4

𝑖=1

 ∑

4

𝑗=1

 ∑

4

𝑘=1

(𝑏𝑖𝑏𝑗𝑏𝑘 + 𝑐𝑖𝑐𝑗𝑐𝑘+𝑑𝑖𝑑𝑗𝑑𝑘)𝑉𝑖𝑉𝑗𝑉𝑘𝜕𝑥𝜕𝑦𝜕𝑧]

(
59)

 Performing the triple integration, gives:

𝑊𝑒

𝑛 =
𝜀

12𝑉𝑒
3 ∑

4

𝑖=1

 ∑

4

𝑗=1

 ∑

4

𝑘=1

 (𝑏𝑖𝑏𝑗𝑏𝑘 + 𝑐𝑖𝑐𝑗𝑐𝑘+𝑑𝑖𝑑𝑗𝑑𝑘)𝑉𝑖𝑉𝑗𝑉𝑘

(6
0)

 Using equation (60) and equation (55), the total
stored energy within the capacitor is calculated by
integrating all the energy from all the elements in the
domain.

 But the total energy 𝑊𝑒 within the capacitor is also
equal to:

𝑊𝑒 =

1

2
𝐶𝑉2

(6
1)

where C is the capacitance and V is the potential
difference between the two plates of the capacitor.
Consequently, the total capacitance can then be
found by using the following expression:

𝐶 =

2𝑊𝑒

𝑉2

(6
2)

VIII. CUDA AWARE MPI POISSON RESULTS

A. Time test

In order to benchmark the capabilities of the CUDA
aware MPI solver, we have benchmarked the
following case. We start with a cubic box of size 1 m
and apply Dirichlet boundary conditions of 0 and 100
V at the cathode and anode, respectively, with εr = 1.
Then, we vary the number of processors and calculate
the time taken to conduct a successful simulation for a
mesh constructed in NETGEN mesh software. The
mesh size is chosen to be large such as to bottleneck
a single GPU card with 68,430 Nodes in the mesh.
For the benchmarking simulations, 18 GPU Tesla K80
cards were used and an AMD EPYC 32core/64 thread
processor has been used.

Table No1: Running time with mesh variation and benchmarking of
3D Poisson equation with a mesh size of 68,430 Nodes.

ProcNo 2 4 8 10 14

Time 7 min, 57.7s 1m, 57.4s 62.8s 51, 6s 46.5s

ProcNo 16 18 20 32

Time 44.95s 42.39s 45.6s 1min 1.9s

In the above table, one can see that using 2
processors, it takes very long time and when 4
processors are used, the time taken is highly reduced.
The trend continuous for the case of 8 threads but at a
much slower rate and continues until using 18 threads,
where it takes the minimum time. Thereafter, thread
initiation and communication times of the threads take
over, increasing the computed times of the
simulations, up to 32 threads.

Additionally, we have constructed a series of six
mesh sizes and benchmarked the time taken
according to the number of processors. During the
simulations, a single Tesla K80, CUDA enabled device
was used with HyperQ technology for simultaneous
access of the various threads. The results are shown
in Fig. 4 below.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13220

Fig. 4 Scaling test for the Poison solver for 6 different meshes under
3 different CPU units (blue-2, red 6, green 12).

Since the software is based mostly in conducting
simulations on the GPU, one can see that the number
of processors has a negative effect on the simulations,
whereas the capability of the GPU is what matters.
Since the GPU can handle single-handedly the size of
all 6 meshes, it will be faster than any scaling of the
threads and even the usage of multiple GPUs. To
conclude, since our algorithms are implemented for
nearly all the simulations to be performed on the GPU,
it is not expected that any scaling will apply with the
GPUs. The multiple GPUs are used in order to be able
to solve larger computational problems, where a single
GPU, bottlenecks because of processing power and/or
available graphic card memory.

B. Accuracy test – Average errors

In order to test the accuracy of the CUDA aware
MPI Poisson solver that we have constructed, we
present the Poisson test result for a benchmark
solution of a box of size 1 m, when applied with a
voltage difference of 100 V between top and bottom
plates. The analytical solution in free air is
straightforward and poses an ideal scenario to test the
accuracy and convergence of a Poisson solver. Table
2 shows the error which is the Mean Percentage
Absolute Error (MPAE) comparison between analytical
and actual solution in an attempt to calculate the
average errors for both the voltage and electric field. It
is shown that on average, the voltage has an error of
3.08 % and the electric field has on average, an error
of 5.12 %. The convergence criteria used here were
automatic and was decided by calculating the mesh
tolerance which is the shortest distance between
edges, and then multiple by 0.8 for finding the mesh
tolerance. Thereafter, the convergence criteria were
decided according to the criterion from the above flow

chart: √𝛾𝜅+1 < 𝑇𝑜𝑙 ∗ 𝑇𝑜𝑙). The fact that we have used
6 different meshes meant that there was a different
criterion for all 6 meshes since they each have their
own tolerance; hence it does not necessarily mean
that a finer mesh will produce more accurate results,
especially if the mesh sizes are not very different,
likewise with this case.

Table No2. Table plot of the voltage and electric field MPAE error
when compared with analytical solution for 6 different meshes of
varying accuracy.

Mesh No1 No2 No3 No4 No5 No6

Verror (%) 2.24 1.58 3.82 5.56 3.16 2.07

Eerror(%) 3.85 4.51 5.93 6.87 5.15 4.39

Fig. 5 Three-dimensional scatter plot of the voltage in a cubic box of
size 1 m, when applied a voltage difference of 100 V.

 Finally, in Fig. 5, we show the three-dimensional
scatter plot of the result for the voltage. One can see
from the graph that the results are as expected since
the voltage increases linearly from the cathode to the
anode from 0 to 100 V.

IX. CONCLUSIONS

KYAMOS software aims to realize the formulation,
development, validation, and optimization of
engineering problems by utilizing high performance
computing through cloud-based distributed GPUs and
state-of-the-art mathematical algorithms. Two
necessary techniques to achieve this are the adaptive
meshing with element quality improvement technique,
and the efficient solution of partial differential
equations. In this paper, we demonstrated the solution
of elliptic dominated problems accurately and
efficiently using state of the art software protocols,
such as the CUDA aware MPI. To conclude, through
state-of-the-art algorithms, and implementation
procedures, we aim in disrupting the market due to:
(a) low pricing schemes from utilization of free open
source software for the viewing, geometry, mesh and
plot editors, (b) fast and accurate algorithms
developed in state of the art CUDA aware MPI
protocol and hopefully become leaders in the CAE
industry in the long run.

ACKNOWLEDGMENT

This work was co-funded by the European
Regional Development Fund and the Republic of

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 12, December - 2020

www.jmest.org

JMESTN42353642 13221

Cyprus through the Research and Innovation
Foundation (Project: START-UPS/0618/0058).

REFERENCES

[1] J. W. Thomas, "Hyperbolic Equations," in
Numerical Partial Differential Equations: Finite
Difference Methods, J. W. Thomas, Ed. New
York, NY: Springer New York, 1995, pp. 205-
259.

[2] J. F. Thompson, B. K. Soni, and N. P.
Weatherill, Handbook of grid generation. CRC
press, 1998.

[3] J. F. Thompson, Z. U. Warsi, and C. W.
Mastin, Numerical grid generation:
foundations and applications. North-holland
Amsterdam, 1985.

[4] Y. Kallinderis, "Adaptive methods for
compressible CFD," Computer methods in
applied mechanics and engineering, vol. 189,
no. 4, 2000.

[5] M. Filipiak, "Mesh generation," Edinburgh
parallel computing centre, the University of
Edinburgh, Edinburgh, 1996.

[6] S. McRae, "Adaptive mesh algorithms-a
review of progress and future research
needs," in 15th AIAA Computational Fluid
Dynamics Conference, 2001, p. 2551.

[7] A. B. Díaz Morcillo, L. Nuño Fernández, J. V.
Balbastre Tejedor, and D. A. Sánchez
Hernández, "Adaptative mesh refinement in
electromagnetic problems," 2000.

[8] A. Papadakis, G. E. Georghiou, and A.
Metaxas, "New high quality adaptive mesh
generator utilized in modelling plasma
streamer propagation at atmospheric
pressures," Journal of Physics D: Applied
Physics, vol. 41, no. 23, p. 234019, 2008.

[9] L. Chen, "Mesh Smoothing Schemes Based
on Optimal Delaunay Triangulations," in IMR,
2004, pp. 109-120: Citeseer.

[10] D. A. Field, "Laplacian smoothing and
Delaunay triangulations," Communications in
applied numerical methods, vol. 4, no. 6, pp.
709-712, 1988.

[11] L. A. Freitag, "On combining Laplacian and
optimization-based mesh smoothing
techniques," Argonne National Lab., IL
(United States)1997.

[12] Q. Du, V. Faber, and M. Gunzburger,
"Centroidal Voronoi tessellations: Applications
and algorithms," SIAM review, vol. 41, no. 4,
pp. 637-676, 1999.

[13] L. Chen and J.-c. Xu, "Optimal delaunay
triangulations," Journal of Computational
Mathematics, pp. 299-308, 2004.

[14] T. Zhou and K. Shimada, "An Angle-Based
Approach to Two-Dimensional Mesh
Smoothing," IMR, vol. 2000, pp. 373-384,
2000.

[15] E. VanderZee, A. N. Hirani, D. Guoy, and E.
Ramos, "Well-centered planar triangulation–
an iterative approach," in Proceedings of the
16th International Meshing Roundtable, 2008,
pp. 121-138: Springer.

[16] H. Erten, A. Üngör, and C. Zhao, "Mesh
smoothing algorithms for complex geometric
domains," in Proceedings of the 18th
international meshing roundtable: Springer,
2009, pp. 175-193.

[17] R. Löhner, "An adaptive finite element
scheme for transient problems in CFD,"
Computer Methods in Applied Mechanics and
Engineering, vol. 61, no. 3, pp. 323-338,
1987.

[18] R. Löhner, "Regridding surface
triangulations," Journal of Computational
Physics, vol. 126, no. 1, pp. 1-10, 1996.

[19] M. J. Berger and P. Colella, "Local adaptive
mesh refinement for shock hydrodynamics,"
Journal of computational Physics, vol. 82, no.
1, pp. 64-84, 1989.

[20] M. J. Berger and A. Jameson, "Automatic
adaptive grid refinement for the Euler
equations," AIAA journal, vol. 23, no. 4, pp.
561-568, 1985.

[21] M. J. Berger and J. Oliger, "Adaptive mesh
refinement for hyperbolic partial differential
equations," Journal of computational Physics,
vol. 53, no. 3, pp. 484-512, 1984.

[22] L. Devroye, E. MŘcke, and B. Zhu, "A note on
point location in Delaunay triangulations of
random points," Algorithmica, vol. 22, no. 4,
pp. 477-482, 1998.

[23] R. A. Finkel and J. L. Bentley, "Quad trees a
data structure for retrieval on composite
keys," Acta informatica, vol. 4, no. 1, pp. 1-9,
1974.

[24] J.-M. Jin, The finite element method in
electromagnetics. John Wiley & Sons, 2015.

http://www.jmest.org/

