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Abstract—In Quantum Mechanics, if the state of a 

particle is represented by a wavefunction, 

although it is necessary for a wavefunction of a 

Harmonic Oscillator to be an eigenstate of the 

Hamiltonian, it is not sufficient; maximum span of 

a wavefunction must also be bound by the energy 

of the state. Quantum Mechanics representation 

of states of a Harmonic Oscillator as infinite-span 

solutions to the wave equation is incorrect. Only a 

subset of the eigenspace of Hamiltonian can 

represent states of an Oscillator. Only the 

solutions to the wave equation under the strict 

constrain that the eigenstates are of limited span 

bound by the energy of the states can be realistic 

states of an Oscillator; the rest of the solutions 

cannot be states. Finding the states of a Quantum 

Oscillator must be a constrained eigen problem. 

Since both position and momentum of any 

Oscillator are strictly bandwidth limited by the 

energy, position and momentum cannot be a 

Fourier Transform Pair. Both Step-Up and Step-

Down operators are real, and hence, the use of 

dedicated complex operator mechanics for 

solving wave equations of Quantum Oscillators is 

out of the context, unrealistic, meaningless, and 

misleading. Span-unconstrained solution to the 

wave equation of a Quantum Oscillator is straight 

forward, and there exists a simple one-line 

solution. Eigenfunctions of the square momentum 

operator corresponding to specific eigenvalues 

dependent on square positions are also 

unconstrained solutions of the wave equation of a 

Quantum Oscillator. If there exists a span-

unconstrained ground state solution, its first 

derivative is also a solution under certain 

condition. This information provides the Step-Up 

and Step-Down operators. Step-Up and Step-

Down operators are inverse of each other; their 

product is a constant. The product of Step-Up and 

Step-Down operators or the product operator 

shares the same eigenspace as of the 

Hamiltonian. One-line solution provides both 

eigenvalues and eigenstates. If a momentum of 

any Oscillator is zero at any position, no particle 

can be beyond that position. All the higher 

eigenstates contain nulls. If the square of the 

span-unconstrained eigenstate is assumed to be 

the probability of particle being at certain location, 

the probability of particle being at a null is nil. As 

a result, if a particle is in between two 

neighborhood nulls, particle will be trapped 

between those two nulls, and hence the higher 

span-unconstrained eigenstates cannot represent 

probability distributions. For an eigenstate to be a 

probability distribution, particle must have the 

ability to be at any position in the entire span of 

the eigenstate; this is not possible for higher 

eigenstates containing nulls. Only the span-

unconstrained ground state can represent a 

probability distribution since it is positive and free 

of nulls. Quantum is an entity that is no longer 

divisible. Quantum-half cannot exist by the very 

definition of the quantum. If there exists a 

Quantum-half, then the Quantum-half itself should 

be the Quantum. Quantum-half is an oxymoron. 

Ground-state energy cannot be a quantum-half; it 

must be one quantum. The appearance of 

quantum-half and spin-half is a result of deBroglie 

wavelength error. No particle has the energy 

required to be at deBroglie wavelength. When the 

correct wavelength is used, quantum-half and 

spin-half disappear. Momentum does not generate 

waves, it is the motion of charge, chomentum that 

generates radiation waves. A charge particle is left 

behind by the very radiation it generated since 

these radiation waves travel at the speed of light. 

Radiation waves cannot represent states of a 

particle since the particle and radiation are 

mutually detached. Motion of electrically neutral 

particles, momentum, does not generate waves. 

Heisenberg Uncertainty has nothing to do with 

why position and momentum of a Quantum 

Oscillator cannot both be simultaneously zero. It 

is an inherent property of Oscillators itself that 

prevents position and momentum from being zero 

simultaneously. The energy of an Oscillator must 

be a non-zero constant. If the position and the 

momentum are zero simultaneously, the energy 

will be zero and hence Oscillator has no 

existence. Heisenberg Uncertainty is only about 

the bandwidth compromise between 

wavefunctions in position domain and momentum 

domains if they are a Fourier Transform pair. 

Heisenberg Uncertainty Principle cannot prevent 

the simultaneous measurability of observables. If 

two operators have a shared eigenspace, those 
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observables are simultaneously measurable; both 

observables are certain on average 

simultaneously irrespective of the Heisenberg 

Uncertainty Principle. If the position and the 

momentum are a Fourier Transform pair, they 

must have a shared eigenspace making them 

simultaneously measurable; otherwise, they will 

not be a Fourier Transform pair. The claim that the 

Operators must commute for them to have a 

shared eigenspace is false, a result of a 

mathematical mishap. Commutation of operators 

is neither necessary nor sufficient for them to 

have a shared eigenspace. Non-commuting 

observables share an eigenspace if the 

commutation of operators is a constant as it is the 

case with position and momentum operators. 

Although any state of an Oscillator is an 

eigenstate of Hamiltonian, any eigenstate of 

Hamiltonian is not a state of an Oscillator. 

Realistic states of an Oscillator are only a small 

subset of the whole eigenspace of Hamiltonian. 

Underline assumption of any Harmonic Oscillator 

is that the displacements are small, which must be 

upheld by the solution. It cannot be violated and 

hence displacement must be finite, cannot be 

infinite. Any Oscillator must have strictly limited 

span of position and a strictly limited span of 

momentum that are determined by the energy. 

Position and momentum of a Harmonic Oscillator 

cannot be random at any time since it is a 

symphony. An infinite span eigenfunction of 

Hamiltonian cannot be a state of an Oscillator of 

finite energy, and hence Quantum Tunneling is not 

possible. The phenomenon of Quantum Tunneling 

is simply bogus. Neither the electrons in an Atom 

nor the Atoms in a lattice have restoration forces 

that are essential for them to be Harmonic 

Oscillators. No particle can be at multiple places 

simultaneously except in psychotic voodoo-

physics. Quantum Mechanics is a paused-time 

theory. Momentum has no existence if the time is 

paused. For the action hero of Quantum 

Mechanics, the almighty wavefunction to appear 

from nowhere and carry out its job, the time must 

be paused, which is only possible on paper and 

impossible in reality. Notwithstanding many 

bogus experimental claims, Quantum Mechanics 

is not experimentally testable in reality since time 

cannot be paused. Paused-time Quantum 

Mechanics cannot be tested by run-time 

experiments. Ensemble average is not a paused-

time average.  Quantum Mechanics is a 

mathematical farce wrapped in Double-Slit and 

Stern-Gerlach experimental blunders, just like 

religious doctrines wrapped in fake miracles, 

mysterious artifacts, and rituals, dictated down 

under the claim that it is blasphemous or a heresy 

to express any opinion against them; they both 

only exist in misguided human fantasy, not in 

reality. 

Keywords—Quantum Mechanics; Quantum 
State; Harmonic Oscillator; Eigenstate; Particle 
Waves;  Schrodinger Equation; Heisenerg 
Uncertainty; Quantum Oscillator; Wavefunction, 
Wave Equation 

I. INTRODUCTION 

For those who are not interested in detail 

derivation, in other words for lazy people, here is the 

natural one-line solution to the span-unconstrained 

wave equation of a Quantum Harmonic Oscillator.  

 

Theorem: One-Line Solution 

If Ǝ ѱn(y) satisfying the condition, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y), Ɐn, n=0, 1, 2, … 

then, ѱn(y) is an unconstrained solution to the wave 

equation of a Quantum Oscillator, 

-∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y) with Ɛn=2n+1, 

where, y=(mωo/ћ)
1/2

x, Ɛn=2En/ћωo, ћ=h/2π, h is the 

Plank constant, En is the energy of the Oscillator, x is 

the displacement of mass m from equilibrium position,                                                       
ωo=(k/m)

1/2
, k is the restoration force constant. 

 

Lemma: States as Eigenvectors of P
2
 

If the momentum operator of the Quantum 

Oscillator is P, and ѱn(y) is an eigenvector of P
2
 with 

eigenvalue -[y
2
-(2n+1)], where, 

P
2
ѱn(y)=-[y

2
-(2n+1)]ѱn(y) 

then, ѱn(y) is an unconstrained solution to the 

Quantum Oscillator with energy Ɛn=2n+1, 

-∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y), Ɐn, n=0, 1, 2, … 

where, P=j∂/∂y, P
2
=-∂

2
/∂y

2
. 

 

Lemma: Hermite Lurking in P
2
 

Hermite of order n is an eigenfunction ѱn(y) of the 

momentum operator P
2
 with eigenvalue -[y

2
-(2n+1)] 

given by Ѱn(y)=gn(y)exp((-1/2)y
2
),  

P
2
ѱn(y)=-[y

2
-(2n+1)]ѱn(y) 

where, gn(y) is the Hermite polynomial of order n. 

 

Now, the solution to the Quantum Oscillator is 

equivalent to finding the eigenvectors of P
2
 

corresponding to the eigenvalues -[y
2
-(2n+1)] Ɐn, n=0, 

1, 2, … As we are going to see later, Hermite of any 

order is an eigenvector of operator P
2
 with the 

eigenvalue -[y
2
-(2n+1)] Ɐn, n=0, 1, 2, … 

 

Lemma: Harmony in Confinement 

In span-unconstrained solution, the span of ѱn(y) is 

infinite. No Harmonic Oscillator of finite energy can be 

at a state ѱn(y) of infinite span. 

 

Hermite of any order satisfies the above condition, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y), Ɐn, n=0, 1, 2, … 

The solution ѱn(y) to the wave equation is of infinite 

span. However, the solutions of infinite span to the 

wave equation do not represent states of a Quantum 

Oscillator. Irrespective of the size of a particle, 

position span as well as the momentum span of any 

oscillator are strictly limited by the energy of the 
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particle and hence acceptable solutions to the wave 

equation must abide by those span constraints 

enforced by the energy level.  

No particle has the energy required to be at any 

location described by an eigenstate or a wavefunction 

of infinite span in position domain. No particle has the 

energy required to be at any momentum described by 

a wavefunction of infinite span in the momentum 

domain. This is one of the major problems associated 

with the Quantum Mechanics representation of 

Harmonic Oscillators. 

 

Lemma: Lack of Energy 

Wavefunctions of infinite span cannot represent 

states of a Quantum Oscillator since both the 

maximum span of the position and the maximum span 

of the momentum of a Quantum Harmonic Oscillator 

are strictly limited by the energy of the Oscillator, 

which is finite. 

 

Forgotten Property: Forget Me Not 

Since wave equation -∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y) 

was a result of the assumption that the displacement y 

is small, wave function ѱn(y) applies realistically only 

for small displacement y.  

 

Any solution ѱn(y) to the wave equation with y that 

violates the small y assumption is not a realistic 

solution to the wave equation that represent a 

Quantum Harmonic Oscillator. Wavefunction ѱn(y) 

with infinite span y is definitely not a state of a 

Quantum Harmonic Oscillator. The oversight of this 

fact is a violation of reality and the consequences are 

detrimental. Quantum Mechanics has violated this fact 

openly and shamelessly. Rules of mathematics do not 

seem to matter in Quantum Mechanics; they violate 

anything and everything as they please claiming that 

Quantum Mechanics do not have to abide by the 

rules. 

 You cannot make an assumption, forget about it, 

and then inadvertently violate it later on just like you 

never made such an assumption. If you make an 

assumption, you have to make sure it is going to hold 

through out to the end. If y is assumed to be small 

displacements in the formulation of the problem, then, 

whatever the solution will be restricted to small 

displacement y.   Infinite span wavefunctions are out 

of the question; they have no connection to the wave 

equations of Harmonic Oscillators.  

Since the position span and momentum span of a 

Harmonic Oscillator are strictly limited by the energy 

of an Oscillator, only the span-constrained solutions to 

the wave equation can represent a Quantum 

Harmonic Oscillator. In addition, if you want a 

wavefunction in position domain to represent a 

probability distribution of particle being at any location, 

then the wavefunction must also be positive and non-

zero withing the span of the wavefunction. 

 

Theorem: Within My Energy Limit 

If Ǝ ѱn(y) satisfying the wave equation of a Quantum 

Oscillator, 

-∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y), 

under the strict condition that, y
2
≤ Ɛn, 

ѱn(y)>0 Ɐn, within the range -(Ɛn)1/2
≤ y ≤ (Ɛn)

1/2 

ѱn(y)=0, otherwise, 

then, ѱn(y) represents a state of a Quantum Oscillator.  

 

The constrain ѱn(y)>0 allows the representation of the 

wavefunction ѱn(y) itself as a probability distribution; 

no squaring is necessary. 

There are no known close form solutions for this 

constrained wave equation. Solutions have to be 

obtained numerically. Against the nature and the 

reality, if one wishes to make the incorrect assumption 

that the wavefunction represents the probability of 

particle being at certain location, then, the 

wavefunction ѱn(y), Ɐn itself can represent a 

probability distribution if ѱn(y) is normalized within the 

range -(Ɛn)1/2
≤y≤(Ɛn)

1/2
; no squaring is required. The 

representation of wavefunction ѱn(y) as a probability 

of a particle being at position y is still invalid and 

unnatural since the nature does not normalize 

wavefunctions. In addition, time has to be paused for 

this probabilistic representation; pausing the time can 

only be in done on paper, not in reality. 

 

Lemma: Momentum Limit 

For a realistic representation of the wavefunction of 

a Quantum Oscillator in the momentum domain, the 

wavefunction in the momentum domain, ѱn(p) must be 

such that, 

ѱn(p)>0, Ɐp within -(ћmωoƐn)1/2
≤ p ≤ (ћmωoƐn)

1/2 

ѱn(p)=0, otherwise. 

 

The span of the momentum p of any Harmonic 

Oscillator is strictly limited by the constrain, 

p
2
≤ћmωoƐn. 

 

Corollary: Limited Admission 

Any state of a Harmonic Oscillator is an eigenstate 

of the Hamiltonian. However, any eigenstate of the 

Hamiltonian is not a state of a Harmonic Oscillator. 

 

Quantum Dilemma: Access Denied  

For Quantum observables to come into existence 

with all of their glory and random characteristics for us 

to observe, the time has to be paused. Since time 

cannot be paused in reality, what exists for us to 

observe is the run-time on-average quantum 

observables. Run-time on-average observables are 

not Quantum observables, they are classical 

observables. As a result, Quantum observables are 

hypothetical and have no real existence; Quantum 

observables are not measurable. 

 

********** 

For those who are derivation-savvy and interested 

in not just the one-line solution but also its derivation 

and the Big Picture, here is the full story, starting with 
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a brief introduction. 

In Quantum Mechanics, a particle with momentum 

p is incorrectly assumed to behave as a wave of 

deBroglie wavelength λ, 

λ=h/p                                                (1.1) 

where, p is the momentum of the particle and h is the 

Plank constant. 

One-dimensional plane wave equation of wavelength 

λ and angular frequency ω is given by, 

ζ(x,t)=exp(j2πx/λ)exp(-jωt)                   (1.2) 

Moving particles do not behave as waves, and the 

energy of a moving particle is mechanical energy. 

Mechanical energy is not quantized. If you make 

incorrect assumption that a moving particle of 

momentum p behaves as a wave of deBroglie 

wavelength λ=h/p, and also equally invalid assumption 

that the mechanical energy is quantized, E=ћω, then, 

the wavefunction of a free moving particle ζn(x,t) is 

given by, 

ζ(x,t)=exp(jpx/ћ)exp(-jEt/ћ)                   (1.3) 

where ћ=h/2π. E is the energy of the particle and x 

denotes the displacement from the equilibrium 

position, or the position of the particle at any time t in 

the case of a Harmonic Oscillator. 

At any time, t, 

ζ(x)=exp(jpx/ћ)                                     (1.4) 

ѱ(t)=exp(-jEt/ћ)                                    (1.5) 

ζ(x,t)=ζ(x)ѱ(t)                                       (1.6) 

If we differentiate the wave equation ζ(x,t) with respect 

to x, we have, 

Pζ(x,t)=pζ(x,t)                                      (1.7) 

where,                             

P=-jћ∂/∂x                                             (1.8) 

P is the momentum operator. 

The position is the independent variable and hence 

the position operator X is assumed to be position 

itself,  

X=xI                                                     (1.9) 

where, I, an identity operator. 

Differentiating ζ(x,t) with respect to time t, we have, 

jћ∂ζ(x,t)/∂t=Eζ(x,t)                                (1.10) 

This is the time dependent Schrodinger equation. If 

the Hamiltonian of the particle is H, 

Hѱ(x)=Eѱ(x)                                      (1.11) 

where, 

H=(1/2m)P
2
+V(x)                                 (1.12) 

V(x) is the potential energy of the particle at position x. 

The time dependent wavefunction of a particle is 

given by, 

ѱ(x,t)=ѱ(x)ѱ(t)                                   (1.13) 

When V(x)=0, particle is a free-moving and hence, 

ѱ(x)=ζ(x)                                           (1.14) 

If ѱ(x) differs from ζ(x), it is because particle is not 

free-moving, or in other word, V(x)≠0. Quantum 

Mechanics representation of square wavefunction, 

|ѱ(x)|
2
 as a probability distribution fails when V(x)=0 

since it is not square differentiable. In fact, as we are 

going to see later, neither ѱ(x) nor |ѱ(x)|
2
 can 

represent a probability distribution irrespective of what 

the potential energy V(x) is.  

 

a) Wave Function: 

When V(x)≠0, ѱ(x) describes the wavefunction of a 

particle. For a free-moving particle V(x)=0 and hence 

ѱ(x)=ζ(x); ζ(x) sinusoidal and cannot be normalized 

for the entire range of x. As a result, wavefunction of a 

free-moving particle does not represent a probability 

distribution of a particle being at a certain location. 

Although the square of ζ(x) is positive and can be 

normalized for a range of wavelength, such 

normalization does not represent a probability 

distribution. In order for a function to be a probability 

distribution, function must be positive for the entire 

range and the area of the function for the entire range 

must be unity. Wave function or its square of a free 

moving particle cannot represent a probability 

distribution. 

 

b) Fourier Transform Pair: 

Position and momentum of a particle at any time 

must be unique. No particle can be at infinitely many 

positions and infinitely many momentums at the same 

time. The momentum cannot change without the 

change of time. Momentum has no existence without 

change of position. Momentum has no existence if the 

time is paused. For position and momentum to be 

random variables time has to be paused. Quantum 

observables have no existence unless the time is 

paused. Time can only be paused on paper, not in 

reality. Position of a particle cannot change without 

change of time. Change of position and momentum of 

a particle are time dependent. Momentum exists only 

in run-time, not at paused-time. 

 Position and momentum are mutually dependent 

since the position is determined by the momentum 

and the momentum is determined by the change of 

position. When position and momentum are mutually 

dependent, they cannot be a Fourier Transform pair. If 

position and momentum cannot be measured 

simultaneously, they cannot be a Fourier Transform 

pair. Fourier Transform simply has no business in the 

affairs of position and the momentum of a particle. 

For a given momentum, no particle (mass) can be 

at infinitely many positions simultaneously. Similarly, 

for a given position, no particle (mass) can be at 

infinitely many momentums simultaneously. In order to 

make that invalid assumption, time has to be paused, 

which is not possible in reality. As a result, position 

and momentum cannot be a Fourier Transform pair. 

The claim in Quantum Mechanics that the position 

and the momentum of a particle are a Fourier 

Transform pair is no different from the religious claim 

that a creator entity created universe; both are blind 

human fantasies without substance. 

However, if one makes the incorrect assumption 

that a particle (mass) can be at infinitely many 

locations and at infinitely many momentums at the 

same time when the time is paused, then, the wave 

function in the position domain ѱ(x) and the wave 

function in the momentum domain ѱ(p) are a Fourier 
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Transform pair given by, 

ѱ(p)= ʃ ѱ(x)exp(-jpx/ћ)dx                      (1.2.1) 

ψ(x)= ʃ ѱ(p)exp(jpx/ћ)d(p/h)                 (1.2.2) 

 

c) Uncertainty Principle: 

In Quantum Mechanics, function exp(-jpx/ћ) is a 

Fourier Transform kernel only by an invalid bogus 

assumption. If position x and momentum p pair is a 

Fourier Transform pair, the width Δx of the wave 

function ѱ(x) in position domain and the width Δp/h of 

the wavefunction in the momentum domain are bound 

by [5], 

  Δx Δp/h≥1                                          (1.3.1) 

Δx Δp≥h                                             (1.3.2) 

This is the so-called Heisenberg uncertainty 

principle. It only says that the bandwidth of a wave 

function cannot be bound both in the position domain 

and the momentum domain if position and momentum 

are a Fourier Transform pair. It does not say anything 

about simultaneous observability or measurability. It is 

not related to the Commutation of operators. The link 

between Heisenberg Uncertainty Principle and 

commutation of operators in Quantum Mechanics is a 

result of a mathematical error or a mathematical 

mishap. Heisenberg Uncertainty Principle has nothing 

to do with commutation of operators. 

On the other hand, both position and momentum 

spans of a Harmonic Oscillator must be bound 

simultaneously even though the position span and the 

momentum span of a Fourier transform pair cannot 

both be bound simultaneously. This prevents the 

position and the momentum of a Quantum Oscillator 

from being a Fourier Transform pair. A pair with 

predefined spans cannot be a Fourier Transform pair. 

Very definition of a Harmonic Oscillator precludes the 

position and the momentum pair of a Harmonic 

Oscillator from being a Fourier Transform pair. No 

strict span bound pair of functions can be a Fourier 

Transform pair. Without strict span bounds of both 

position and momentum, there will be no Quantum 

Harmonic Oscillator. 

 

Corollary: My Hands are Tied 

Position and Momentum pair of a Quantum 

Oscillator is strictly span bound. A strictly span bound 

pair cannot be a Fourier Transform pair. 

 

d) Simultaneous Observability: 

Simultaneous observability has nothing to do with 

the bandwidth bounds of a Fourier Transform pair or 

Heisenberg Uncertainty Principle. Simultaneous 

measurability is related to the shared eigenstates of 

operators of observables. General Uncertainty 

principle or Heisenberg Uncertainty Principle only 

says that a wave function cannot be both position-

span limited, and momentum-span limited 

simultaneously. Heisenberg Uncertainty does not and 

cannot prevent both position operator and the 

momentum operator from sharing an eigenspace. If 

position and momentum pair is a Fourier Transform 

pair, they must have a shared eigenspace, otherwise, 

they would not be a Fourier Transform pair. If they 

have a shared eigenspace, they must be 

simultaneously measurable. 

 

Property: An Open Book 

If two observables are a Fourier Transform pair, 

their operators must have a common eigenspace, 

otherwise, they would not be a Fourier Transform pair. 

Any two observables with common eigenspace must 

be simultaneously measurable.  

  

The width of a wavefunction ѱ(x) is determined by 

the potential V(x); it is not an observer-controlled 

quantity. If V(x)=0, then the span of ѱ(x) is not finite 

and in addition ѱ(x) is not square integrable. Under 

the assumption that position x and momentum p pair 

is a Fourier Transform pair, if the system contains a 

ѱ(x) of narrower width Δx, then the width Δp of the 

wave function in the momentum domain will be wider 

and vice versa. The widths Δx and Δp are not under 

the observer control. The widths Δx and Δp are 

observer independent. 

 Since position operator and momentum operator 

have shared eigenspace, they are simultaneously 

measurable independent of observers or 

measurement instruments. If two observables have a 

shared eigenspace, the measurement of one 

observable does not alter the state of the other. 

Position and momentum of a particle do have a 

shared eigenspace. 

 

Lemma: Relatives Only 

For any Harmonic Oscillator, Δx and Δp must be 

linearly related, not inversely. If Δx and Δp are 

inversely related they cannot represent a Harmonic 

Oscillator of any kind. Heisenberg Uncertainty 

Principle cannot hold for a Harmonic Oscillator. 

 

Corollary: Direct Opposite 

For any Harmonic Oscillator, change of |x| and 

change of |p| are linearly related with a negative 

gradient.  

 

Corollary: Unavailable for Choosing 

For a Harmonic Oscillator, Δx and Δp are 

determined by the energy of the Oscillator; they are 

not left to be determined by a Fourier Transform pair. 

 

e) Measurement of Both Position and Momentum 

are Not Required: 

If position and momentum are a Fourier Transform 

Pair, the information content of the wavefunction in the 

position domain will be the same as the information 

content of the wavefunction in the momentum domain. 

It is not required to measure position and momentum 

separately. If you can obtain the position, you can also 

obtain the momentum from the position measurement. 

 If the position and the momentum is a Fourier 

Transform pair, position and the momentum must be 
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measurable simultaneously, otherwise they cannot be 

a Fourier Transform pair. Commutation of operators of 

observable is not necessary for the simultaneous 

measurability of observables. Non-commutation of 

observables does not prevent the simultaneous 

measurability of observables since non-commuting 

operators can have shared eigenspace. Although the 

position and the momentum operators do not 

commute, the position and the momentum operators 

have shared eigenspace making them measurable 

simultaneously.  

 

Lemma: No Commuting Required for Sharing 

For two operators to have a shared eigenspace, 

commutation of operators is neither necessary nor 

sufficient. Non-commuting operators can have shared 

eigenspace. Non-Commuting observables are 

simultaneously measurable as long as they contain a 

shared eigenspace. 

 

f) Uncertainty Principle Cannot Prevent 

Simultaneous Measurability of Observables: 

There is no way for the Heisenberg Uncertainty 

Principle to prevent simultaneous measurability of 

position and momentum. What is required for the 

simultaneous measurability of two observables is a 

common eigenspace for both operators of the 

observables. Ability have a shared eigenstate for two 

observables has nothing to do with the Heisenberg 

Uncertainty Principle. In spite of what Heisenberg 

Uncertainty principle says, if both position and the 

momentum have a shared eigen space, both position 

and momentum can be measured simultaneously and 

on average they represent the precise position and 

the momentum. Simultaneous measurability does not 

require for their operators to commute. 

Since the width of the wavefunction in position 

domain Δx and the width of the wave function in 

momentum domain Δp are determined by the 

potential energy V(x) the particle is in, Uncertainty 

Principle only says that if a particle is in an 

environment that Δx is narrow, the spread of Δp will 

be wider and vice versa. Uncertainty Principle cannot 

prevent us from observing or measuring both the 

position and the momentum simultaneously. Since the 

position and the momentum are assumed to be a 

Fourier Transform Pair, the simultaneous 

measurability is guaranteed. Any Fourier Transform 

pair must be simultaneously measurable. 

 

g) Simultaneous Measurability is Guaranteed if the 

Position and the Momentum are a Fourier 

Transform Pair: 

If the position x and the momentum p are a Fourier 

Transform Pair, they are mutually independent and 

must exit simultaneously at the same eigenstate. If the 

position and the momentum do not have a common 

eigenspace, they cannot be a Fourier Transform Pair. 

If the position and the momentum are at the same 

eigenstate, then, the position x and the momentum p 

must be measurable simultaneously. The 

simultaneous measurability is guaranteed when the 

invalid assumption that the position and the 

momentum are a Fourier Transform Pair is being 

made.  

At any state ѱ(x), by definition, the probability of 

observing a particle at x is ѱ
*
(x)ѱ(x), where 

ѱ
*
(x)ѱ(x)≥0 and the probability of observing the same 

particle at momentum p is ѱ
*
(p)ѱ(p), where 

ѱ
*
(p)ѱ(p)≥0. Spread of ѱ(x) and ѱ(p) says nothing 

about the simultaneous observability or measurability. 

Precision in both observables can be achieved on 

average simultaneously. Later, we see why an 

eigenstate ѱ(x) or its square |ѱ(x)|
2
 of a particle with 

nulls cannot be a probability distribution of particle 

being at location x. 

 

Lemma: Simultaneity in FT Pair, Guaranteed 

 Simultaneous measurability is an inherent 

property of any Fourier Transform pair. If two 

observables are not simultaneously measurable, then, 

they cannot be a Fourier Transform pair.  

 

II. QUANTUM HARMONIC MOTION 

Consider a Harmonic Oscillation of a particle of 

mass m and the restoration force constant k. If the 

displacement of the particle from its equilibrium 

position is x, then, the Hamiltonian of the Harmonic 

Oscillator H is given by, 

H=(1/2m)P
2
+(1/2)kx

2
                             (2.1) 

where, position operator X and momentum operator P 

are given by, 

P=-jћ∂/∂x                                                          (2.2) 
X=x.                                                                      (2.3) 

If ωo
2
=k/m, we have, 

H=(1/2m)P
2
+(1/2)mωo

2
x

2
                      (2.4) 

ωo is the fundamental angular frequency of the 

Harmonic Oscillator, which is a constant. It is the 

minimum angular frequency of the oscillating particle. 

It can oscillate at integer multiples of the fundamental 

frequency, nωo at higher energy levels, but not at 

fractional ωo/n, where n is an integer.   

If the particle is at state ѱn(x), then, the energy En 

of the particle is given by, 

Hѱn(x)=Enѱn(x)                                    (2.5) 

Substituting for H from eqn. (2.4) and using eqns. 

(2.2) and (2.3), we have, 

-(1/2m)ћ2∂
2
ѱn(x)/∂x

2
+(1/2)mωo

2
x

2
ѱn(x)=Enѱn(x)    (2.6) 

This is the wave equation for a Quantum Harmonic 

Oscillator [1,2]. Solution to the wave equation gives 

the eigenvalue-eigenfunction pairs (En, ѱn(x)), Ɐn, 

n=0,1,2, … for a Quantum Oscillator. Eigenfunction 

ѱn(x) is the state of the particle with the associated 

energy En. Since wavefunction has multiple solutions, 

Harmonic Oscillator can be at any state ѱn(x) with 

associated energy level En, Ɐn, n=0, 1, 2, 3, ... What 

state a Quantum Oscillator is in is determined by the 

total energy of the particle.  

When momentum is zero, p=0, the total energy is 

in the form of potential energy resulting the maximum 
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displacement from which the particle cannot go 

beyond. Similarly, when the displacement is zero, x=0, 

the total energy is in the form of kinetic energy 

resulting the maximum momentum from which the 

momentum of the particle cannot exceed. As a result, 

the span Δx of the wavefunction ѱn(x) in position 

domain and the span Δp of the wavefunction ѱn(p) in 

the momentum domain are determined by the energy 

of the particle, nothing else, not by the Fourier 

Transform bandwidth limits. So, the span of the 

wavefunction, ѱn(x) in position domain and the span 

of the wave function ѱn(p) in momentum domain are 

strictly constrained by the energy of the Oscillator. As 

a result, unbound functions such as Gaussian 

functions, ѱn(x)=exp((-1/2)y
2
) cannot be a 

wavefunction of a Quantum Oscillator. The bounded 

nature of the solution to the wave equation of a 

Quantum Oscillator must have been incorporated into 

the wave equation as a constrain at the beginning.  

However, it is important to note that Quantum 

Mechanics has disregarded the fact that the energy 

level En also limits the span of the eigenstate ѱn(x) in 

position domain and  the span of the eigenstate ѱn(p) 

in the momentum domain. This is one of the major 

mistakes in Quantum Mechanics. 

There are infinite number of solutions to a wave 

equation. Not all the solutions are a realistic 

representation of a Harmonic Oscillator. 

Unconstrained solutions do not represent real 

Quantum Oscillators. For solutions to the wave 

equation to represent a realistic oscillator, solutions 

must be obtained under the constraint that the 

maximum span of an eigenstate in position domain is 

limited by the maximum potential energy of the 

particle. Similarly, the maximum momentum span of a 

wavefunction in momentum domain is also limited by 

the maximum kinetic energy of the oscillator. 

Maximum potential energy is the total energy of the 

state of the Oscillator. The maximum kinetic energy is 

also the total energy of the state of the Oscillator. 

When an Oscillating particle is at maximum potential 

energy, its kinetic energy is zero and similarly, when 

an Oscillating particle is at maximum kinetic energy, 

its potential energy is zero.   

For the time being, we concentrate on the 

unconstrained wavefunction for a Quantum Oscillator 

since it has held a predominant position in Quantum 

Mechanics for no apparent reason. Interestingly, it 

even has its own dedicated complex operator 

mechanics, even though the operators are real, that 

has no use anywhere else. You cannot find a 

Quantum Mechanics book that does not talk about the 

unconstrained solutions to the wave equation of a 

Quantum Oscillator without unnecessary complex 

operator maneuvers. In fact, there is a dedicated 

Complex Operator Mechanics for Quantum Oscillators 

themselves. We will introduce a simple one-line 

solution to the wave equation of a Quantum Oscillator. 

 

III. UNCONSTRAINED SOLUTION TO THE WAVE 

EQUATION 

As we did before, with the change of variables, the 

wave equation can be written as [2], 

- ∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y)                    (3.1) 

where, 

y=(mωo/ћ)
1/2

x                                        (3.2) 

Ɛn=2En/ћωo                                            (3.3) 
x is the displacement of the particle from the 

equilibrium position and ωo is the fundamental angular 

frequency of the particle, ωo=(k/m)
1/2

, En is the energy 

of the Oscillator at state n. 

Since ωo is the fundamental frequency, it cannot 

oscillate at a fraction of ωo and hence ωo≠(1/n)ωo  

where, n is an integer, n>1. 

Angular frequency of an Oscillator can be at any 

integer multiple of fundamental frequency ωo or at 

higher angular frequency ω=nωo, n is an integer. So, 

the fundamental angular frequency ωo is the ground 

state of the Oscillator with energy Ɛo. So, the task is to 

solve the unconstrained wave equation given in eqn. 

(3.1) to find the eigenvalue-eigenfunction pair 

(Ɛn,ѱn(y)) Ɐn, n=0, 1, 2, 3, … . As we mention before, 

these unconstrained solutions do not represent 

Quantum Harmonic Oscillator states.  

 

Property: Within My Jurisdiction Only 

None of the solutions to the wave equation 

represents a state of a Quantum Oscillator unless the 

span of the wavefunction is strictly limited by the 

energy of the Oscillator.  

 

IV. NATURAL ONE-LINE DIRECT SOLUTION TO 

THE UNCONSTRAINED WAVE EQUATION 

 

Theorem: All in One Line 

If Ǝ ѱn(y), a function of y, such that the second 

order derivative satisfies the condition, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y), Ɐn, n=0, 1, 2, …  (4.1) 

then, ѱn(y) is an unconstrained solution to the wave 

equation of a Quantum Oscillator, 

-∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y)                            (4.2) 

with eigenvalue Ɛn given by, 

Ɛn=2n+1, Ɐn, n=0, 1, 2, …                        (4.3) 

 

Proof: 

Assume we have ѱn(y) such that, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y), Ɐn, n=0, 1, 2, …  (4.4) 

Now, substituting eqn. (4.4) in the wave equation 

given in eqn. (4.2), we have, 

-[y
2
-(2n+1)]ѱn(y)+y

2
ѱn(y)=Ɛnѱn(y)                  (4.5) 

(2n+1)ѱn(y)=Ɛnѱn(y)                               (4.6) 

We, now have, 

  Ɛn=(2n+1)], Ɐn, n=0, 1, 2, …                  (4.7) 

As a result, ѱn(y) is an eigenstate with eigenvalue Ɛn, 
Ɐn.  

 

Corollary: Alternate Way 

If the momentum operator of the Quantum 

Oscillator is P, then the eigenfunction ѱn(y) of P
2
 with 

eigenvalue -[y
2
-(2n+1)] is an unconstrained-solution to 
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the Quantum Oscillator 

-∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y), Ɐn, n=0, 1, 2, … 

where, P=j∂/∂y, where P
2
=-∂

2
/∂y

2
. 

 

What is left to do is to find out ѱn(y) that satisfies 

the condition,  

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y), Ɐn, n=0, 1, 2, … 

In other words, we have to find the eigenvectors of 

the square momentum operator P
2
 corresponding to 

eigenvalues -[y
2
-(2n+1)] Ɐn, n=0, 1, 2, … First, we 

want to find the ground state ѱo(y). From eqn. (4.7), 

we already have the ground state energy, Ɛo=1. 

 

V. GROUND STATE SOLUTION TO THE 

UNCONSTRAINED WAVE EQUATION 

We have the wave equation for Quantum 

Harmonic Oscillator,  

-∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y)                              (5.1) 

where,  

  Ɛn=(2n+1), Ɐn, n=0, 1, 2, …                      (5.2) 

At ground state, we have eigenstate ѱo(y) with eigen 

value Ɛo=1. We already have the eigenvalues Ɛn for all 

the states, n=0, 1, 2, …. We know, we can guess the 

ground state solution. However, we want to find the 

ground state without any guessing. How can we find 

the ground state from ground up? 

 

Lemma: Inseparable Couple 

If ѱo(y) is the ground state solution, then, its 

derivative ѱo’(y) is also a solution and ѱ1(y)=ѱo’(y) 

with eigen value Ɛ1=2+Ɛo, where ѱo’(y)= ∂ѱo(y)/∂y. 

 

Proof: 

Assume Ǝ a function ѱo(y), which is a solution to 

the wave equation. Then, we have, 

-∂
2
ѱo(y)/∂y

2
+y

2
ѱo(y)=Ɛoѱo(y)                              (5.3) 

We have no idea what ѱo(y) exactly is, but we know it 

satisfies the wave equation of a Quantum Harmonic 

Oscillator. 

Now, let us take the derivative of eqn. (5.3) with 

respect to y, 

-∂
2
ѱo’(y)/∂y

2
+y

2
ѱo’(y)+2yѱo(y)=Ɛoѱo’(y)          (5.4) 

where, ∂ѱo(y)/∂y=ѱo’(y). 

In order to maintain the structure of the equation, we 

represent only the extra derivative we are taking by 

ѱo’(y). 

Now, let us assume ѱo(y) is a special function that 

satisfies the condition, 

ѱo’(y)=-yѱo(y)                                      (5.5) 

Substituting for 2yѱo(y) in eqn. (5.4), we have, 

-∂
2
ѱo’(y)/∂y

2
+y

2
ѱo’(y)-2ѱo’(y)=Ɛoѱo’(y)          (5.6) 

-∂
2
ѱo’(y)/∂y

2
+y

2
ѱo’(y)=(Ɛo+2)ѱo’(y)                 (5.7) 

This says that if ѱo(y) is a solution, then, the first 

derivative ѱo’(y) is also an eigenstate with eigenvalue 

Ɛo+2. We already know that the eigenvalue of any 

state is given by, 

  Ɛn=(2n+1), Ɐn, n=0, 1, 2,                         (5.8) 

where, Ɛo=1. 

So, we have for n=1,  

Ɛ1=(2+Ɛo) or Ɛ1=(2+1).                           (5.9) 

Therefore, the first higher energy level eigenstate, 

ѱ1(y) is the derivative of the ground state ѱo(y), 

ѱ1(y)=∂ѱo(y)/∂y                                    (5.10) 

if ѱo(y) is such it satisfies the relationship, 

ѱo’(y)=-yѱo(y)                                      (5.11) 

 

a) Derivation of Ground State ѱo(y) 

Although we started with the intention of finding the 

ground state ѱo(y), so far, we have not found ѱo(y). 

What we found was that if ѱo(y) is a solution, then, 

ѱo’(y) is also a solution, and it is the eigenstate ѱ1(y) 

of the first higher energy level Ɛ1. This happens if ѱo(y) 

satisfies the condition, 

ѱo’(y)=-yѱo(y)                                      (5.1.1) 

∂ѱo(y)/∂y=-yѱo(y)                                  (5.1.2) 

We make a further assumption that  

 ѱo(y)>0, Ɐy.                                        (5.1.3) 

In other words, 

ѱo(y)=|ѱo(y)|                                       (5.1.4) 

Under this assumption, we have, 

    (1/ѱo(y))∂ѱo(y)=-y∂y                            (5.1.5) 

Integrating both sides, 

    ∫(1/ѱo(y))∂ѱo(y)=-∫y∂y                            (5.1.6) 

ln ѱo(y)=-(1/2)y
2
+C                                   (5.1.7) 

ѱo(y)=exp(-(1/2)y
2
+C)                               (5.1.8) 

where, ln is the natural logarithm. 

Since ѱo(y)>0, or ѱo(y)=|ѱo(y)|, ѱo(y) can also 

represent a probability density function provided it 

satisfies the condition, 

∫ѱo(y)dy=1                                         (5.1.9) 

Substituting for ѱo(y) from eqn. (5.1.8), we have, 

∫exp(-(1/2)y
2
+C)dy=1                         (5.1.10) 

e
C
 ∫exp(-(1/2)y

2
)dy=1                         (5.1.11) 

e
C
=1/(2π)

1/2
                                        (5.1.12) 

Now, we have the ground state solution of the 

Quantum Harmonic Oscillator, 

ѱo(y)=(1/(2π)
1/2

)exp(-(1/2)y
2
)               (5.1.13) 

For the time being, we can disregard the constant 

multiplication factor since it does not affect the 

solution to the wave equation and as a result we have, 

ѱo(y)=exp(-(1/2)y
2
)                              (5.1.14) 

 

b) Second Derivative of ѱo(y) 

The ground state ѱo(y) is given by, 

ѱo(y)=exp(-(1/2)y
2
)                              (5.2.1) 

ѱo’(y)=-yѱo(y)                                      (5.2.2) 

ѱo’’(y)=(y
2
-1)ѱo(y)                                (5.2.3) 

This must satisfy the general condition for natural one-

line solution, ѱn’’(y) for n=0. We have seen that for 

ѱn(y) to be a solution, ѱn’’(y) must satisfy the 

condition, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y), Ɐn, n=0, 1, 2, …  (5.2.4) 

Substituting n=0 in eqn. (5.2.4), we have, 

ѱo’’(y)=(y
2
-1)ѱo(y)                               (5.2.5) 

So, ѱo’’(y) satisfies the general condition for ѱn(y) to 

be a solution at n=0. 

 

c) All About the Ground State 

Now, we can summarize what we know about the 

ground state ѱo(y), 
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ѱo(y)=exp(-(1/2)y
2
)                                 (5.3.1) 

  Ɛn=(2n+1), at n=0                                    (5.3.2) 

  Ɛo=1                                                        (5.3.3) 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) for n=0       (5.3.4) 

 ѱo(y)=go(y)ѱo(y)                                     (5.3.5) 

where,  

go(y)=1                                                   (5.3.6) 

Function go(y)ѱo(y) is the Hermite of order 0. go(y) is 

the Hermite polynomial of order 0.  

 

VI. FIRST HIGHER STATE, n=1 

Using the fact that if ѱo(y) satisfies the wave 

equation with eigenvalue Ɛo, then, the first derivative of 
ѱo(y) is also a solution, we have, 

ѱ1(y)=-yѱo(y)                                          (6.1) 

Ɛ1=2+1                                                    (6.2) 

where, Ɛo=1 and 

Ɛn=(2n+1) at n=1                                    (6.3) 

ѱo(y)=exp(-(1/2)y
2
)                                 (6.4) 

 

a) Second Derivative of ѱ1(y) 

In order to see if the condition for the general one-

line solution is satisfied, we have to obtain the second 

derivative of ѱ1(y), 

ѱ1(y)=-yѱo(y)                                        (6.1.1) 

ѱ1’(y)=(y
2
-1)ѱo(y)                                  (6.1.2) 

ѱ1’’(y)=(-y(y
2
-1)+2y) ѱo(y)                     (6.1.3) 

ѱ1’’(y)=(y
2
-3)(-y)ѱo(y)                            (6.1.4) 

ѱ1’’(y)=(y
2
-3)ѱ1(y)                                  (6.1.5) 

This must satisfy the condition for the general one-line 

solution for n=1. For any ѱn’’(y) to be a solution to the 

unconstrained wave equation, the second derivative 

must satisfy, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y), Ɐn            (6.1.6) 

At n=1, we have, 

ѱ1’’(y)=(y
2
-3)ѱ1(y)                                  (6.1.7) 

ѱn’’(y) satisfies the condition at n=1 

 

b) All About State-1, n=1 

For the first higher state, we have, 

ѱ1(y)=-yѱo(y)                                         (6.2.1) 

ѱo(y)=exp(-(1/2)y
2
)                                (6.2.2) 

Ɛ1=2+1=3                                               (6.2.3) 

Ɛn=(2n+1), at n=1                                   (6.2.4) 

  Ɛo=1                                                        (6.2.5) 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) for n=1       (6.2.6) 

 Ѱ1(y)=g1(y)ѱo(y)                                     (6.2.7) 

where,  

g1(y)=-y                                          (6.2.8) 

Function g1(y)ѱo(y) is the Hermite of order 1. g1(y) is 

the Hermite polynomial of order 1.  

 

Any constant multiplication factor of an eigenstate 

does not have any effect on the solution to the wave 

equation and hence can be dropped safely. 

 

VII. STEP-UP AND STEP-DOWN OPERATORS 

The relationship between the ground state ѱo(y) 

and the first state ѱ1(y) provides a mechanism for 

generating nearest lower state. If we have such a 

mechanism or an operator, we can operate on any 

state n and obtain the nearest lower state. Such an 

operator is a Step-Down operator D. 

Similarly, we can also use the relationship between 

the ground state ѱo(y) and the first state ѱ1(y) to find a 

mechanism or an operator that we can use to obtain 

the state that is one step higher than the current state. 

Such an operator is a Step-Up operator U. Step-Up 

operator U is also the same as the Inverse-D operator 

or D
-1

. U does the direct opposite of what D does. 

Similarly, the Step-Down operator D is also the 

Inverse-U operator or U
-1

. The product of Step-Up 

operator U and the Step-Down operator D is a 

constant,  

UD=β                                                (7.1) 

U=βD
-1

                                              (7.2) 

D=βU
-1

                                              (7.3) 

where β is a constant.  

Step-Up operator U, and Step-Down operator D, are 

inverse of each other except for a scalar factor.  

 

a) Step-Down Operator D 

We have ground state-0 and state-1, 

ѱo(y)=exp(-(1/2)y
2
)                               (7.1.1) 

ѱ1(y)=-yѱo(y)                                        (7.1.2) 

The derivative of Ѱ1(y) is given by, 

∂ѱ1(y)/∂y=[y
2
-1)]ѱo(y)                           (7.1.3) 

We can write this as, 

∂ѱ1(y)/∂y=-yѱ1(y)-ѱo(y)                        (7.1.4) 

ѱo(y)=-(∂/∂y+y)ѱ1(y)                             (7.1.5) 

ѱo(y)=Dѱ1(y)                                        (7.1.6) 

where,  

D=-(∂/∂y+y)                                         (7.1.7) 

When operator D operates on state Ѱ1(y), it gives 

one step down lower state ѱo(y). In other words, 

operator D is a Step-Down operator. 

 

b) Step-Up Operator U 

If the operator D steps down one state, its inverse 

operator U must exist. Operator U will reverse the 

operation D. It raises the one step down state back to 

its original state.  

Consider the operation of operator D on state 

ѱn(y), 

ѱn-1(y)=Dѱn(y)                                     (7.2.1) 

If we operate U on both sides, we have, 

Uѱn-1(y)=UDѱn(y)                               (7.2.2) 

Since U, and D, are inverse of each other, we have, 

UD=β                                               (7.2.3) 

where, β is a constant. 

Substituting in eqn. (7.2.2), we have, 

Uѱn-1(y)=βѱn(y)                               (7.2.4) 

 

Lemma: Kind of Inverse 

If D=-(∂/∂y+y), and UD=constant, where U is the 

inverse of D, then, U is given by, 

U=∂/∂y-y                                            (7.2.5) 

 

Proof: 

We have to show that the product UD is a 
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constant. The product UD is given by, 

UDѱn(y)=(∂/∂y-y)(-∂/∂y-y)ѱn(y)                   (7.2.6) 

UDѱn(y)=(-∂
2
/∂y

2
+y

2
)ѱn(y) 

-∂(yѱn(y))/∂y+y∂ѱn(y)/∂y            (7.2.7) 

UDѱn(y)=(-∂
2
/∂y

2
+y

2
)ѱn(y)-ѱn(y)               (7.2.8) 

UDѱn(y)=Hѱn(y)-ѱn(y)                              (7.2.9) 

where, H is the Hamiltonian, 

H=-∂
2
/∂y

2
+y

2
                                   (7.2.10) 

HѰn(y)=Ɛnѱn(y)                                (7.2.11) 

It is clear that the Eigenspace of Hamiltonian H is the 

same as the eigenspace of the product operator UD. 

Substituting in eqn. (7.2.9), we have, 

UDѱn(y)=(Ɛn-1)ѱn(y)                         (7.2.12) 

Uѱn-1(y)=(Ɛn-1)ѱn(y)                         (7.2.13) 

In other words, 

UDѱn(y)=βnѱn(y)                             (7.2.14) 

Uѱn-1(y)=βnѱn(y)                              (7.2.15) 

where, βn is a constant, 

βn=(Ɛn-1)                                        (7.2.16) 

Since Ɛo=1, we have, βo=0. 

This proves that the operator U is the inverse of 

the Step-Down operator D, or UD=constant. Inverse of 

the Step-Down operator D=-(∂/∂y+y), is the Step-Up 

operator U, U=∂/∂y-y.   

Similarly, DU is given by, 

DUѱn(y)=Hѱn(y)+ѱn(y)                  (7.2.17) 

Subtracting eqn. (7.2.9) from eqn. (7.2.17), we have, 

(DU-UD)ѱn(y)=2ѱn(y)                    (7.2.18) 

[D, U]ѱn(y)=2ѱn(y)                        (7.2.19) 

So, we have, 

[D, U]=2                                  (7.2.20) 

[U, D]=-2                                 (7.2.21) 

This relationship [D, U]=2 becomes useful later. 

 

c) An Alternate Approach to Step-Up Operator U 

We have obtained Step-Up operator U as the 

inverse of D. There is an alternate way to look at the 

Step-Up operator U. We know that the state-1, ѱ1(y) 

can be obtained as the first derivative of the ground 

state ѱo(y) as well as just the product of -y and ѱo(y). 

As a result, we can write ѱ1(y) as, 

2ѱ1(y)=(∂/∂y-y)ѱo(y)                          (7.3.1) 

2ѱ1(y)=Uѱo(y)                                   (7.3.2) 

where, the Step-Up operator U is given by, 

U=∂/∂y-y                                           (7.3.3) 

Since Dѱ1(y)=ѱo(y), eqn. (7.3.2) can be written as, 

2ѱ1(y)=UDѱ1(y)                                (7.3.4) 

First state, ѱ1(y) is an eigenfunction of UD with eigen 

value of 2. From eq. (7.2.14), 

UDѱn(y)=βnѱn(y)                             (7.3.5) 

For n=1, we have, 

UDѱ1(y)=β1ѱ1(y)                             (7.3.6) 

Comparing eqns. (7.3.4) and (7.3.6), we have, 

β1=2                                                (7.3.7)  

It is clear from eqn. (7.2.16) that for n=0, βo=0 since 

Ɛo=1. Further, the fact that βo=0 is also clear since 

UDѱo(y)=0. 

When operator U operates on ѱo(y), it gives the 

next higher state ѱ1(y). The operator U represents the 

Step-Up operator. Since the operator U does not 

depends on any particular state, it is a general 

operator and applies to any state. Operator U takes 

any state ѱn(y) and gives the next higher state ѱn+1(y).  

More importantly, every time Step-Up operator U 

operates on any state, it increases the eigenvalue of 

the state by 2. At state n, the eigenvalue of the state 

will be 2n, 

βn=2n                                     (7.3.8) 

Substituting in eqn. (7.3.5), 

UDѱn(y)=2nѱn(y)                       (7.3.9) 

The exact proof of this relationship is given later under 

the product operator N, where, N=UD.  For now, we 

know that it holds true for n=0 and n=1. 

The n
th
 state, ѱn(y) is the eigenfunction of the 

product operator N, N=UD with eigenvalue 2n. This is 

the reason for the factor 2n in the one-step solution to 

the Quantum Oscillator wave equation. 

Eqns. (7.3.9) can also be written as,  

Uѱn-1(y)=2nѱn(y)                        (7.3.10) 

 

d) Step-Down Operator D on Ground State ѱo(y) 

The operator D transforms a higher state to the 

next nearest lower state. If operator D operating on 

any state gives the state that is one step down, what 

happens when operator D operates on ground state 

ѱo(y). The ground state is given by, 

ѱo(y)=exp(-(1/2)y
2
)                            (7.4.1) 

Applying operator D, we have, 

Dѱo(y)=-∂(exp(-(1/2)y
2
))/∂y-yexp(-(1/2)y

2
)        (7.4.2) 

Dѱo(y)=0                                      (7.4.3) 

where,  

D=-(∂/∂y+y)                                  (7.4.4) 

Step-Down operator D operating on the ground 

state ѱo(y) results in a null state. This is the case 

since there is no lower level below the ground state. 

This also proves that there are no fractional energy 

levels.  

At the ground state, the angular frequency of the 

quantum oscillator, ωo is a constant, ωo=(k/m)
1/2

 that is 

determined by the parameters k and m which are 

constants for a particle in Harmonic Oscillation, not by 

the environment the particle is in. So, there is no 

fractional ωo. Since there is no fractional energy 

quanta, the lowest energy possible at angular 

frequency ωo is ћωo. There can only be integer 

multiples of energy quantum, nћωo, where n is an 

integer. As a result, there will only be higher energy 

states above the ground state. Step-Down operator 

acting on ground state producing a null state confirms 

that. Of course, this is known for ages. 

Operators U and D do not have subscript n 

attached to them and hence they are general 

operators that applies to any state n of Quantum 

Oscillators, 

D=-(∂/∂y+y)                            (7.4.5) 

U=∂/∂y-y.                                (7.4.6) 

Operators U and D are absolutely real. Was this 

known for ages? I am not sure. If this is known, why 

did they stick j in Step-Up and Step-Down operators in 

Quantum Mechanics making them complex 
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operators? In any case, Step-Up operator U and Step-

Down operator D are real, that is what is important. 

 

VIII. PRODUCT OPERATOR N=UD 

Now, we have the Step-Up operator U and the 

Step-Down operator D. The product operator N is 

given by, 

N=UD                                                   (8.1) 

Operating N on ѱn(y), we have, 

Nѱn(y)=U(Dѱn(y))                                 (8.2) 

Dѱn(y))=ѱn-1(y)                                     (8.3) 

Now, we have, 

Nѱn(y)=Uѱn-1(y))                                   (8.4) 

 

Theorem: 

The n
th
 eigenstate of N is given by, 

Nѱn(y)=2nѱn(y), Ɐn, n=0, 1, 2, …              (8.5) 

 

Proof: 

We have already seen this holds true for n=0 and 1. 

Assume this holds true for n. Then, we have, 

Nѱn(y)=2nѱn(y)                                    (8.6) 

Now, for the state n+1, we have, 

Nѱn+1(y)=N(Uѱn(y))                              (8.7) 

Now, we want to find a way to turn NU into UN. 

Consider the operator NU-UN, 

NU-UN=UDU-UUD                            (8.8) 

       NU-UN=U[D, U]                                 (8.9) 

From eqn. (7.2.18), we have, 

(DU-UD)ѱn(y)=2ѱn(y)                       (8.10) 

[D, U] =2                                          (8.11) 

Substituting in (8,9), we have, 

       NU-UN=2U                                      (8.12) 

NU=UN+2U                                     (8.13) 

Substituting for NU in eqn. (8.7), we have, 

Nѱn+1(y)=(UN+2U)ѱn(y))                      (8.14) 

Since we assumed it to be true for n, we have, 

 Nѱn(y)=2nѱn(y)                                  (8.15) 

Substituting for N in eqn. (8.14), we have, 

Nѱn+1(y)=(2n+2)Uѱn(y))                      (8.16) 

Nѱn+1(y)=2(n+1)ѱn+1(y))                      (8.17) 

If ѱn(y) is an eigenstate of N with eigenvalue 2n, then,  

ѱn+1(y) is also an eigenstate of N with eigenvalue 

2(n+1). 

The relationship, 

Nѱn(y)=2nѱn(y)                                    (8.18) 

is true for n=0 and n=1. It is also true for n+1 if it is 

true for n. As a result, it is true for Ɐn, n=0, 1, 2, … 

 

Substituting for N in eqn, (8.6), we have, 

UDѱn(y)=2nѱn(y)                                    (8.19) 

Uѱn-1(y)=2nѱn(y)                                    (8.20) 

 

Theorem: 

The n
th
 eigenstate ѱn(y) of a Quantum Oscillator is 

an eigenfunction of the product operator N with 

eigenvalue 2n. 

 

When operator N operates on the ground state 

ѱo(y), we have, 

Nѱo(y)=U(Dѱo(y))                                       (8.21) 

Nѱo(y)=0                                                    (8.22) 

The ground state ѱo(y) is the eigenfunction of the 

product operator N with zero eigen value. Operator N 

nullifies the ground state ѱo(y). If N operates 

consecutively on states, the eigenvalue advances by 

2 units in each state. As a result, at the state n, the 

eigenvalue will be 2n, Ɐn, 

Nѱn(y)=2nѱn(y)                                       (8.23) 

From eqn. (7.2.9), we already have, 

UDѱn(y)=Hѱn(y)-ѱn(y)                              (8.24) 

Nѱn(y)=Hѱn(y)-ѱn(y)                                (8.25) 

Hѱn(y)=(N+1)ѱn(y)                                   (8.26) 

It is clear that the eigenstate of the product operator 

N, N=UD, is also the eigenstate of the Hamiltonian H.  

 

Lemma: Sharing Generously 

The eigenspace of the product operator N is the 

same as the eigenspace of the Hamiltonian H, 

Eigenspace(N)≡Eigenspace(H), 

where, N=UD. 

 

We have already seen that the operation of N 

increases the eigenvalue by 2 units. From eqns. (8.5) 

and (8.26), we have, 

Hѱn(y)=(2n+1)ѱn(y)                                 (8.27) 

Hѱn(y)=Ɛnѱn(y)                                        (8.28) 

where, 

Ɛn=(2n+1), Ɐn, n=0, 1, 2, …                    (8.29) 

This shows that the states we obtained using Step-Up 

operator U, and Step-Down operator, D are 

eigenstates of the Hamiltonian operator H of the 

Quantum Oscillator and solution to the wave equation, 

-∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y)                            (8.30) 

 

Corollary: Always Doubling 

The n
th
 eigenvalue of the product operator N, 

N=UD is 2n. 

 

We have already seen that ѱn(y) that satisfy the 

condition, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y)                      (8.31) 

satisfies the wave equation for a Quantum Oscillator 

for n=0 and n=1. Let us see if it satisfies for n=2. 

 

IX. STATE-2, n=2 

We already have the eigenstate n=1, ѱ1(y) with the 

eigenvalue Ɛ1. Applying Step-Up operator U on ѱ1(y), 

we have the eigenstate n=2, ѱ2(y), 

 ѱ2(y)=Uѱ1(y)                                     (9.1) 

where, U=∂/∂y-y. 

From eqn. (6.2.1), the eigenstate ѱn(y) for n=1 is 

given by, 

ѱ1(y)=-yѱo(y)                                     (9.2) 

Now, we have, 

ѱ2(y)=(∂ѱ1(y)/∂y)-yѱ1(y)                          (9.3) 

ѱ2(y)=2y
2
ѱo(y)-ѱo(y)                               (9.4) 

ѱ2(y)=(2y
2
-1)ѱo(y)                                   (9.5) 

Differentiating Ѱ2(y), we get, 

ѱ2’(y)=-y(2y
2
-1)ѱo(y)+4yѱo(y)                 (9.6) 
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ѱ2’(y)=(-2y
3
+5y)ѱo(y)                              (9.7) 

The second derivative of ѱ2(y) is given by, 

ѱ2’’(y)=(-y(-2y
3
+5y)-6y

2
+5)ѱo(y)                  (9.8) 

Ѱ2’’(y)=(2y
4
-5y

2
-6y

2
+5)ѱo(y)                        (9.9) 

ѱ2’’(y)=(2y
4
-11y

2
+5)ѱo(y)                          (9.10) 

ѱ2’’(y)=(y
2
-5)(2y

2
-1)ѱo(y)                           (9.11) 

ѱ2’’(y)=(y
2
-5)ѱ2(y)                                     (9.12) 

This is same as, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) for n=2          (9.13) 

This is the condition required for ѱ2(y) to be a solution 

of the wave equation of the Quantum Oscillator. It is 

clear that the condition,  

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) holds true for n=2. 

 

All About State-2, n=2 

For the second higher state, we have, 

ѱ2(y)=(2y
2
-1)ѱo(y)                                   (9.14) 

ѱo(y)=exp(-(1/2)y
2
)                                  (9.15) 

Ɛ2=4+1=5                                                (9.16) 

Ɛn=(2n+1), at n=2                                    (9.17) 

  Ɛo=1                                                         (9.18) 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) for n=2       (9.19) 

 ѱ2(y)=g2(y)ѱo(y)                                      (9.20) 

where,  

g2(y)=2y
2
-1                                             (9.21) 

Function g2(y)ѱo(y) is the Hermite of order 2. g2(y) is 

the Hermite polynomial of order 2. 

 

X, STATE-3, n=3 

We want to find out if the condition for ѱn(y) to be a 

solution to a Quantum Oscillator is satisfied for n=3, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) for n=3        (10.1) 

We already have ѱ2(y), 

ѱ2(y)=(2y
2
-1) ѱo(y)                                   (10.2) 

Applying Step-Up operator U, we have, 

ѱ3(y)=Uѱ2(y)                                           (10.3) 

ѱ3(y)=(∂ѱ2(y)/∂y)-yѱ2(y)                          (10.4) 

ѱ3(y)=(-2y(2y
2
-1)+4y)ѱo(y)                     (10.5) 

ѱ3(y)=(-4y
3
+6y)ѱo(y)                               (10.6) 

Disregarding the scale factor, 

ѱ3(y)=(2y
3
-3y)ѱo(y)                                 (10.7) 

First derivative is given by, 

ѱ3’(y)=(-y(2y
3
-3y)+6y

2
-3)ѱo(y)                 (10.8) 

ѱ3’(y)=(-2y
4
+9y

2
-3)ѱo(y)                          (10.9) 

The second derivative is given by, 

ѱ3’’(y)=(-y(-2y
4
+9y

2
-3)-8y

3
+18y)ѱo(y)         (10.10) 

ѱ3’’(y)=(2y
5
-17y

3
+21y)ѱo(y)                   (10.11) 

ѱ3’’(y)=(y
2
-7)(2y

3
-3y)ѱo(y)                     (10.12) 

ѱ3’’(y)=(y
2
-7)ѱ3(y)                                 (10.13) 

Ɛ3=2(3)+1=7                                         (10.14) 

This is same as, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) for n=3          (10.15) 

This is the condition required for ѱ3(y) to be a solution 

for the wave equation of the Quantum Oscillator. It is 

true for n=3. Square value of a very specific null of the 

second derivative of the eigenstate is also an eigen 

value of the Hamiltonian. 

 

All About State-3, n=3 

For the third higher state, n=3, we have, 

ѱ3(y)=(2y
3
-3y)ѱo(y)                                  (10.16) 

ѱo(y)=exp(-(1/2)y
2
)                                  (10.17) 

Ɛ3=2(3)+1=7                                            (10.18) 

Ɛn=(2n+1), at n=3                                    (10.19) 

  Ɛo=1                                                         (10.20) 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) for n=3       (10.21) 

 ѱ3(y)=g3(y)ѱo(y)                                     (10.22) 

where,  

g3(y)=2y
3
-3y                                           (10.23) 

Function g3(y)ѱo(y) is the Hermite of order 3. g3(y) is 

the Hermite polynomial of order 3. 

For an iteration to holds true, we only have to show 

the condition,  ∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) holds true 

for n=0 if we can show that it holds true for n+1 

provided that it is true for n. So far, we have not 

shown that.  It does not matter for how many n values 

the condition holds true, the proof is not going to be 

complete until we show that it is true for n+1 provided 

it holds true for n. Let us try one more n value before 

we consider the general case.  

 

XI. STATE-4, n=4 

We have seen that the condition for ѱn(y) to be a 

solution for a Quantum Oscillator holds true for n=0, 1, 

2, 3. Now, we want to see if it holds true for the 

eigenstate 4, n=4. 

We already have the state ѱ3(y). We can obtain 

the state ѱ4(y) using the Step-Up operator U on ѱ3(y), 

ѱ4(y)=Uѱ3(y)                                            (11.1) 

ѱ3(y)=(2y
3
-3y)ѱo(y)                                  (11.2) 

where, U=∂/∂y-y. 

ѱ4(y)=(∂ѱ3(y)/∂y)-yѱ3(y)                            (11.3) 

ѱ4(y)=(-2y(2y
3
-3y)+6y

2
-3)ѱo(y)                 (11.4) 

ѱ4(y)=(-4y
4
+12y

2
-3)ѱo(y)                           (11.5) 

First derivative is given by, 

ѱ4’(y)=(-y(-4y
4
+12y

2
-3)-16y

3
+24y)ѱo(y)        (11.6) 

ѱ4’(y)=(4y
5
-28y

3
+27y)ѱo(y)                           (11.7) 

The second derivative is given by, 

ѱ4’’(y)=(-y(4y
5
-28y

3
+27y)+20y

4
-84y

2
+27)ѱo(y)  (11.8) 

ѱ4’’(y)=(-4y
6
+48y

4
-111y

2
+27)ѱo(y)              (11.9) 

ѱ4’’(y)=(y
2
-9)(-4y

4
+12y

2
-3)ѱo(y)                (11.10) 

ѱ4’’(y)=(y
2
-9)ѱ4(y)                                     (11.11) 

This is same as, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) for n=4          (11.12) 

This is the condition required for ѱ4(y) to be a solution 

for the wave equation of the Quantum Oscillator. It is 

true for n=4. Since Ɛn=(2n+1), at n=4, we have, 

Ɛ4=2(4)+1)                               (11.13) 

Eigenfunction ѱ4(y) is the fourth state of a Quantum 

Harmonic Oscillator with eigenvalue,  

Ɛ4=9.                                      (11.14) 

 

All About State-4, n=4 

For the fourth higher state, n=4, we have, 

ѱ4(y)=(-4y
4
+12y

2
-3)ѱo(y)                         (11.15) 

ѱo(y)=exp(-(1/2)y
2
)                                  (11.16) 

Ɛ4=2(4)+1=9                                            (11.17) 

Ɛn=(2n+1), at n=4                                    (11.18) 

  Ɛo=1                                                         (11.19) 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) for n=4       (11.20) 
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 ѱ4(y)=g4(y)ѱo(y)                                      (11.21) 

where,  

g4(y)=(-4y
4
+12y

2
-3)                                (11.22) 

Function g4(y)ѱo(y) is the Hermite of order 4. g4(y) is 

the Hermite polynomial of order 4. Now, it is time to 

show that it holds true for any n. It just occurred to me 

how to show it for a general case. 

 

XII. STATE n 

For any state ѱn(y), Ɐn, n=0, 1, 2, … to describe 

the dynamics of a Quantum Oscillator, ѱn(y) must 

satisfy the wave equation, 

-∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y)                              (12.1) 

However, it is important to note that unconstrained 

solutions to the wave equation have infinite span 

whereas the span of any Quantum Oscillator is limited 

by the energy of the Oscillator. Therefore, 

unconstrained solutions do not represent Quantum 

Oscillators. It is only the solutions where the span is 

constrained to satisfy the energy level of an Oscillator 

that can represent the states of a Quantum Oscillator. 

We will consider span constrained solutions later. 

For a given Oscillator, the fundamental angular 

frequency ωo is a constant. There are no fractional ωo. 

Frequency of any state can be integer multiples of ωo, 

nωo, where n is an integer. 

Our goal is to find (Ɛn, ѱn(y) pairs that satisfy the 

wave equation of the Oscillator given in eqn. (12.1). 

We found that if ѱo(y) is a solution to the wave 

equation, then, ѱo’(y) is also a solution under the 

constrain that ѱo’(y)=-yѱo(y). This allowed us to obtain 

the ground state solution ѱo(y) and the next higher 

state ѱ1(y).  

Once states ѱo(y) and ѱ1(y) are found, we could 

see how to Step-Up to state ѱ1(y) from state ѱo(y). It 

also allows us to see how to Step-Down from state 

ѱ1(y) to state ѱo(y). This information led to the Step-

Up operator U and Step-Down operator D. Both Step-

Up operator U and Step-Down D are absolutely real. 

Operators U, and D, are inverse of each other or their 

product UD is a constant. No complex operators are 

required to find solutions to the wave equation for the 

Quantum Harmonic Oscillator. 

 

Property: We are Real 

Both Step-Up operator U and Step-Down operator 

D are real, not complex. U and D are inverse of each 

other; their product is a constant. 

 

The Step-Up operator U and the Step-Down 

operator D are given by, 

U=∂/∂y-y                                       (12.2) 

D=-∂/∂y-y                                      (12.3) 

As we can see, the operators, U and D, are not 

complex operators. When we generate consecutive 

eigenvalue and eigenfunction pairs (Ɛn, ѱn(y)), Ɐn, 

n=0, 1, 2, …, a pattern immerges that we can 

generalize it to the state n. This generalized pattern 

obtained iteratively is the same as the general one-

line solution. 

The wave functions ѱn(y) Ɐn, n=0, 1, 2, … or eigen 

states satisfy the wave equation,  

-∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y)                              (12.4) 

At any state n, eigenstate ѱn(y) also satisfies the 

condition, 

 ∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y)                      (12.5) 

where, 

ѱo(y)=exp(-(1/2)y
2
)                                  (12.6) 

Eigenstate ѱn(y) can also be written as, 

ѱn(y)=gn(y)ѱo(y)                                      (12.7) 

where, gn(y)ѱo(y) is the Hermite of order n and gn(y) is 

the Hermite polynomial of order n. 

The eigenvalue at eigenstate ѱn(y) is given by, 

 Ɛn=(2n+1)                                               (12.8) 

Eigen values  have the pattern, (n=0, Ɛ0=1), (n=1, 

Ɛ1=3), (n=2, Ɛ2=5),  (n=3, Ɛ3=7), (n=4, Ɛ4=9) … .    

As we move to higher and higher states, the 

energy level increases by 2 units between two 

consecutive eigenstates. The relationship to the actual 

position x and energy En is given by, 

y=(mωo/ћ)
1/2

x                                     (12.9) 

Ɛn=2En/ћωo                                       (12.10) 

where, En is the mechanical energy of the particle 

(both kinetic energy and potential energy),  

ћ=h/2π, h is the Plank constant 
ωo=(k/m)

1/2
, k is the restoration force constant (Hook’s 

coefficient) of the Harmonic Oscillator, m is the mass 

of the particle, and x is the displacement from the 

equilibrium position. 

As we can see, ωo is a constant that is determined 

by k and m that are constants. There cannot be 

fractional ωo. As it is evident from the eigenvalues, 

Ɛn=(2n+1), Ɐn, n=0, 1, 2, 3, …, a particle can only 

have integer multiples of the fundamental angular 

frequency of the particle, ωo. 

Substituting for Ɛn, the actual energy level En is 

given by, 

En=(1/2)Ɛnћωo                                   (12.11) 

Since Ɛn=(2n+1), we have, 

En=(1/2)ћωo(2n+1)                            (12.12) 

En=ћωo(n+1/2)                                  (12.13) 

Although this is the energy we obtained in the 

solution, there is an inherent problem associated with 

it since there cannot be fractional ћ or fractional ωo. 

There cannot be fractional ћωo. The minimum energy 

of the particle is ћωo if we make the invalid 

assumption that the mechanical energy is quantized. 

There can neither be fractional energy no fractional 

spins. We need to address this problem. This is not a 

problem that is intrinsic to a Harmonic Oscillator. This 

is a problem stems from the foundation of Quantum 

Mechanics itself [3]. 

 

XIII. STATE n+1 

We have shown that the condition that the second 

derivative of eigenstate ѱn(y) must satisfy in order for 

it to be a solution to the wave equation is true for n=0, 

1, 2, 3, 4. They do not prove that it is true for all n. We 

need one more general step in order to complete the 

proof. 
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Required Condition:  

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) Ɐn, 0, 1, 2, 3, 4, … 

 

Lemma: Iteration 

If condition ∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) holds true 

for any state n, then it holds true for state n+1. 

 

Proof: 

We have seen that the eigenfunction ѱn(y) is an 

unconstrained solution to the wave equation if the 

second derivative of ѱn(y) satisfies the condition, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y)                 (13.1) 

We want to see if the condition holds true for the state 

n+1 given that it holds true for state n. 

We have the Step-Up operator U, 

U=∂/∂y-y                                            (13.2) 

Applying Step-Up operator U on state ѱn(y), we have, 

ѱn+1(y)=Uѱn(y)                                    (13.3) 

ѱn+1(y)=ѱn’(y)-yѱn(y)                           (13.4) 

Taking the first derivative on both sides, we have, 

ѱn+1’(y)=ѱn’’(y)-yѱn’(y)-ѱn(y)               (13.5) 

Since the condition holds true for state n, substituting 

for ѱn’’(y) from eqn. (13.1), we have, 

ѱn+1’(y)=(y
2
-(2n+1))ѱn(y)-yѱn’(y)-ѱn(y)               (13.6) 

Taking the derivative again, we have, 

ѱn+1’’(y)=(y
2
-(2n+1))ѱn’(y)+2yѱn(y)-yѱn’’(y)-2ѱn’(y)  

(13.7) 

Since the condition holds true for state n, substituting 

for ѱn’’(y) from eqn. (13.1), we have, 

ѱn+1’’(y)=(y
2
-(2n+1))ѱn’(y)+2yѱn(y) 

-y(y
2
-(2n+1))ѱn(y)-2ѱn’(y) (13.8) 

From eqn. (13.4), we have, 

yѱn(y)=-ѱn+1(y)+ѱn’(y)                           (13.9) 

Substituting in eqn. (13.8), we have, 

ѱn+1’’(y)=(y
2
-(2n+1))ѱn’(y)-2ѱn+1(y)+2ѱn’(y) 

-y(y
2
-(2n+1))ѱn(y)-2ѱn’(y)                    (13.10) 

ѱn+1’’(y)=(y
2
-(2n+1))(ѱn’(y)-yѱn(y))-2ѱn+1(y)   (13.11) 

Substituting from eqn. (13.4), we have, 

ѱn+1’’(y)=(y
2
-(2n+1))ѱn+1(y)-2ѱn+1(y)     (13.12) 

ѱn+1’’(y)=(y
2
-(2(n+1)+1))ѱn+1(y)             (13.13) 

If ѱn’’(y)=[y
2
-(2n+1)]ѱn(y) for state n, then,  

ѱn+1’’(y)=(y
2
-(2(n+1)+1))ѱn+1’(y). 

If the condition ∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y) holds true 

for state n, then, it also holds true for state n+1. 

As a result ѱn’’(y)=[y
2
-(2n+1)]ѱn(y) holds true for all n, 

n=0, 1, 2, ….. . 

 

Unconstrained Solution to the Quantum 

Oscillator: 

Here is the summary: 

When ѱn(y) satisfies the relationship, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y), Ɐn, n=0, 1, 2, 3, … 

then, ѱn(y) is a solution with eigenvalue Ɛn=(2n+1) to 

the unconstrained Quantum Dynamics given by the 

wave equation,  

-∂
2
ѱn(y)/∂y

2
+y

2
ѱn(y)=Ɛnѱn(y), 

where, ѱo(y)=exp((-1/2)y
2
), 

y=(mωo/ћ)
1/2

x, Ɛn=2En/ћωo,       
x is the displacement of the particle from the 

equilibrium position and ωo is the fundamental angular 

frequency of the particle of mass m and the 

restoration force constant k, ωo=(k/m)
1/2

, En is the 

energy of the particle. 

Step-Up operator U=∂/∂y-y  

Step-Down operator D=-∂/∂y-y 

U, and D, are inverse of each other, UD=2n, 

Hamiltonian, H=-∂
2
/∂y

2
+y

2
 

Hѱn(y)=(2n+1)ѱn(y) 

UDѱn(y)=2nѱn(y) 

Uѱn-1(y)=2nѱn(y). 

All the operations are real.  

The product operator N=UD 

Eigenspace of the product operator N is the same as 

the eigenspace of the Hamiltonian H. 

 

XIV. NO FRACTIONAL ENERGY QUANTA 

If energy comes in quanta, there cannot be 

fractional quanta. Energy quantum hf at any frequency 

f is the minimum energy wave burst that can exist at 

that frequency. 

We have seen that a Quantum Harmonic Oscillator 

comes with a ground state energy Eo=(1/2)ћωo. This is 

impossible since the minimum possible energy at 

angular frequency ωo is ћωo. There is something 

fundamentally wrong here. As we are going to see, it 

is a result of a wrong assumption with regards to the 

wavelength of so-called particle waves.  

First of all, particles (masses) do not behave as 

waves, and waves are not particles. Quantum 

Mechanics was founded upon the invalid assumption 

that particles behave as waves of deBroglie 

wavelength λdb given by, 

λdb=h/p                                      (14.1) 

where, h is the Plank constant and p is the momentum 

of the particle. 

If we multiply both sides of eqn. (14.1) by 

frequency fo of the Oscillator, where ωo=2πfo, 

foλdb=hfo/p                                   (14.2) 

If the speed of the particle is u, the speed of the 

particle wave is also u and hence, 

 u=foλdb                                         (14.3) 

Substituting in eqn. (14.2), we have, 

pu=hfo                                         (14.4) 

Since p=mu, substituting for p in eqn. (14.4), we have, 

mu
2
=hfo                                       (14.5) 

The ground state energy Eo is hfo and hence, from 

eqn. (14.5), we have, 

Eo=mu
2
                                       (14.6) 

If we assume that mechanical energy is quantized and 

a particle of momentum p behaves as a wave of 

deBroglie wavelength, λdb=h/p, then the energy of the 

particle at ground state, Eo should be mu
2
. This is 

what the kinetic energy of a particle should be when 

potential energy is zero for that particle to be at 

deBroglie wavelength, λdb=h/p. No mass has the 

kinetic energy mu
2
. Free moving particle or particle at 

potential zero or in other words, a free-moving particle 

at ground state only has half the required energy or 

(1/2)mu
2
. So, no particle wave can be at deBroglie 
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wavelength. Energy of a particle is insufficient for it to 

be at deBroglie wavelength. This is the deBroglie 

particle wave blunder.  

Particles do not behave as waves. It is the moving 

charge particles that generate electromagnetic 

radiation waves when they are stopped, accelerated, 

or decelerated. Once generated, propagation of these 

radiation waves is completely independent of the 

motion of the particle. They do not describe the state 

of a particle. They do not describe the probability of 

particle being at certain location. 

 

XV. WAVELENGTH THAT A PARTICLE IS CAPABLE 

OF SUPPORTING [3] 

No mass (a particle) behaves as a wave. It is 

simply impossible except in human fantasy. It does 

not happen in reality. If you want to mystify or 

voodoofy particles by assuming particles behave as 

waves, the wavelength of the wave must be the 

wavelength that the energy of a particle can support. 

For a particle of mass m moving at speed u, the 

ground state energy Eo of the particle is the kinetic 

energy of the particle and hence, 

Eo=(1/2)mu
2
                                       (15.1) 

Since the momentum p of a particle of mass m and 

speed u is given by p=mu, we have, 

Eo=(1/2)pu                                         (15.2) 

If a particle is moving at speed u is behaving as a 

wave of wavelength λ and frequency fo, we have, 

  u=foλ                                                 (15.3) 

Substituting for u in eqn. (15.2), we have, 

Eo=(1/2)pfoλ                                         (15.4) 

The energy of a mass m is mechanical energy. 

Mechanical energy has no existence without an 

associated mass and as a result, mechanical energy 

cannot come in quanta [3]. Any entity that has a 

belonging cannot come in quanta since there is no 

mechanism for a quantum to carry belonging 

information. It is only the electromagnetic energy that 

comes in quanta since electromagnetic energy has no 

belonging. 

If you are going to incorrectly claim that the 

mechanical energy of a particle is quantized, you have 

to use the correct energy of a particle. If you are going 

to assume that a mass behaves as a wave, the 

energy of the particle must be capable of supporting 

that wavelength. Under the invalid assumption that the 

energy of a particle is quantized, we have, 

Eo =hfo                                            (15.5) 

From eqns. (15.4) and (15.5), we have, 

hfo=(1/2)pfoλ                                    (15.6) 

λ=2h/p                                             (15.7) 

λ=2(deBroglie wavelength)                (15.8) 

If you incorrectly assume that a particle of mass m 

and momentum p behaves as a wave, and also 

incorrectly assume that the mechanical energy is 

quantized, then the correct wavelength that the 

energy of a particle can support is twice the deBroglie 

wavelength, λ=2λdb, where deBroglie wavelength  

λdb=h/p. It is this wavelength error that has made 

havoc in Quantum Mechanics. 

 

XVI. CORRECT ENERGY SPECTRUM FOR 

QUANTUM HARMONIC OSCILLATOR 

As we have seen in eqn. (12.13), under deBroglie 

wavelength λdb=h/p used in Quantum Mechanics, the 

energy spectrum of a Quantum Oscillator En, n=0, 1, 

2, … is given by, 

En=ћωo(n+1/2), Ɐn, n=0, 1, 2, ….       (16.1) 

The actual wavelength that any mass can support is 

twice the deBroglie wavelength and given by, 

λ=2h/p                                                (16.2) 

So, in order to correct the error due to incorrect 

deBroglie wavelength, all we have to do is substitute 

2h in place of h in the energy spectrum En of the 

Quantum Oscillator obtained for the deBroglie 

wavelength λdb=h/p. However, the h in the time 

progression operator is unaffected by the deBroglie 

wavelength error [3]. 

Now, we have the correct energy spectrum En for a 

Quantum Oscillator, 

En=(2ћ)ωo(n+1/2), Ɐn, n=0, 1, 2, ….       (16.3) 

En=ћωo(2n+1), Ɐn, n=0, 1, 2, ….            (16.4) 

The energy levels of a Quantum Oscillator are, 

ћωo(1, 3, 5, 7, 9, …. ). 

The actual energy level increases by 2 units when one 

moves from one energy level to the next higher level. 

The categorization of particles (masses) such as 

electrons and protons as Quantum 1/2 particles is 

incorrect and meaningless. There is no Quantum 1/2 

[3]. Fractional energy quanta cannot exist by the very 

definition of energy quantum. Quantum is the smallest 

energy unit that can exist. Quantum is no longer a 

Quantum if there is a fractional quantum. There are no 

one half energy quanta. The smallest energy unit is 

ћωo. The energy spectrum of a Quantum Oscillator of 

mass m and restoration force coefficient k cannot 

have (1/2)ћωo energy levels. The minimum ground 

state at zero potential energy is ћωo. Any higher 

energy level must be an integer multiple of ћωo or 

nћωo, where n is a positive integer. 

 

Corollary: No Fractional Quantum 

Quantum is no longer a Quantum if there exists a 

fraction of a quantum. Quantum-half defies the very 

definition of Quantum. 

 

It is the case for electromagnetic waves in a cavity. 

Fundamental frequency fo of a cavity is determined by 

the geometry of the cavity. It is also the case for 

Quantum Harmonic Oscillator if particles are assumed 

to behave as waves, and the mechanical energy is 

assumed to be quantized; both assumptions are 

invalid. Particles (masses) do not behave as waves 

and mechanical energy cannot come in quanta.  

Any entity that has a belonging cannot be 

quantized. Quantum Mechanics is a voodoo-science 

by design from its inception, not a science. Quantum 

Mechanics has turned into a new religion with 

unquestioning followers, just like all the blind-faith 
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followers of religions. The fact that all the religions 

were founded by the people who believed either earth 

was flat, or sun goes around the earth, demonstrates 

the mockery of it. How can a guy who did not know 

what goes around what in a planetary system be a 

messenger of a creator? Quantum Mechanics is not 

much different from states sponsored dark-age 

barbaric religious dogma. 

 

Corollary: Non-Quantizability 

If an entity has an owner, that entity cannot come 

in Quanta since there is no mechanism to carry 

ownership information.  

 

Mechanical energy cannot exist without a mass. 

Mechanical energy belongs to a particular mass. As a 

result, mechanical energy cannot come in quanta or 

cannot be quantized. You cannot quantize vectors 

either. Quantum field is an oxymoron. 

It is only the electromagnetic energy that comes in 

Quanta since electromagnetic waves have no owner 

once they are out of a source. Electromagnetic energy 

quanta are not particles, they are wave bursts. There 

are no photons or light particles in nature. Photons by 

definition are spatially random and hence cannot 

represent directional light. The derivation of the 

photons also incorrectly assumes that the 

electromagnetic frequency spectrum in a cavity is 

continuous, which is not. Electromagnetic spectrum in 

a cavity is discrete and hence the derivation of 

photons is inconsistent with reality. If the 

electromagnetic energy is quantized, electromagnetic 

spectrum cannot be continuous.  

There are no massless particles. There are no 

wave particles. What is there is wave bursts. Wave 

bursts have no momentum. Propagation of waves is 

not due to momentum. It is only motion of a mass that 

is due to momentum. There is no momentum in 

massless. Waves bursts are massless. Mass of a 

particle does not depend on observers. Path of light 

does not depend on observers. Observer perceptions 

do not determine the nature. Contrary to what the 

preachers in the Relativity cult are chanting, observer 

perceptions do not determine physics of the nature. 

No mountain is moving relative to a runner. It is only 

the object that does the work that is moving. 

Propagation of light does not depend on the 

observers. Light is not relative [6].  

The direction of light is solely determined by the 

density gradient of the medium or the lack of it. Any 

entity with a mass cannot travel at constant speed in 

the universe since there is no place in the universe 

that is free of gravitational force; the gravitational field 

of any object is of infinite span. Gravity has no 

influence on massless; that is the reason why light 

can travel at constant speed in a gravitational field. 

Gravity cannot bend light. Gravity can create a density 

gradient in the medium. It is the density gradient in the 

medium that bends light. Photons exists only in 

misguided voodoofied human fantasy, not in reality. 

 

XVII. REAL-OPERATOR MECHANICS FOR 

QUANTUM OSCILLATORS  

Quantum Mechanics has its own dedicated 

operator mechanics for Quantum Harmonic 

Oscillators based on the commutation of complex 

operators [1]. However, there is no reason to use 

complex operator mechanics for solving a wave 

equation for a Quantum Harmonic Oscillator. Both 

Step-Up and Step-Down operators are absolutely real. 

The Hamiltonian is real. Wave equation is real. 

Solution to the wave equation of a Quantum Harmonic 

Oscillator can be achieved directly by using Real 

Operators.  

Although you may find complex operator 

mechanics for a Quantum Harmonic Oscillator in any 

Quantum Mechanics Textbook, a good introduction to 

Quantum Harmonic Oscillators using Complex 

Operator Mechanics can be found in reference [1]. In 

fact, it is a good reference not just for Quantum 

Oscillators, but also for Quantum Mechanics in 

general. While reading it, rather than learning 

Quantum Mechanics, an attentive reader who has no 

religious attachment to Quantum Mechanics may 

discover at the very beginning of the book, especially 

in the section related to Spin, that Quantum 

Mechanics is simply bogus.  

Stern-Gerlach Device or any other permanent 

magnetic field cannot be used to measure or set spin 

of a particle [3]. Permanent setting of the Spin of a 

particle is not possible. The Spin of a Single Atom 

always orients towards an external magnetic field as 

long as it is in the magnetic field. Once the Atom is out 

of the magnetic field, spin is no longer towards the 

magnetic field. Spin of an Atom set by an external 

magnetic field is volatile. It is only when magnetically 

coupled beam of atoms is used in the Stern-Gerlach 

experiment that the beam splits into Spin-Up and 

Spin-Down beams as long as the Atoms are in the 

Stern-Gerlach magnetic field.  

Spin-Up and Spin-Down are observer dependent 

and hence cannot be states of a particle. Observer 

dependent quantities cannot come in quanta. One 

observer’s Spin-Up can be another observer’s Spin-

Down and vice versa. If you want to know why the 

mere idea of Spin Quantization and a good part of 

reference [1] are so ridiculously laughable, you may 

find it in reference [3].  

An attentive reader of reference [1] will discover by 

himself or herself that Quantum Mechanics cannot be 

right and why it cannot be right. You may discover 

yourself what has gone awry in Quantum Mechanics. 

If it is not for the blind-faith religious attachment of the 

authors to Quantum Mechanics, they would have 

discovered themselves what in fact had gone wrong in 

Quantum Mechanics and why? Religious attachments 

make people blind to the facts and make them to go 

on claiming it is the others who are blind. 

What is important to realize is that Stern-Gerlach 

or any other magnetic field cannot be used to obtain 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 10, October - 2020  

www.jmest.org 

JMESTN42353562 12880 

the direction of a Spin. Stern-Gerlach Device cannot 

be used to obtain the components of a Spin along 

axes or in any direction. Stern-Gerlach Device cannot 

be used for permanent setting of a Spin to a desired 

direction. What Stern-Gerlach magnetic field or any 

other magnetic field does is that it aligns a Spin of an 

Atom along the direction of its magnetic field 

irrespective of its original orientation of the Spin as 

long as the Atom is within the magnetic field. Stern-

Gerlach Device or any other magnetic field is blind to 

the actual direction of Spin of an Atom [3].  

 

Working Principle of the Stern-Gerlach Device: 

You are either with us or against us – Bushism. If 

you are not against us, we will torque you Up. If you 

are against us, it is Down you go.  

 

Any single Atom enters into a Stern-Gerlach 

Device is always Spin-Up. It is only when magnetically 

coupled Atoms enter the Stern-Gerlach in sequence 

that the beam will be split into two beams of Spin-Up 

and Spin-Down. Once two beams are out of the Stern-

Gerlach Device, they will no longer be Spin-Up or 

Spin-Down. The magnetic coupling between adjacent 

Atoms take over and reorient themselves just like the 

Atoms in the original beam. In the absence of an 

external magnetic field, the orientation of Atoms in a 

beam is such, the orientation of the Spins of any two 

neighboring Atoms will be against each other. More 

information on how and why that happens can be 

found in Reference [3]. 

 

Noteworthy Fact: 

First Atom entering a Stern-Gerlach Device will 

always be deflected as Spin-Up.  

If a beam of Atoms enters the Stern-Gerlach 

Device, since the Spins of the Atoms in the beam are 

magnetically coupled so that the Spins of adjacent 

Atoms are of opposite directions, the beam will be 

split such that all the odd Atoms will be Spin-Up while 

all the even Atoms are deflected as Spin-Down. A 

50/50 Split of a beam by a Stern-Gerlach Device has 

nothing to do with probability. It is completely a 

deterministic process. 

 

Quantum Mechanics is a collection of 

mathematical and conceptual blunders wrapped in 

incorrect and invalid experimental interpretations. 

Double-slit experiment and Stern-Gerlach experiment 

are two such misinterpreted and voodoofied 

experiments [3, 4]. 

Coming back to Quantum Oscillators, here, we 

introduce the solution to Quantum Harmonic Oscillator 

using Real Operator Mechanics since no real operator 

mechanics can be found anywhere. 

 

a) Real Operators 

By Using the ground state ѱo(y) and the first state 

ѱ1(y), we already found the Step-Up operator U and 

the Step-Down operator D, 

U=∂/∂y-y                                        (17.1.1) 

D=-∂/∂y-y                                       (17.1.2) 

Hamiltonian H for a Quantum Oscillator is given by, 

H=-∂
2
/∂y

2
+y

2
                                  (17.1.3) 

The Product Operator N is given by, 

N=UD                                           (17.1.4) 

At eigenstate ѱn(y), we have, 

Nѱn(y)=UDѱn(y)                           (17.1.5) 

Substituting for U and D, we have, 

Nѱn(y)=(∂/∂y-y)(-∂/∂y-y)ѱn(y)            (17.1.6) 

Nѱn(y)=(-∂
2
/∂y

2
+y

2
)ѱn(y) 

-∂(yѱn(y))/∂y+y∂ѱn(y)/∂y          (17.1.7) 

Nѱn(y)=(-∂
2
/∂y

2
+y

2
)ѱn(y)-ѱn(y)          (17.1.8) 

Nѱn(y=Hѱn(y)-ѱn(y)                          (17.1.9) 

where, H is the Hamiltonian, 

H=-∂
2
/∂y

2
+y

2
                                   (17.1.10) 

Hѱn(y)=(N+1)ѱn(y)                          (17.1.11) 

This indicates that the eigenstates of the product of 

Step-Up operator U and the Step-Down operator D, or 

in other words the Product Operator N, are also eigen 

states of the Hamiltonian H. Further, the eigenvalue of 

Hamiltonian H at any state is one unit higher than the 

eigenvalue of the Product Operator N at the same 

state. As a result, finding the eigenvalues and the 

eigenstates of the Hamiltonian H is equivalent to 

finding the eigenvalues and eigenstates of the Product 

Operator N or UD. The only significant difference 

between the Product Operator UD or N and the 

Hamiltonian of the particle H is that the ground state 

eigenvalue of N is zero while the ground state eigen 

value of H is 1 unit. 

 

b) Commutation [D, U] 

U=∂/∂y-y                                       (17.2.1) 

D=-∂/∂y-y                                      (17.2.2) 

DUѱn(y)=(-∂/∂y-y)(∂/∂y-y)ѱn(y)              (17.2.3) 

DUѱn(y)=(-∂
2
/∂y

2
+y

2
)ѱn(y) 

+∂(yѱn(y))/∂y-y∂ѱn(y)/∂y          (17.2.4) 

DUѱn(y)=(-∂
2
/∂y

2
+y

2
)ѱn(y)+ѱn(y)          (17.2.5) 

DUѱn(y=Hѱn(y)+ѱn(y)                          (17.2.6) 

From eqn. (17.1.9), UD is give by, 

UDѱn(y=Hѱn(y)-ѱn(y)                           (17.2.7) 

Subtracting eqn. (17.2.7) from eqn. (17.2.6), we have, 

(DU-UD)ѱn(y)=2ѱn(y)                          (17.2.8) 

The Commutation [D, U] is given by, 

  [D, U]ѱn(y)=(DU-UD) ѱn(y)                  (17.2.9) 

Now, we have, 

[D, U]ѱn(y)=2ѱn(y)                             (17.2.10) 

[D, U]=2                                             (17.2.11) 

Similarly, we can also obtain commutation [U, D], 

[U, D]=-2                                            (17.2.12) 

 

c) Commutation [D, N] 

N=UD                                              (17.3.1) 

     [D, N]=DUD-UDD                            (17.3.2) 

[D, N]=[DU-UD]D                             (17.3.3) 

[D, N]=[D, U]D                                 (17.3.4) 

From eqn. (17.2.11), we have [D, U]=2 and hence, 

[D, N]=2D                                        (17.3.5) 

Similarly, [N, D] is given by, 
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[N, D]=-2D                                       (17.3.6) 

 

d) Commutation [U, N] 

     [U, N]=UN-NU                                    (17.4.1) 

Substituting N=UD, we have, 

[U, N]=UUD-UDU                               (17.4.2) 

[U, N]=U[UD-DU]                               (17.4.3) 

From eqn. (17.2.12), we have [U, D]=-2, and hence 

[U, N]=-2U                                         (17.4.4) 

Similarly, [N, U] is given by, 

[N, U]=2U                                          (17.4.5) 

 

e) Action of Step-Down Operator D 

Let βn and ѱn(y) be an eigenvalue eigenfunction 

pair of Product Operator N. Then, we have, 

Nѱn(y)=βnѱn(y)                                  (17.5.1) 

Given the n
th
 state solution, βn and ѱn(y) of the 

Product Operator N, we want to find (n-1)
th
 state of the 

Product Operator N, 

Nѱn-1(y)=?                                      (17.5.2) 

Since Dѱn(y)=ѱn-1(y), we have, 

Nѱn-1(y)=N(Dѱn(y))                         (17.5.3) 

Now, we want to change ND to DN. The reason for 

doing that will be clear eventually. To do that, consider 

the commutation [D, N], where, 

[D, N]=DN-ND                                (17.5.4) 

ND=DN-[D, N]                                (17.5.5) 

From eqn. (17.3.5), we already have, 

[D, N]=2D                                       (17.5.6) 

Now, we have, 

ND=DN-2D                                    (17.5.7) 

Substituting for ND in eqn. (17.5.3), we have, 

Nѱn-1(y)=(DN-2D)ѱn(y)                   (17.5.8) 

We already know, 

Nѱn(y)=βnѱn(y)                                (17.5.9) 

Dѱn(y)=ѱn-1(y)                               (17.5.10) 

Substituting in eqn. (17.5.8), we have, 

Nѱn-1(y)=(βn-2)Dѱn(y)                      (17.5.11) 

Since D is the Step-Down operator, we have, 

Nѱn-1(y)=(βn-2)ѱn-1(y)                      (17.5.12) 

Nѱn-1(y)=βn-1ѱn-1(y)                          (17.5.13) 

where,  

βn-1= βn-2                                     (17.5.14) 

βo= 0                                           (17.5.15) 

The eigen values of the Product Operator N 

decreases by 2 units when n goes down by 1. When 

Step-Down operator D operates on any state it 

decreases the eigenvalue of the product operator UD 

by 2 units and provide the next lower state. Since the 

Step-Down operator D is the reverse of the Step-Up 

operator U, the Step-Up operator U should do the 

opposite; operator U should raise the eigenvalue of 

the product operator UD by 2 units. 

The eigenstates of Hamiltonian H are the same as 

the eigenstates of the Product Operator N. The eigen 

values of the Hamiltonian H is the same as the eigen 

values of Product Operator N except an added 

constant, which is the ground state eigenvalue, Ɛo=1. 

The eigenvalue of the Product Operator N at n=0 is 

zero, βo=0 while the eigenvalue of the Hamiltonian H 

at n=0 is Ɛo=1. The action of the Step-Down operator 

D brings down an eigenstate of the Hamiltonian H by 

2 units. As we are going to see, next, the action of the 

Step-Up operator U does the opposite. 

 

f) Action of Step-Up Operator U 

Let us consider the n
th
 state eigenvalue 

eigenfunction pair (βn, ѱn(y) of the Product Operator 

N, 

Nѱn(y)=βnѱn(y)                                  (17.6.1) 

Given the n
th
 state solution, βn and ѱn(y) of the 

Product Operator N, we want to find (n+1)
th
 state of 

the Product Operator N, 

Nѱn+1(y)=?                                      (17.6.2) 

Since Uѱn(y)=ѱn+1(y), we have, 

Nѱn+1(y)=N(Uѱn(y))                         (17.6.3) 

Now, we want to represent NU using UN. To do that, 

consider the commutation [U, N], where, 

[U, N]=UN-NU                                (17.6.4) 

NU=UN-[U, N]                                (17.6.5) 

From eqn. (17.4.4), we already have, 

[U, N]=-2U                                      (17.6.6) 

Now, we have, 

NU=UN+2U                                    (17.6.7) 

Substituting for NU in eqn. (17.6.3), we have, 

Nѱn+1(y)=(UN+2U)ѱn(y)                   (17.6.8) 

We already know, 

Nѱn(y)=βnѱn(y)                                (17.6.9) 

Uѱn(y)=ѱn+1(y)                               (17.6.10) 

Now, we have, 

Nѱn+1(y)=(βn+2)Uѱn(y)                      (17.6.11) 

Since U is the Step-Up operator, we have, 

Nѱn+1(y)=(βn+2)ѱn+1(y)                      (17.6.12) 

Nѱn+1(y)=βn+1ѱn+1(y)                          (17.6.13) 

where,  

βn+1= βn+2                                   (17.6.14) 

βo= 0                                           (17.6.15) 

The eigen values of the product operator N increases 

by 2 units when n goes up by 1. When Step-Up 

operator U operates on any state it increases the 

eigenvalue of the product operator N by 2 units and 

provide the next higher state, which is the reverse of 

the Step-Down operator D. As a result, at n
th, 

state, the 

eigen value of N will be 2n. 

Further, as we have seen before, the product 

operator N operated on the ground state will nullifies 

it, 

Nѱo(y)=0                                        (17.6.16) 

The ground state eigenvalue of N is zero, βo=0, for 

n=0, at ground state. Starting from eigenvalue zero at 

the ground state, every time n is increased by one 

step, the eigenvalue of N increases by 2 units. As a 

result, the n
th
 eigenvalue, βn of N is given by, 

Nѱn(y)=βnѱn(y)                               (17.6.17) 

where, βn=2n, Ɐn, n=0, 1, 2, …  

Nѱn(y)=2nѱn(y)                               (17.6.18) 

From eqn. (17.1.11), we already have the eigen 

relationship between the Hamiltonian H and the 

product operator N, 

Hѱn(y)=(N+1)ѱn(y)                          (17.6.19) 
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Substituting for Nѱn(y) from eqn. (17.6.18), we have, 

Hѱn(y)=(2n+1)ѱn(y)                          (17.6.20) 

Hѱn(y)=Ɛnѱn(y)                                  (17.6.21) 

where,  

Ɛn=(2n+1)                                      (17.6.22) 

From eqn. (12.11), the actual energy, En of the n
th
 

state is given by, 

En=(1/2)Ɛnћωo                                (17.6.23) 

Since Ɛn=(2n+1), we have, 

En=(1/2)ћωo(2n+1)                         (17.6.24) 

 

En=ћωo(n+1/2)                                (17.6.25) 

where, ωo=(k/m)
1/2

. 

The lowest energy of the oscillator must be ћωo. 

There cannot be fractional quanta. The very idea of 

fractional quanta goes against the definition of quanta. 

 

Corollary: Ultimate Quantum 

 Quantum can no longer be a quantum if there is a 

fractional quantum.  

 

Quantum by definition is an indivisible entity. As a 

result, there is something wrong about the n
th
 state 

energy given by eqn. (17.6.25). We have already 

pointed out and addressed this problem earlier. This 

problem is due to deBroglie wavelength error. The 

Spin-Half appears in Quantum Mechanics is also a 

result of the same wavelength error [3]. DeBroglie 

wavelength that the Quantum Mechanics was founded 

upon is incorrect by a factor of one half. No particle 

(mass) has energy required to be at deBroglie 

wavelength. As a result, true wavelength is twice the 

deBroglie wavelength. We can easily correct this error 

by substituting 2ћ in place of ћ in eqn. (|17.6.25), so 

we have, 

 En=(2ћ)ωo(n+1/2)                               (17.6.26) 

En=ћωo(2n+1), Ɐn, n=0, 1, 2, …        (17.6.27) 

Ground state energy Eo is one energy quanta,  

Eo=ћωo.                                      (17.6.28) 

When you go up to higher states step by step, at each 

step, the energy level increases by 2ћωo, 

Eo=ћωo(1, 3, 5, 7, 9, …)                 (17.6.29) 

The difference between two neighboring levels will be 

2 Quanta. Complex Operator Mechanics [1] is not 

required in obtaining solutions to the wave equation 

for a Quantum Harmonic Oscillator. All the operators 

are real. If you disregard the phase shift introduced 

with time, all the eigenfunctions are real.  

 

Property: Real States 

With the exception of multiplication factor, all 

eigenstates of a Quantum Harmonic Oscillator are 

real at any given time. 

 

g) Ground State ѱo(y) 

We know that the Step-Down operator D operating 

on ground state result in a null state, 

Dѱo(y)=0                                        (17.7.1) 

where,  

D=-∂/∂y-y                                       (17.7.2) 

-∂ѱo(y)/∂y-yѱo(y)=0                          (17.7.3) 

If ѱo(y)=|ѱo(y)| and ѱo(y)>0, we have, 

(1/ѱo(y))∂ѱo(y)=-y∂y                       (17.7.4) 

Integrating both sides over the span of y, we have, 

∫(1/ѱo(y))∂ѱo(y)=-∫y∂y                       (17.7.5) 

ln ѱo(y)=-(1/2)y
2
+C                          (17.7.6) 

ѱo(y)=exp(-(1/2)y
2
+C)                      (17.7.7) 

ѱo(y)=e
C
 exp(-(1/2)y

2
)                      (17.7.8) 

where ln is the natural logarithm. 

Since we assumed ѱo(y)>0, ѱo(y) itself can represent 

a probability distribution if the area under ѱo(y) is 

unity, i.e., 

∫ѱo(y)dy=1                                    (17.7.9) 

∫exp((-1/2)y
2
+C))dy=1                       (17.7.10) 

e
C
 ∫exp((-1/2)y

2
)dy=1                        (17.7.11) 

Since ∫exp((-1/2)y
2
)dy=(2π)

1/2
, we have, 

e
C
=1/(2π)

1/2
                                 (17.7.12) 

The ground state wave function or assumed ground 

state probability distribution is given by ѱo(y), where, 

ѱo(y)=(1/(2π)
1/2

) exp(-(1/2)y
2
)          (17.7.13) 

The ground state ѱo(y) itself represents a probability 

density function since ѱo(y)=|ѱo(y)|, ѱo(y)>0 and  

∫ѱo(y)dy=1.                                 (17.7.14) 

Since any scale factor of a state has no effect on the 

solution to the Quantum Harmonic Oscillator, we can 

disregard the scale factor and hence, we have, 

ѱo(y)=exp(-(1/2)y
2
)                       (17.7.15) 

It is only at the ground state ѱo(y) that the state 

itself can be considered as a probability distribution 

since ѱo(y)=|ѱo(y)| and ѱo(y)>0. No squaring is 

necessary. This is not the case for n≠0. Wavefunction 

ѱn(y), n>0, has one or more zeros. In fact, state n, 

ѱn(y) has exactly n number of zeros. As we are going 

to see, wavefunctions that have zeros or nulls cannot 

represent probability distributions of particle being at 

certain location since particle will be trapped between 

nulls in the presence of nulls. However, even the 

ground state that is free of nulls cannot represent a 

probability distribution for a different reason, which we 

consider later.  

 

XVIII. AN EIGENSTATE AND PROBABILITY OF 

PARTICLE BEING AT A CERTAIN LOCATION 

Now, we have wave functions or the states for a 

Quantum Oscillator, ѱn(y), Ɐn, n=0, 1, 2, … It has 

been incorrectly claimed that the probability of a 

particle being at a certain location y at any state ѱn(y) 

is |ѱn(y)|
2
, Ɐn, n=0, 1, 2, … A particle in nature does 

not take decision by rolling dies or using a probability 

distribution. Nature does not do probability. Nature 

does not make decisions by throwing dies. It is we 

who use probability to explain certain phenomena 

when the true nature of the phenomena is unknown to 

us for the sole purpose of extracting some information 

in order to make decisions. Probability is a human 

tool, not a tool of nature.  

Probability says nothing about reality. The use of 

probability is an indication that we are not doing 

science and we have no idea what the underline 

mechanism of the system is. You cannot discover the 
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fundamental working of nature using probability. 

Probability is not a science. Probability is a tool of 

human decision making, not a design feature of 

nature. Mathematical Probability was originated in 

gambling to decide how to split a bet when a match 

had to be ended without a conclusion due to bad 

weather. Whether to rain or not is not decided by 

nature using probability. Not knowing whether it is 

going to rain or not, the chance of raining is 

determined by using probability. Chance says nothing 

about reality. Do not tell a lottery winner his/her 

chance of winning the lottery was nil, because it is not; 

it is hundred percent for the winner, we just did not 

know it. Probability has no meaning after an event. 

Probability only feeds into human expectation before 

an event. A lottery ticket gives few days of hope of 

striking it big. Probability itself is useless for the event 

itself or for our understanding of the mechanism of the 

event. In fact, it is a predicament or a hindrance to our 

understanding of the fundamentals of nature. 

State of a charge particle in a population of a 

charge particles cannot be random since they are 

electrostatically bound. In addition, orbiting systems 

such as Atoms spin. Spinning atoms or charge 

particles generate a Spin Magnetic Moment [3]. 

Charge particles in a population are magnetically 

bound due to the spin magnetic moment. State of a 

mass in a population of masses cannot be random 

since they are gravitationally bound.  

 

Corollary: Disadvantageous Probability 

Probability is a predicament or a hindrance to our 

understanding of the fundamentals of nature. 

 

Momentum or movement of a mass cannot exist 

without change of position. The change of position 

cannot take place without change of time. Time is 

absolute, not relative; propagation of light is not 

relative [6]. Mass is absolute, not relative [9]. Time 

and mass do not depend on observers; they are 

observer independent. Change of position cannot take 

place without a momentum and change of time. 

Nature of a particle does not depend on observers. It 

is true that the momentum does not depend on the 

position; momentum only depends on the rate of 

change of position. However, change of momentum 

cannot take place without change of position and 

change of time. The position of a particle depends on 

the momentum. Momentum has no existence if time is 

paused. Quantum Mechanics requires time to be 

paused. Time cannot be paused. Although nothing 

happens in reality if the time is paused, everything in 

Quantum Mechanics, Quantum behavior of 

observables, come alive only when time is paused. 

Position cannot be fixed in the presence of a 

momentum. Position is determined by the momentum. 

There is no existence of a momentum without change 

of position; this prevents the position and momentum 

pair from being a Fourier Transform pair. A position of 

a particle cannot change without change of time. If 

position is constant, momentum has no existence. If 

the momentum is a constant, then, position of a 

particle cannot be random. Irrespective of the size of a 

particle, if the momentum is a constant, particle has a 

deterministic path, a path that is either linear or 

circular.  

A particle (mass) cannot appear in one location 

and then disappear and reappear in another location 

randomly. If a particle at point A has to move to a point 

B, particle can take any path that connect point A to 

point B, but the particle has to cross all the in between 

points on the path to get to B. Motion of a particle is 

causal, not random. A particle (mass) cannot be in 

multiple locations at the same time. State of a particle 

must be certain, not probabilistic. For a particle at one 

location to appear in another location, particle must 

travel on a continuous path in between two locations. 

In 3-dimensional space, particle at position rinitial 

cannot reach position rfinal without crossing all the 

spheres of radius r, where rinitial≤r≤rfinal. 

For the time being, let us leave the reality behind 

and enter the human created psycho-world of 

Quantum Mechanics. Quantum Mechanics is simply a 

prolific paper mill for university professors and 

graduate students, nothing more. University 

professors and graduate students have one and only 

one goal in mind, “how can I cook up another 

publication?” For whatever fortune or misfortune, if 

you happen to come across one of those guys, the 

first question you will be asked is “how many 

publications do you have?” For the sane, what matters 

is what you have done, yet for these insane and 

strange characters what matters the most is a 

number, “how many publications?” Interestingly, they 

have whole series of publishing junk-holes run by 

them for them to fill their needs, not for the 

advancement of anything else. 

Under the incorrect assumption that the probability 

of a particle being at certain location y in a given state 

ѱn(y) is given by the square of that state, we have, 

Prob(y)=|ѱn(y)|
2
, Ɐn, n=0, 1, 2, …      (18.1) 

where, Prob(y) is the probability of particle being at 

position y in state ѱn(y). 

Further, 

∫|ѱn(y)|
2
dy=1.                                 (18.2) 

We also have the following properties of the states 

ѱn(y), Ɐn, n=0, 1, 2, … for a Quantum Oscillator, 

1. ѱn(y) is symmetric for even values of n, n=0, 

2, 4, 6, … 

2. ѱn(y) is asymmetric for odd values of n, n=1, 

3, 5, 7, … 

3. ѱo(y)=|ѱo(y)| and ѱo(y)>0 Ɐy. 

However, for a free-moving particle, ѱn(y) is not 

square integrable and hence |ѱn(y)|
2
 does not 

represent a probability distribution. 

 

a) Probability of Particle Being at Location y when 

the Particle is at Ground State. 

As we mentioned earlier, if we want to represent 

the ground state wavefunction ѱo(y) as a probability 
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distribution, we do not have to square it. The ground 

state at any time t has the property that, 

   ѱo(y)=|ѱo(y, t)|, Ɐt                       (18.1.1) 

This is because that the change of time only affects 

the phase, not the magnitude. The magnitude of the 

ground state is time invariant and remains positive for 

the entire range of y at any time t. As a result, the 

magnitude |ѱo(y)| is differentiable at any time t. 

The probability Prob(y, n=0) of particle being at 

location y when the particle is at the ground state 

ѱo(y) at any time t is given by, 

Prob(y, n=0)=ѱo(y)                 (18.1.2) 

where, ∫ѱo(y)dy=1. 

 

b) Probability of Particle Being at Location y When 

Particle is at Higher States ѱn(y), n>0. 

The wavefunction of a particle at a higher state has 

different characteristics than the ground state 

wavefunction. Higher state wavefunctions can take 

both positive and negative values since higher state 

wavefunctions for n>0 contain at least one or more 

nulls. In fact, the number of nulls contain in 

wavefunction ѱn(y) is equal to n. When n is odd 

number, one null is always at y=0 and the rest of the 

nulls are symmetric. For even n, all the nulls are 

symmetric. Since probability distribution must always 

be positive, higher state wavefunctions, ѱn(y) for n>0 

themselves cannot represent probability distributions. 

So, the probability density function for higher states is 

defined as the square of the wavefunction,  

Prob(y, n>0)=|ѱn(y)|
2
, n>0               (18.2.1) 

where,  

∫|ѱn(y)|
2
dy=1                          (18.2.2) 

However, this probability representation is not 

possible since wavefunctions at higher states are 

guaranteed to contain nulls. As we are going to see, 

no wavefunction containing zeros or nulls can 

represent probability of particle being at certain 

location since nulls entrap the particle in between 

nulls. 

 

c) Higher States Cannot Represent Probability 

Distribution of a Particle being at certain Location 

Higher eigenstates or wavefunctions of the higher 

states of a Quantum Oscillator originated from the 

forever differentiable Gaussian function. The n
th
 

eigenstate ѱn(y) is a result of the Step-Up operator U, 

U=∂/∂y-y, operating on the (n-1)
th
 state, ѱn-1(y), 

ѱn(y) =Uѱn-1(y)                                (18.3.1) 

ѱn(y) =∂ѱn-1(y)/∂y-yѱn-1(y)               (18.3.2) 

ѱo(y)=exp(-(1/2)y
2
)                          (18.3.3) 

As a result, each wavefunction is either symmetric or 

anti-symmetric and contains n nulls for n>0, 

ѱn(y)=0, for n values of y for n>0      (18.3.4) 

ѱn(y)≠0, for n=0                                 (18.3.5) 

All the wavefunctions are guaranteed to contain 

nulls except the ground state wavefunction ѱo(y). 

Wavefunction ѱn(y)=0 for n positions of y since ѱn(y), 

for n>0, is positive for certain ranges of y and negative 

for certain ranges of y. In the case of odd numbers of 

n, all the nulls are symmetric with extra null at y=0. 

For even numbers of n, there is no null at y=0 and all 

the nulls are symmetric on y. Probability distribution 

cannot be negative. So, ѱn(y) for n>0 itself cannot 

represent a probability distribution. We may think that 

we can overcome this difficulty simply by using the 

square of the wavefunction, |ѱn(y)|
2
 for n>0 as the 

probability distribution. However, |ѱn(y)|
2
 for n>0 still 

contains the same number of nulls. It is these nulls in 

ѱn(y) for n>0 that prevent the representation of higher 

state wavefunctions as probability of particle being at 

location y on state ѱn(y) for n>0. 

If the square wavefunction |ѱn(y)|
2
 for n>0 is 

represented as a probability distribution, a null in the 

wavefunction ѱn(y) for n>0 indicates that a particle 

cannot be in that position where a null is. A particle on 

one side of the null cannot cross over onto the other 

side of the null. If particle cannot be at a null, no 

particle can cross a null. If particle is on one side of 

the null, particle has no way to cross to the other side. 

The other side become a prohibited zone for a particle 

since probability of particle being at a null is nil.  

In addition, when the state n is an odd number, 

ѱn(y)=0 when y=0. As a result, zero-mean particle 

cannot be at on average value <y>=0 with certainty 

when n is odd. If particle cannot be at the mean value 

<y>=0, then, Quantum Mechanics fails right there. 

The mean value must be possible for Quantum 

Mechanics to work. If the probability of a particle being 

at the mean value is zero, it is certain that the particle 

cannot be at the mean value.  

In addition, when a Quantum Oscillator is in state 

ѱn(y), where n is an odd number, particle can never 

be at y=0. If particle cannot be at y=0, then, it is no 

longer a Quantum Harmonic Oscillator when it is in 

states where n is an odd number. In addition, the 

General Uncertainty Principle does not hold true either 

when a Quantum Oscillator is at a state ѱn(y) where n 

is odd since the General Uncertainty Principle is 

constructed based on the assumption that the 

observables are zero-mean. We will consider why that 

is the case in more detail later. 

 

Corollary: Improbable States 

If the position of a particle is assumed to be a zero-

mean random variable, the probability of particle being 

at y=o cannot be zero.  A particle cannot be at zero-

mean average position <y>=0 when n is odd since 

ѱn(y)=0 at y=0. The probability of a particle being at 

y=0 is nil when n is odd. As a result, there is no 

existence of a Quantum Oscillator or a General 

Uncertainty Principle when n is odd.  

 

Corollary: Essential Requirement 

No Oscillator has any existence if the Oscillator 

cannot be at the equilibrium position y=0. 

 

So, if the wavefunction contains only one zero as 

in the case of the first state n=1, particle on one side 

of the null will be trapped on that side of the null. If 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 10, October - 2020  

www.jmest.org 

JMESTN42353562 12885 

wavefunction has more than one null, ѱn(y), n>1, then, 

particle that is located in between two nulls remains in 

between those two nulls. Particle will be trapped in 

between two nulls forever. Once particle is trapped on 

one side of a single null or in between two nulls, 

particle has no way to get out of that entrapped zone. 

A particle trapped between nulls of an eigenstate 

ѱn(y), n>0 cannot be a Harmonic Oscillator. Square 

wavefunction |ѱn(y)|
2
 for n>0 can no longer represent 

a probability distribution of particle being at location y 

in state ѱn(y) for n>0 since a particle that is trapped in 

between nulls cannot be at any location y in the entire 

range of ѱn(y). 

In order for the wavefunction |ѱn(y)|
2
 for n>0 to 

represent a probability distribution, particle must have 

the ability to be at any location within the entire span 

of y on the wavefunction ѱn(y) without restriction. 

There is no way for a particle to cross a null of a 

wavefunction ѱn(y) for n>0 at any state if the 

probability of particle being at position y on any state 

is represented by a wavefunction ѱn(y) for n>0 that is 

certain to consist of nulls. If the square wavefunction 

|ѱn(y)|
2
 represents probability of particle being at any 

position y at a state described by wavefunction ѱn(y), 

then, the higher eigenstates ѱn(y), n>0 cannot 

represent probability distributions even as |ѱn(y)|
2
. 

Only the ground state ѱo(y) can represent 

probability distribution. The probability distribution of 

ground state is ѱo(y) itself, no squaring is necessary. 

Probability distribution ѱo(y) and |ѱo(y)|
2
 are two 

completely different distributions. When ѱo(y) itself 

can represent a probability distribution, there is no 

reason to square it for a probability representation. 

It is not possible to avoid the problems presented 

with the presence of nulls in the higher eigenstates 

simply by claiming a particle is whizzing through a 

null.  

It does not matter how particle choses to cross a null, 

by whizzing through, crawling through, or sailing 

through a null, if a particle crosses a null, then, the 

probability of particle being at a null is no longer nil. 

Do not try to voodoofy particles. Particle on one side 

of a null cannot get to the other side without crossing 

a null, period. As a result, |ѱn(y)|
2
, n>0 cannot 

represent a probability distribution for particle being at 

any position y through the entire span of state ѱn(y), 

since eigenstate ѱn(y), n>o has nulls.  

You cannot claim impossible possible just for the 

sake of justifying false theory of Quantum Mechanics, 

it is not science, it is crookery. It is the Quantum 

Mechanics itself that prevents the crossing of a null by 

a particle. If a particle cannot cross a null, the square 

wave function containing nulls cannot represent a 

probability distribution of particle being at a certain 

location within the entire span of the wavefunction. It 

is the Quantum Mechanics that is self-destructing 

itself. It is the Quantum Mechanics that is self-

falsifying itself.  

You have to become a voodoo practitioner to justify 

Quantum Mechanics, not a scientist. That is what so-

called Modern Physicists have become, voodoo 

practitioners. How else can you justify a particle being 

at multiple states at the same instant? How else can 

you justify position of a particle from being 

independent of momentum? How else can you justify 

a particle having a momentum when the time being 

paused? How else can you justify position and 

momentum are being mutually independent? How 

else can you justify position and momentum pair being 

a Fourier Transform pair? How else can you justify 

particle being waves and waves being particles? How 

else can you justify a momentum without a mass? 

How else can you separate momentum and speed as 

two independent entities? How else can you justify 

multiple worlds? How else can you justify multiple 

universes? How else can you justify spatially random 

light particles or photons? How else can you justify 

massless particles? It is Simply not possible. They 

pull-out universes from nowhere just like magicians 

pulls out rabbits from a hat. Modern Physics requires 

a reawakening. Salvaging of Quantum Mechanics 

from this probabilistic blunder that turned physics into 

voodoo-physics not possible. 

 

Corollary: Probability Unfriendly Null 

The n
th
 state has n nulls, all of which are symmetric 

except the null at y=0 for odd n. No eigenstate 

consisting of nulls can represent the probability 

distribution of a particle being at a certain location y as 

the square of the eigenstate.  

 

Corollary: Probability Friendly Ground 

It is only the ground state, which is free of nulls, 

that is at least has the properties required for 

representing itself as a probability distribution of a 

particle being at a certain location y. 

 

d) General Uncertainty Principle Fails when 

Quantum Oscillator is at State ѱn(y) When n is Odd 

General Uncertainty Principle requires the 

observables to be zero-mean. The probability of 

particle being at zero-mean position should not be nil 

for the General Uncertainty Principle to hold. This 

requirement does not satisfy when a Quantum 

Oscillator is at state ѱn(y) when n is odd. 

As we have seen, ѱn(y) always has a null ѱn(y)=0 

at y=0 when n is odd. As a result, if |ѱn(y)|
2
 represents 

the probability of particle being at position y, then the 

probability of the particle being at y=0 is always zero 

when n is odd. In the General Uncertainty Principle, it 

is assumed that the position is a zero-mean random 

variable and hence the probability of particle being at 

average position <y>=0 should not be zero for the 

General Uncertainty Principle to hold. Since 

probability of particle being at y=0 is always zero for 

odd n, General Uncertainty Principle does not hold for 

a Quantum Oscillator at any state ѱn(y) when n is odd. 

It is not just the General Uncertainty Principle, 

Quantum Oscillator itself has no existence when 

oscillator cannot be at the average position <y>=0 for 
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odd n. In Quantum Mechanics, what varies with time 

is the average observable. If probability of a particle 

being at average observable is zero, the application of 

Quantum Mechanics to a Quantum Oscillator fails 

when n is odd. 

 

Lemma: Generalized Uncertainty Conundrum 

Probability of a particle being at the average 

position <y>=0 is nil when the particle is at states 

where n is odd since the eigenstate ѱn(y)=0 at y=0 for 

odd n. As a result, the General Uncertainty Principle 

no longer applies when a Quantum Oscillator is at a 

state ѱn(y) where n is odd since General Uncertainty 

Principle requires observables to be zero mean. 

 

e) Probability and Observers 

Probability of a particle being at any position y at 

any state ѱn(y) has nothing to do with an observer. 

Particles are not thieves that are conscious of 

possible observers. State of a particle does not 

depend on observers. It is the misinterpretation of the 

results from two Stern-Gerlach Devices placed in-

phase and in series that lead to the false idea that the 

state of a particle is observer dependent [3]. If you 

send Spin-Up beam of Atoms from one Stern-Gerlach 

Device to another in-phase and in series second 

Stern-Gerlach Device, the beam of Atom will pass 

through without any splitting since the placement of 

second in-phase in series Stern-Gerlach Device is 

simply equivalent to an extension of the Stern-Gerlach 

magnetic field. It is not an effect of an observer that 

made the Spin-Up beam to pass through without 

splitting. State of a particle is not observer dependent. 

 Probability only says that the possibility of particle 

being at a certain position y at any state ѱn(y) 

irrespective of any observers. If the probability 

distribution is represented as a function of an 

eigenstate, that probability distribution is going to 

contain nulls independent of any observer. A 

probability distribution consisting of nulls says that 

particle cannot be present at position y where ѱn(y)=0, 

Ɐn.  

If probability distribution of a particle contains nulls, 

it is not a probability distribution of a particle. This 

prevents Quantum Mechanics being a real 

representation of a nature of a particle. This is one of 

the fallacies of Quantum Mechanics. Quantum 

Mechanics has turned physics into voodoo-physics. 

The fact of the matter is that the wavefunction or the 

eigenstates of higher states cannot represent 

probability distributions. It is only the ground state 

ѱo(y) that has the properties required to represent as 

a probability distribution. As we will see later, even the 

ground state ѱo(y) cannot represent a probability 

distribution of particle being at any position due to a 

different reason. In fact, no function of infinite span 

can be a state of a Quantum Oscillator of finite 

energy. There is a hidden error in the solution to the 

wave equation of Quantum Oscillators. 

 

f) Limitations of Quantum Oscillator Solution 

The wavefunctions ѱn(y), Ɐn, n=0, 1, 2, 3, 4 … 

obtained as solutions to the wave equation of a 

Quantum Oscillator is only applicable for particles, 

where particles are in a linear motion against a 

restoration force directly proportional to the 

displacement. For the application of these energy 

levels and wavefunctions ѱn(y), Ɐn, n=0, 1, 2, …, 

derived using Step-Up and Step-Down operators, the 

particle must have the Hamiltonian of the form 

H=P
2
+y

2
. This does not apply to any moving particle 

under gravitational and electrostatic potentials since in 

both cases the potential energy is proportional to the 

reciprocal of the distance. An electron in an atom is 

under electrostatic potential that is proportional to the 

reciprocal distance and hence Quantum Oscillator 

solution does not apply to electrons in an Atom.  

Simple Harmonic Oscillator applies for particles 

that have similar characteristics as Hook’s law. No 

electrically charge particle can be in a simple 

harmonic motion when it is electrostatically bound to 

another electrically charged particle unless the 

change of electrostatic force due to the displacement 

is negligible compared to the change of restoration 

force. Similarly, no mass can be in a Simple Harmonic 

Motion if that mass is gravitationally bound unless the 

change of gravitational force due to the displacement 

is negligible compared to the change of restoration 

force as it is in the case of a particle connected to a 

spring. 

 No such dominant restoration force exists in the 

case of electrons in an Atom. Quantum Oscillator 

energy levels do not apply to electrons in an Atom. 

Energy levels obtained as unconstrained solutions to 

a Quantum Oscillator cannot be used to derive energy 

spectrum of an Atom. Electrons in an Atom are not in 

a Simple Harmonic Motion. An Atom is not in a Simple 

Harmonic motion. Orbiting particle does not represent 

a Simple Harmonic Motion. Only the projection of 

orbiting motion on an axis represents a Simple 

Harmonic Motion. Quantum Oscillator cannot be 

represented as unconstrained solution to a wave 

equation of a Quantum Oscillator. 

 

QM Contradiction: Assumption Oversight  

Harmonic Oscillator assumes that the 

displacement from the equilibrium position is small. 

The infinite span Quantum states obtained as 

solutions to the wave equation of a Quantum 

Oscillator is a contradiction to this assumption.  

 

Property: Finite Span 

Position span of a Harmonic Oscillator of finite 

energy cannot be infinite. The energy of a Quantum 

Oscillator at state ѱn(y) of infinite span cannot be 

finite. 

 

Property: Limited Bandwidths 

Unconstrained solutions of a wave equation cannot 

represent states of a Quantum Oscillator. Span of 
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wave functions in both position and momentum 

domains must be finite and strictly limited by the 

energy of the Quantum State.  

 

Theorem: Impossibility 

Two functions with strictly limited spans cannot be 

a Fourier Transform pair.  

 

XIX. INABILITY OF BOTH POSITION AND 

MOMENTUM TO BE ZERO SIMULTANEOUSLY HAS 

NOTHING TO DO WITH HEISENBERG 

UNCERTAINITY PRINCIPLE 

In the case of a Harmonic Oscillator, the force F is 

a restoration force. For small displacement x, the 

force F is given by, 

 F=-kx                                          (19.1) 

where, k is the restoration parameter. 

The Hamiltonian of an Oscillating Particle of mass m 

and restoration parameter k at displacement x is given 

by, 

H=(1/2m)p
2
(x)+(1/2)kx

2
              (19.2) 

where p(x) is the momentum of the particle at x, 

momentum p is dependent on the displacement x 

from the equilibrium position.  

H is a constant that is determined by the maximum 

displacement xmax and the restoration force constant 

k. 

In the case of a Harmonic Oscillator, momentum is 

zero when the displacement is maximum, p(x)=0 

|x|=xmax and momentum is maximum when the 

displacement is zero, p(x)=pmax at x=0. The sum of the 

weighted square position and weighted square 

momentum is always a constant, or time invariant.  

What keeps Quantum Oscillator oscillating is the back 

and forth conversion of kinetic energy to potential 

energy and potential energy to kinetic energy. It is this 

inherent characteristic of Harmonic Oscillator itself 

that prevents both position x and momentum p from 

being simultaneously zero.  

Since the sum of the kinetic energy and the 

potential energy is a constant, when one is higher, the 

other is lower and vice versa. If both the position and 

the momentum are zero at the same time, then, the 

total energy is zero and hence the particle is not in a 

Harmonic Motion. In fact, the particle is at stand still if 

both the position and the momentum are zero 

simultaneously.  

In any Harmonic Oscillator, when the displacement 

is at its maximum, the momentum is zero, and when 

the momentum is at its maximum, the displacement is 

zero. At any in between position, the total energy or 

the sum of the kinetic and potential energy must be a 

non-zero constant determined by the potential energy 

at the maximum displacement. It is this property of 

back and forth energy conversion from kinetic energy 

to potential energy, and potential energy to kinetic 

energy that prevents position and momentum of a 

Quantum Harmonic Oscillator from being zero 

simultaneously.  There is no uncertainty principle here. 

Uncertainty Principle has nothing to do with it. Use of 

Quantum Harmonic Motion to justify Heisenberg 

Uncertainty Principle everywhere in physics [1] is 

simply ridiculous. You cannot find physics book in 

Quantum Mechanics anywhere that does not make 

this preposterous claim. 

Even if position and momentum are assumed to be 

a Fourier Transform pair, its bandwidth limits apply 

only to the maximum span Δx of the wavefunction in 

position domain ѱn(x), and the maximum span Δp of 

the wavefunction in momentum domain ѱn(p). 

Uncertainty Principle cannot prevent the position x 

taking any value withing the range -xmax≤ x ≤xmax and 

momentum p taking any value in the range -pmax≤ p 

≤pmax. Uncertainty principle only limits Δx, Δx=2xmax 

and Δp, Δp=2pmax.  

In spite of the bandwidth limits imposed by the 

assumption that the position and the momentum are a 

Fourier Transform pair, position x can take any value 

within the range -xmax≤ x ≤xmax.  On average position is 

certain irrespective of the size of the width Δx. The 

width Δx does not have to be zero for on average 

certainty of position x. Similarly, momentum p can 

take any value within the range -pmax≤ p ≤pmax. On 

average momentum is certain irrespective of the size 

of the width Δp. Spread has no effect on the on 

average simultaneous certainty of both position and 

momentum. 

There is no theoretical barrier preventing the 

measurement of both position x and momentum p 

simultaneously to any precision on average since any 

Fourier Transform pair must have a common 

eigenspace. In addition, even though position and 

momentum operators do not commute, position and 

momentum operators have a shared eigenspace. 

Since the position and momentum have shared 

eigenspace, they are simultaneously measurable. 

Measurement of one does not affect the other since 

they both have shared eigenspace. 

We can only measure run-time on average position 

and momentum experimentally. Quantum Mechanics 

is a paused time theory. Paused time Quantum 

behaviors of observables are not accessible for 

observers since time cannot be paused. On average 

run-time Position and momentum are mutually 

dependent and hence measurement of both is not 

necessary. Measurement of one must contain all the 

information for obtaining the other and hence on 

average simultaneity is guaranteed in run-rime 

experiments.  

Since position and momentum are mutually 

dependent, they cannot be a Fourier Transform pair. If 

the position and momentum are assumed to be a 

Fourier Transform pair, that very assumption makes 

them to be simultaneously measurable. No two 

simultaneously non-measurable observables can be a 

Fourier Transform pair by the very nature of the 

Fourier Transform. 

So called uncertainty principle or the lower bound 

of the product of the width of the wavefunction in 

position domain (Δx) and the width of the 
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wavefunction in the momentum domain (Δp) is a 

result of the invalid assumption that the wavefunction 

in position domain and the wavefunction in 

momentum domain are a Fourier Transform pair. 

Heisenberg Uncertainty Principle is a bandwidth limit. 

True position is within the span Δx irrespective of the 

size of Δx. True momentum is within the span Δp 

irrespective of the size of Δp. As a result, on average 

position and on average momentum are the actual 

position and momentum. Position and momentum are 

certain on average simultaneously. Since position and 

momentum operators have a shared eigenspace, on 

average precise position and on average precise 

momentum can be obtain simultaneously. Presumed 

Quantum behaviors of observables at paused time are 

not accessible to observers and hence can never be 

measured either separately or simultaneously. What 

we have access is only to the on average run-time 

observables that have no Quantum behaviors. 

 

a) Uncertainty Principle Cannot Prevent the 

Measurability of x and p Simultaneously 

Bandwidth limits do not prevent observers from 

measuring both the position and the momentum 

simultaneously. If both position and momentum 

operators have the same eigenspace or common 

eigenstates, both the position and the momentum can 

be measured simultaneously irrespective of the 

bandwidth limitation of the Heisenberg Uncertainty 

Principle. The lower bound of the product of the 

bandwidth of the wavefunction in the position domain 

and the bandwidth of the wavefunction in momentum 

domain cannot prevent the position and the 

momentum operators having common eigenspace.  

In fact, if the position and the momentum operators 

do not have common eigenspace, the position and the 

momentum of a particle cannot be a Fourier 

Transform pair, which prevents the existence of the 

Uncertainty principle. If position and the momentum of 

a particle are not a Fourier Transform pair, there 

would be no Uncertainty Principle. Since the position 

and momentum have a shared eigenspace, they are 

simultaneously measurable.  

In general, Commutation of operators is neither 

sufficient nor necessary for the simultaneous 

measurement of observables. It is only when the 

eigenvalues of two operators are mutually 

independent that the commutation of operators is 

sufficient for the simultaneous measurement of 

observables but not necessary.  

Position and momentum operators do not have to 

commute for them to have a shared eigenspace. Even 

though position and momentum operators do not 

commute, they still have a shared eigen space. If the 

commutation of two operators is a constant, they have 

a shared eigenspace. When that constant is zero, it is 

a special case where operators commute.  

The eigenspace of any observable shares its 

eigenspace with the independent observable, where 

the operator is the observable itself. The position 

operator is position itself and the commutation of the 

position and momentum operators is a constant, and 

as a result, position and momentum have a shared 

eigenspace. Since position and momentum have a 

shared eigenspace, they are simultaneously 

measurable. 

 

Theorem: No Commuting Required 

Commutation of operators is neither necessary nor 

sufficient for them to have a shared eigenspace. Non-

commuting operators can have a shared eigenspace. 

 

Lemma: Non-Commuting Simultaneity 

If the commutation of two operators is a constant, 

they have a shared eigenspace, and hence they are 

simultaneously measurable. When that constant is 

zero, we have the case where operators commute. 

 

The proof is straight forward and left as an exercise. 

 

Corollary: Simultaneity of position and momentum 

Position and momentum of a particle are 

simultaneously measurable since the commutation of 

position and momentum operators is a constant. 

 

For a Quantum Oscillator to exist, the energy of the 

oscillator must not be zero. In other words, the 

position and the momentum must not be zero at the 

same time since the energy H=(1/2m)p
2
(x)+(1/2)kx

2
, 

where, momentum p(x) is a function of x for an 

Oscillator. The inability of both position and the 

momentum to be simultaneously zero is an inherent 

property of a Harmonic Oscillator itself, not a result of 

some arbitrary and preposterous Uncertainty 

Principle. If both p and x are zero at the same time, 

the energy of the oscillator will be zero and hence 

Oscillator seizes to exist, it is as simple as that. 

  

Lemma: Oscillator Characteristic 

The inability of both position and the momentum to 

be simultaneously zero is an inherent property of a 

Harmonic Oscillator itself, not a result of 

mathematically and logically invalid some arbitrary 

Heisenberg Uncertainty Principle. 

 

The effort to attribute the inability of both position and 

momentum of a Harmonic Oscillator to be zero 

simultaneously to Heisenberg Uncertainty Principle in 

Quantum Mechanics literature is simply preposterous 

and laughable; there is no real justification for that 

except in the broom riding voodoo world of Harry 

potter. Desire of the people to always associate 

anything and everything with Heisenberg Uncertainty 

Principle is understandable since it sounds brainy; 

there is no other reason. It is the same reason why 

people include the meaningless phrase “space-time 

continuum” everywhere even in the throne speech of 

the Governor General; yes, the use of that phrase 

really makes politicians brainy because nobody knows 

what it really means including the people who coin the 
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phrase. What is there is the space. There is no space-

time [6]. Another meaningless phrase that sounds 

brainy is the phrase “space-time fabric” or “fabric of 

space-time”; pseudo speech. How can the time make 

a fabric? 

Time does not depend on space. Space does not 

depend on time. Space and time are mutually 

independent. There is a physical space. There is no 

time as such. Time is a definition, a human definition. 

What is there is the changes in the nature of objects in 

space. We use those changes in objects to define 

time.  

Time is not relative. If time is relative time will not 

be unique. If time is relative, time will be directional. 

Time must be unique. Time must be non-directional. 

Therefore, time cannot be relative [6, 7, 9]. 

 

b) No Fractional Quanta 

By definition, a Quantum of an entity is the 

smallest possible quantity of that entity that can exist. 

In the case of a Quantum Oscillator, an energy 

quantum is the minimum energy required for the 

existence of a Quantum Harmonic Oscillator and it is 

the ground state energy. If there is a fractional 

quantum, then the quantum is no longer a quantum by 

very definition of the quantum. If there is a quantum-

half, then the quantum itself will be the quantum-half. 

There are no fractional quanta. If you are one of those 

who are still talking about Quantum-half, it could be 

result of Quantum-Memory-lapse syndrome. There is 

no other explanation for it. 

The energy of a Quantum Oscillator is mechanical 

energy. Mechanical energy is not quantized. 

Mechanical energy does not come in quanta. 

Mechanical energy is continuous. Only the 

electromagnetic energy is quantized. It is the invalid 

assumption that the mechanical energy is quantized 

that lead to the Quantum Mechanics. If we assume 

incorrectly that the mechanical energy is quantized, 

the minimum required energy for its existence is one 

energy Quantum or the ground state energy in the 

case of a Quantum Oscillator. There are no fractional 

Quanta; fractional Quanta defy the very definition of 

quantum.  

 

Corollary: No Fractions Allowed 

Quantum-half and Spin-half are oxymorons. 

 

Electromagnetic energy quantum is not a particle. 

Electromagnetic energy quantum is a wave burst of 

certain frequency and width, where, the energy of the 

burst is proportional to the electromagnetic frequency 

of the wave burst, e=hf. The relationship e=hf is 

meaningless unless it is a wave of finite time span. 

The relationship e=hf is meaningless if it is a particle. 

The relationship e=hf does not apply to mechanical 

energy, which has no existence without a mass 

(particle). Any entity that is belong to another entity 

cannot be quantized. Any entity with a belonging 

cannot come in quanta since nature has no built in 

mechanism to carry belonging information. 

 

c) Eigenstates ѱn(x) and ѱn(p) Cannot Represent 

Quantum Oscillators when n is odd,  

Wavefunction in position domain ѱn(x) has a null at 

x=0 for odd n. Wavefunction in momentum domain 

ѱn(p) also has a null at p=0 for odd n. If the square of 

the wave function ѱn(x) in position domain determines 

the probability of particle being at x, then the 

probability of particle being at x=0 is nil when n is odd. 

If particle cannot be at x=0 when n is odd, Oscillator 

can never reach the maximum kinetic energy when n 

is odd. If the Oscillator cannot reach the maximum 

kinetic energy, it is no longer a Harmonic Oscillator 

when n is odd. 

If particle cannot be at x=0, it indicates that the 

particle cannot be at the equilibrium point of the 

Oscillator since x is the displacement from the 

equilibrium position. If particle cannot be at the 

equilibrium position, Quantum Oscillator has no 

existence when n is odd. 

Similarly, if the square of the wavefunction ѱn(p) in 

momentum domain represents the probability of 

particle being at p, then the probability of particle 

being at p=0 is nil when n is odd since ѱn(p)=0 at p=0 

when n is odd. What that means is that no Harmonic 

Oscillator can ever reach the maximum kinetic energy 

when n is odd. If an Oscillator cannot reach the 

maximum kinetic energy, it cannot also reach the 

maximum potential energy. As a result, no oscillator 

can reach (p=0, x=xmax) when n is odd. 

When n is odd, ѱn(x) has a null at x=0, and ѱn(p) 

also has a null at p=0. Oscillator can neither reach the 

maximum potential energy nor the maximum kinetic 

energy when n is odd. If Quantum Oscillator cannot 

reach (x=0, p=pmax) and (p=0, x=xmax), eigenstates 

ѱn(x) and ѱn(p) cannot represent a Quantum 

Oscillator at higher eigenstates for odd n. 

 

Property: Oddity in odd 

The eigenstates ѱn(x) and ѱn(p) cannot represent 

a Quantum Oscillator since both ѱn(x) and ѱn(p) 

contain nulls at y=0 and p=0 when n is odd, Ɐn, n=1, 

3, 5, 7 ... 

 

XX. POSITION x AND MOMENTUM p CANNOT BE 

A FOURIER TRANSFORM PAIR 

In a Harmonic Oscillator, the maximum width Δx of 

a wavefunction in position domain is determined by 

the maximum potential energy of the particle, which is 

equal to the total energy when kinetic energy is zero. 

The width Δx is a constant for a given energy level of 

an Oscillator. It is not observer dependent. The 

maximum width of a wavefunction in momentum 

domain Δp is determined by the maximum kinetic 

energy, which is the total energy when the potential is 

zero. The width Δp is a constant for a given energy 

level of an Oscillator and it is not left to be determined 

by the Fourier Transform pair. Δx and Δp at any 

energy state are determined by the energy of a single 
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frequency. 

 

Property: Limited Span 

Δx and Δp are finite and they are pre-determined 

by the energy of the state. 

 

Theorem: Direct opposition 

The change of position x, δx and the change of 

momentum p, δp of a Harmonic Oscillator are linearly 

related with negative gradient.  

 

 

Proof: 

Consider the total energy E of a Harmonic 

Oscillator at any displacement x, 

E=(1/2m)p
2
+(1/2)mωo

2
x

2
                (20.1) 

Differentiating with respect to x, we have, 

∂E/∂x=(1/m)p∂p/∂x+mωo
2
x               (20.2) 

Since ∂E/∂x=0, 

 (1/m)p∂p/∂x+mωo
2
x=0                     (20.3) 

(1/m)p∂p=-mωo
2
x∂x                       (20.4) 

As a result, we have, 

p∂p=-(mωo)
2
x ∂x                           (20.5) 

δp∝-(x/p)δx                                  (20.6) 

The change of p is directly related to the change of x. 

The change in position and the change in momentum 

are linearly related and depend on the position and 

the momentum. 

 

Lemma: Direct Related 

The maximum momentum span Δp and the 

maximum position span Δx of a Harmonic Oscillator 

are directly related and hence position x and 

momentum p pair cannot be a Fourier Transform pair. 

 

Proof: 

Since the maximum displacement of position is 

Δx/2, the total energy E is given by,  

E=(1/2)mωo
2
(Δx/2)

2
                       (20.6) 

Similarly, since the maximum momentum is Δp/2, the 

total energy E is also given by, 

E=(1/2m)(Δp/2)
2
                            (20.7) 

Since the maximum kinetic energy is the same as the 

maximum potential energy, we have, 

 (1/2m)(Δp/2)
2
=(1/2)mωo

2
(Δx/2)

2
           (20.8) 

(Δp)
2
=(mωoΔx)

2
                            (20.9) 

Δp=mωoΔx                                  (20.10) 

What we now have is, 

Δp∝Δx                                          (20.11) 

The width Δp is directly proportional to the width Δx, 

not inversely. For the position x and the momentum p 

pair to be a Fourier transform pair, Δx and Δp must be 

related inversely, and hence position x and 

momentum p cannot be a Fourier Transform pair. 

 

Theorem: Impossible Co-Existence 

If Δx and Δp are inversely related, they cannot 

represent a Harmonic Oscillator. If Δx and Δp are 

directly related, they cannot be a Fourier Transform 

pair. Quantum Harmonic Oscillator and a Fourier 

Transform pair cannot co-exist. Hence, position x and 

momentum p of a Harmonic Oscillator cannot be a 

Fourier Transform pair. 

 

Lemma: Simultaneous Certainty 

Span Δx does not have to be zero for on average 

certainty of the position x. Span Δp does not have to 

be zero for on average certainty of the momentum p. 

Both spans Δx and Δp do not have to be 

simultaneously zero for the simultaneous certainty of 

both x and p. Both Δx and Δp can be non-zero, yet x 

and p can be certain on average simultaneously. 

 

XXI. POSITION SPAN ΔX AND MOMENTUM SPAN 

ΔP OF HARMONIC OSCILLATOR 

In the case of a Quantum Harmonic Oscillator or 

any Harmonic Oscillator, the maximum displacement 

xmax is limited by the total energy of the oscillator. The 

maximum momentum pmax is also limited by the total 

energy of the oscillator. Neither the width Δx=2xmax of 

a wavefunction in position domain nor the width 

Δp=2pmax of a wavefunction in momentum domain can 

have an infinite span.  

Eigenstates ѱn(x) and ѱn(p) of Quantum Oscillators 

cannot have infinite span. No finite energy harmonic 

oscillator can have infinite position span or momentum 

span. For a Quantum Harmonic Oscillator, span of 

position x is bound by, 

ѱn(x)>0, -xmax≤ x ≤xmax,                    (21.1) 

ѱn(x)=0, otherwise                           (21.2) 

where, xmax is determined by the energy level of the 

Quantum Oscillator. 

The constrain ѱn(x)>0, -xmax≤x≤xmax allows the 

representation of ѱn(x) itself as a probability 

distribution if you are so inclined to choose such an 

invalid representation as it is the case in Quantum 

Mechanics.; no squaring is necessary. The 

representation of square wavefunction |ѱn(x)|
2
 as a 

probability of particle being at position x is artificial 

since the nature does not carry out squaring and 

normalization. Even with the introduction of the 

constrain that the wavefunction is positive within the 

position span or ѱn(x)>0, -xmax≤x≤xmax, probability 

representation is still artificial since the normalization 

has to be carried out, but it is little bit less unnatural 

since no squaring is required.  

Although meaningless, now you can directly say 

that the wavefunction ѱn(x) of a particle represents the 

probability of particle being at location x. If you have to 

say that |ѱn(x)|
2
 represents a probability of particle 

being at position x, as it is done in Quantum 

Mechanics, it sounds like a human crafted prophesy 

just like those creators in religious non-sense. 

Similarly, the span of momentum p is also bounded 

by,  

ѱn(p)>0, -pmax≤ p ≤pmax,                   (21.3) 

ѱn(p)=0, otherwise                          (21.4) 

where, pmax is determined by the energy level of the 

Quantum Oscillator. 

The wavefunctions that represent a Quantum 
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Oscillator must satisfy these bounds while they satisfy 

the wave equation of a Quantum Oscillator, 

-(1/2m)ћ2∂
2
ѱn(x)/∂x

2
+(1/2)mωo

2
x

2
ѱn(x)=Enѱn(x)   (21.5) 

 As a result, the solution to the Quantum Oscillator is a 

constrained eigen decomposition problem that does 

not have a closed-form solution. Although 

unconstrained solutions to the wave equation of a 

Quantum Oscillator is easy to find, they do not 

represent a Quantum Oscillator since they are of 

infinite span. 

 

 

a) Width of a Wavefunction in Position Domain Δx 

Consider the n
th
 state of Quantum Oscillator ѱn(x), 

Ɐn, n=0, 1, 2, … The energy En of the n
th
 state is 

given by, 

En=ћωo(2n+1), Ɐn, n=0, 1, 2, …        (21.1.1) 

When the maximum displacement xmax is achieved, 

the kinetic energy is zero, and the momentum is zero, 

p=0. The total energy is equal to the potential energy. 

This is the case for any Oscillator whether it is a 

Quantum Oscillator or not. If the maximum span of an 

Oscillator does not satisfy the energy bounds, it is not 

an oscillator. The word Quantum does not allow us to 

escape this reality. It is ironic that people use the word 

Quantum to override the reality, turning physics into 

some kind of voodoo magic. Quantum Mechanics has 

turned into the magic wand of Harry-Potter where 

broom-riding is the reality. 

Maximum displacement is achieved when, 

(1/2)k(xmax)
2
=ћωo(2n+1)                     (21.1.2) 

where, k is the restoration force constant. 

 xmax=(2ћωo(2n+1)/k)
1/2

                       (21.1.3) 

We also have, 

ωo=(k/m)
1/2

                                         (21.1.4) 

Substituting for k in eqn. (21.1.3), we have, 

xmax=(2ћ(2n+1)/mωo)
1/2

                       (21.1.5) 

The width Δx of the n
th
 eigenstate or the wavefunction 

ѱn(x) is twice the xmax, 

Δx=2xmax                                             (21.1.6) 

Δx=2(2ћ(2n+1)/mωo)
1/2

                       (21.1.7) 

This is the maximum span of any Quantum Oscillator 

at state n. If the particle at state n is at position x, that 

position must be within the displacement bounds, 

-Δx/2≤ x ≤ Δx/2                                 (21.1.8) 

-(2ћ(2n+1)/mωo)
1/2

≤ x ≤(2ћ(2n+1)/mωo)
1/2

   (21.1.9) 

Any eigenstate that extends outside these bounds 

cannot represent an eigenstate of a Quantum 

Oscillator. The state n does not have sufficient energy 

to be outside these bounds.  

As we have seen before, irrespective of the size of 

the width Δx, on average position x is the precise 

position since precise position is always within the 

span Δx. The width Δx does not have to be zero for on 

average precision. On average precision of x does not 

depend on the width Δp. Irrespective of the Δp, on 

average position of a particle is certain. Similarly, 

irrespective of Δx, on average momentum is also 

certain. 

 

b) Width of the Wavefunction in Momentum 

Domain Δp. 

The energy En of the state n is given by the 

eigenvalue of that state, 

En=ћωo(2n+1), Ɐn, n=0, 1, 2, …        (21.2.1) 

When the maximum momentum p=pmax is reached, 

displacement is zero, x=0, and hence all the energy of 

the particle is in the form of kinetic energy, 

(1/2m)(pmax)
2
=ћωo(2n+1)                     (21.2.2) 

pmax=(2mћωo(2n+1))
1/2

                        (21.2.3) 

This is the maximum momentum of state n. 

Momentum of a Quantum Oscillator at state n is 

bound by |pmax|. The momentum associated with state 

n is bound by, 

- pmax ≤ p ≤ pmax                               (21.2.4) 

-(2mћωo(2n+1))
1/2

≤ p ≤(2mћωo(2n+1))
1/2

     (21.2.5) 

The width Δp of the n
th
 eigenstate or the wavefunction 

in the momentum domain ѱn(p) is twice the pmax, 

Δp=2pmax                                             (21.2.6) 

Δp=2(2mћωo(2n+1))
1/2

)                       (21.2.7) 

Any eigenstate that extends outside these bounds 

cannot represent an eigenstate of a Quantum 

Oscillator. The state n does not have sufficient energy 

to be outside these bounds. 

As in the case of position x, irrespective of the size 

of the width Δp, on average momentum p is the 

precise momentum since precise momentum is 

always within the span Δp. The width Δp does not 

have to be zero for on average precision. Precision of 

p does not depend on the width Δx.  

 

c) Fourier Transform Bounds on Δp 

Although incorrect, in Quantum Mechanics, the 

position and the momentum pair (x, p) is assumed to 

be a Fourier Transform pair. For a free-moving particle 

of mass m, the wave function is given by, 

 ѱn(x,t)=exp(jpx/2ћ)exp(-jEnt/ћ)             (21.3.1) 

If you are wondering why 2ћ instead of ћ we usually 

come across in Quantum Mechanics, it is because we 

have used the wavelength as twice the deBroglie 

wavelength as it justifiably should be [3]. At any time, 

t, for a free-moving particle, the wave function of the 

n
th
 state, ѱn(x) is given by, 

ѱn(x,t)=exp(jpx/2ћ)                       (21.3.2) 

For the wavefunction ѱn(x) of the n
th
 state of energy 

En, let the width of the wavefunction in position 

domain be Δx, and the width of the wavefunction in 

momentum domain be Δp. If (x, p) pair is a Fourier 

Transform pair, we have [5], 

   ΔpΔx/2h≥1                                   (21.3.3) 

The width Δx of the wavefunction in position domain is 

twice the maximum position xmax, and the width Δp of 

the wavefunction in momentum domain is twice the 

maximum momentum pmax, 

Δp=2pmax.                                    (21.3.4) 

Δx=2xmax.                                    (21.3.5) 

Since (x,p) pair is assumed to be a Fourier Transform 

pair, the width of the wavefunction in momentum 

domain is determined by the width of the wavefunction 

in position domain and vice versa by the relationship 
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in eqn. (21.3.3). On the other hand, the maximum 

displacement xmax is determined by the energy of the 

state En. At state n, En=ћωo(2n+1). We already found 

the width of the wave function in position domain for 

the state n in eqn. (21.1.7), 

 Δx=2(2ћ(2n+1)/mωo)
1/2

                   (21.3.6) 

Substituting for Δx in eqn. (21.3.3), we have, 

Δp[2(2ћ(2n+1)/mωo)
1/2

]≥2h                  (21.3.7) 
Δp≥2π(ћmωo/2(2n+1))

1/2                      (21.3.8) 
As, n  ∞, we have Δp  0. 

From eqn. (21.3.4), 

Δp=2pmax.                                    (21.3.9) 

As a result, 

pmax ≥ π(ћmωo/2(2n+1))
1/2

            (21.3.10) 

When position x and momentum p are assumed to be 

a Fourier Transform pair, the span Δp of the 

wavefunction ѱn(p) in the momentum domain is lower 

bound by the relationship given in eqn. (21.3.8).  

The maximum momentum pmax has a lower bound 

given in eqn. (21.3.10). This lower bound is for pmax, 

not for p, and hence it does not prevent the on 

average observed momentum p from being the 

precise momentum since the precise momentum is 

within the range of Δp. The momentum p can take any 

value within the range -pmax≤p≤pmax. The lower bound 

of Δp only says that pmax cannot go below the lower 

limit given in eqn. (21.3.10) if x and p are a Fourier 

Transform pair. Lower bound of pmax is not a restriction 

on p. The true value of momentum p still lies within 

the range of -pmax≤p≤pmax. As we have seen earlier, 

pmax also has an upper bound determined by the 

energy of the state. 

 

Lemma: On average Precision 

 Heisenberg Uncertainty principle cannot prevent 

the on-average measured momentum from being the 

precise momentum irrespective of the size of the 

bandwidths Δp and Δx since the true momentum lies 

within Δp. 

 

Property: On Average Certainty 

The introductions of lower bounds of xmax and pmax 

by the assumption that x and p are a Fourier 

Transform pair cannot prevent x taking all the values 

in the range -xmax≤x≤xmax and p taking all the values in 

the range  -pmax≤p≤pmax. 

 

The lower bound of pmax introduced by Fourier 

Transform bandwidth bounds does not prevent what is 

required for a Harmonic Oscillator to exist, which is 

the momentum must be zero, p=0, when the position 

is at maximum span, x=xmax and the position must be 

zero, x=0, when the momentum is at maximum, 

p=pmax.  

However, the pmax and xmax are constants for a 

given Oscillator since they are determined by the 

energy level. If position and momentum is a Fourier 

Transform pair this is not possible, and hence position 

and momentum of a Quantum Oscillator cannot be a 

Fourier Transform pair. In addition, the momentum of 

a Harmonic Oscillator is a function of displacement x, 

p=p(x), and hence position and momentum of a 

Quantum Oscillator cannot be a Fourier Transform 

pair. Any two mutually dependent pair of observables 

such as position and momentum of a particle cannot 

be a Fourier Transform pair. 

 

Property: Mutually Dependent Non-Fourier Pair 

Momentum of a Harmonic Oscillator is a function of 

the displacement x, p=p(x), and hence position, x and 

momentum, p of a Quantum Harmonic Oscillator 

cannot be a Fourier Transform pair. 

 

d) Fourier Transform Bounds on Δx 

For a given wavefunction ѱn(p) with width Δp in 

momentum domain at state n, the width Δx of the 

wave function ѱn(x) is also limited by the Fourier 

Transform constrain, 

ΔpΔx/2h≥1                                   (21.4.1) 

From eqn. (21.2.3), we already have the limit of Δp 

introduced by the energy limit of the oscillator at 

eigenstate n, 

pmax=(2mћωo(2n+1))
1/2

                     (21.4.2) 

Since Δp=2pmax, substituting for Δp, in eqn. (21.4.1), 

we have, 

Δx(2mћωo(2n+1))
1/2

 ≥ h                  (21.4.3) 

Δx ≥h/(2mћωo(2n+1))
1/2

                  (21.4.4) 

Δx ≥ 2π(ћ/2mωo(2n+1))
1/2

               (21.4.5) 

Since Δx=2xmax, we have, 

xmax ≥ π(ћ/2mωo(2n+1))
1/2

               (21.4.6) 

When position x and momentum p are assumed to 

be a Fourier Transform pair, for a given wavefunction 

in momentum domain, ѱn(p), it imposes a lower bound 

on the xmax of the wavefunction in position domain, 

ѱn(x) given by eqn. (21.4.6). It is a lower bound on 

xmax. It is not a lower bound on x. It does not prevent x 

from being zero. Position x can take any value within 

the range -xmax≤x≤xmax. Momentum p can take any 

value within the range -pmax≤p≤ pmax. It only says that 

xmax cannot go below lower limit given in eqn. (21.4.6).  

As it is the case for on average momentum, on 

average position <x> is also certain irrespective of 

bandwidth limits. As we have seen earlier, xmax also 

has an upper bound determined by the energy of the 

state. 

 

Lemma: Powerless Heisenberg Uncertainty 

 Heisenberg Uncertainty principle cannot prevent 

the on-average measured position <x> from being the 

precise position irrespective of the size of the 

bandwidths Δx and Δp since the true position lies 

within Δx. 

 

Corollary: Powerless Fourier Bandwidths 

Lower bound on xmax for a fixed pmax due to the 

assumption that the x and p are a Fourier Transform 

pair cannot prevent from on average x from being 

zero if x is zero mean. Similarly, a lower bound on pmax 

for a fixed xmax due to the assumption that the x and p 

are a Fourier Transform pair cannot prevent on 
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average p from being zero if p is zero mean. 

 

Lemma: Span-Limited Non-Fourier Pair 

Position span xmax and the momentum span pmax 

are determined by the energy level of a Quantum 

Oscillator. This precludes the x and p from being a 

Fourier Transform pair. 

 

As it was in the case for momentum, the lower limit 

on xmax does not prevent the displacement x of a 

Harmonic Oscillator from reaching zero, x=o which is 

required for the existence of a Quantum Oscillator; it 

is only the span of the position xmax that is bounded, 

not the x. As it is required for the existence of a 

Quantum Oscillator, the momentum can be zero, p=0, 

when the displacement is maximum, x=xmax, and the 

displacement x can be zero, x=0 when the momentum 

is maximum, p=pmax. 

However, the maximum displacement xmax and the 

maximum span of the momentum pmax of a Harmonic 

Oscillator are constant, and they are determined by 

the energy level of the Quantum Oscillator. If position 

and momentum are a Fourier Transform pair, this is 

not possible, and hence position and momentum of a 

Quantum Oscillator cannot be a Fourier Transform 

pair. If the displacement or position, x, and the 

momentum, p represent a Fourier Transform pair, they 

cannot represent a Quantum Oscillator. On the other 

hand, if the position and momentum represent a 

Quantum Oscillator, they cannot represent a Fourier 

Transform pair; one precludes the other.  

 

Lemma: Catch 22 of a Quantum Oscillator 

Position x and momentum p pair of a Quantum 

Oscillator cannot be a Fourier Transform pair. Position 

and momentum Fourier Transform pair cannot be a 

Quantum Oscillator. 

 

e) Upper and Lower Bounds For Δp  

As we have seen, oscillating particle in a state with 

limited energy cannot have a wavefunction of 

unlimited span. For a particle oscillating at a finite 

energy level, the maximum momentum, pmax, of an 

Oscillating particle at state n is determined by the 

energy level of the n
th
 state, En=ћωo(2n+1), and it is 

given by eqn. (21.2.3), 

 pmax=(2mћωo(2n+1))
1/2

                (21.5.1) 

The momentum p of a Quantum Oscillator must be 

less than pmax, 

p≤ pmax,                                       (21.5.2) 

In addition, we also have another bound that appears 

when we assume that the position x and the 

momentum p pair to be a Fourier Transform pair, 

which is a lower bound. Under this bound, maximum 

momentum pmax of a Quantum Oscillator at state n is 

limited by, 

pmax ≥ π(ћmωo/2(2n+1))
1/2

            (21.5.3) 

Combining these two limits, we have, 

π(ћmωo/2(2n+1))
1/2

≤pmax≤(2mћωo(2n+1))
1/2

 (21.5.4) 

For the existence of Harmonic Oscillation, when 

the position or the displacement x reaches maximum, 

the momentum p must be able to reach zero. The 

upper and lower bounds on pmax cannot prevent p 

from being zero. However, xmax and pmax are constants 

determined by the energy of the Quantum Oscillator. 

When xmax and pmax are constants, position and the 

momentum cannot be a Fourier Transform pair. 

Without position and momentum being a Fourier 

Transform pair, Quantum Mechanics itself has no 

existence.  

 

 

f) Upper and Lower Bounds For Δx 

We have seen for a fixed pmax of a wavefunction in 

the momentum domain ѱn(p) for state n, the width Δp 

is fixed and the width Δx of the wave function has a 

lower bound given by the Fourier Transform 

bandwidth limits given in eqn. (21.4.5), 

Δx ≥ 2π(ћ/2mωo(2n+1))
1/2

                 (21.6.1) 

The maximum span of the wavefunction at state n 

is limited by the energy of the state and given by the 

eqn. (21.1.7), 

Δx=2(2ћ(2n+1)/mωo)
1/2

                       (21.6.2) 

Since Δx=2xmax and the position xmax must satisfy 

these two limits, we have, 

π(ћ/2mωo(2n+1))
1/2

≤xmax≤(2ћ(2n+1)/mωo)
1/2

   (21.6.3) 

As n increases, the energy of the Oscillator 

increases. With the increase of the energy level, both 

the maximum displacement xmax and the maximum 

momentum pmax will increase. It is the energy of the 

state that govern the displacement and the 

momentum spans. The width of the wavefunction 

ѱn(x) in the position domain and the width of the 

wavefunction ѱn(p) in momentum domain will increase 

as the energy level n increases.  

However, the assumption that the position and the 

momentum are a Fourier Transform pair introduces 

lower bounds on xmax for a given pmax and vice versa. 

This lower limit decreases with the increase of the 

energy level n. Contrary to many claims in the 

literature, this lower limit does not introduce a 

measurement problem. It only limits the xmax. It cannot 

prevent x from being zero and hence the momentum 

of the particle from reaching the maximum momentum 

pmax. It cannot prevent precise measurement of the 

position x on-average since the precise position x is 

within the span Δx irrespective of the size of spans of 

Δx and Δp. 

When the energy level of a Quantum Oscillator 

increases, both the span of position xmax and span of 

the momentum pmax increases. Span of the position 

and the span of the momentum of a Harmonic 

Oscillator do not have a reciprocal relationship that is 

expected to have in a Fourier Transform pair, and 

hence position and momentum cannot be a Fourier 

Transform pair. 

 

Lemma: Non-Reciprocal Relationship 

Harmonic Oscillator does not have a reciprocal 

relationship between Δx and Δp, which is required for 
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them to be a Fourier Transform pair. 

 

In Quantum Mechanics, even though both ѱn(x) 

and ѱn(p) have infinite spans, the span of the position 

x and the span of the momentum p of any oscillator 

are strictly limited by the energy of the state. As a 

result, infinite span ѱn(x) and ѱn(p) cannot represent 

the states of an Oscillator.  

If x cannot reach zero, when p is a maximum, and 

p cannot reach zero when x is maximum, there would 

be no Quantum Oscillator. If the assumption that the 

square wavefunction or an eigenstate of an Oscillator 

represent the probability of particle being at a certain 

position, wavefunctions consisting of nulls prevent the 

free movement of the particle within the entire span of 

the wavefunction. The presence of nulls can prevent 

the position from being zero when the momentum is 

maximum, and the momentum from being zero when 

the displacement is maximum. As a result, the 

position, and the momentum wavefunctions consisting 

of nulls cannot be a Quantum Oscillator.  

The good news is that the assumption that the 

position and momentum of a Quantum Oscillator are a 

Fourier Transform pair cannot prevent x reaching zero 

when p=pmax, and p reaching zero when x=xmax. 

However, if the position and the momentum are a 

Fourier Transform pair, it cannot be a Quantum 

Oscillator or an Oscillator of any kind since Δx and Δp 

of a Quantum Oscillator must be constants 

determined by the energy level of the Oscillator state. 

 

Theorem: Non-Compatibility 

In a Fourier Transform pair, the width in one 

domain determines the width in the other domain. In a 

Quantum Harmonic Oscillator width in both domains 

are determined by the energy level. 

 

Property: One or the Other 

Fourier Transform pair (x, p) cannot be a Quantum 

Oscillator, and conversely, a Quantum Oscillator (x, p) 

cannot be a Fourier Transform pair. 

 

g) There is no Measurement Problem Associated 

with position x and momentum p 

If ѱn(x) and ѱn(p) are a Fourier Transform pair, the 

measurement of both position x and momentum p are 

not required. When ѱn(x) and ѱn(p) are a Fourier 

Transform pair, all the information in ѱn(x) is contained 

in ѱn(p) and vice versa; one can be derived from the 

other.  

Further, when x and p are a Fourier Transform pair, 

it indicates that x and p are also simultaneously 

measurable. Any two observables that cannot be 

simultaneously measurable cannot be a Fourier 

Transform pair. So, if the observable x and p are a 

Fourier Transform pair, it is guaranteed that both x, 

and p, are simultaneously measurable.  

It is not necessary to know both ѱn(x) and ѱn(p) 

separately if they are a Fourier Transform pair since 

the momentum information is contained in ѱn(x). The 

knowledge of ѱn(x) is sufficient in determining the 

ѱn(p). No separate knowledge is required.  

Uncertainty principle cannot prevent the 

measurability of both position and momentum 

simultaneously. In fact, there will be no uncertainty 

principle if the position and the momentum are not 

simultaneously measurable since position and 

momentum cannot be a Fourier Transform pair if they 

are not simultaneously measurable. 

If ѱn(x) and ѱn(p) are a Fourier Transform pair, they 

must have a common eigenspace. If they do not have 

a common eigenspace, they cannot be a Fourier 

Transform pair. If position and momentum are a 

Fourier Transform pair, position and momentum 

operators must have a common eigenspace. If 

position and momentum operators have a common 

eigenspace, they must be simultaneously measurable.  

Irrespective of the size of a particle, the momentum 

is proportional to the rate of change of the position. If 

position is measurable, that is all required for 

obtaining the momentum; no separate momentum 

measurement is required. One electromagnetic pulse 

is all that is required for the measurement of both the 

position and the momentum simultaneously. The 

frequency shift of the reflected pulse provides the 

momentum information while the time delay of the 

reflected pulse provides the position information. You 

can Quantum theorize a motion of a particle anyway 

you like, if observables of a particle behave randomly 

only when the time is paused, those Quantum 

characteristics are not observable since time cannot 

be paused. 

In Quantum Mechanics, for position and 

momentum to be a Fourier Transform pair, time had to 

be paused. When time is paused, momentum has no 

existence. Momentum cannot exist in reality without 

change in time. You can stop a particle at certain 

position in reality, but you cannot stop momentum of a 

particle at certain momentum in reality; you can only 

do it in your notebook, in theory, not in reality. When 

time is paused, momentum seizes to exist in reality. 

For Quantum Mechanics to exist, time has to be 

paused. You cannot pause time in reality, and hence 

Quantum Mechanics itself is not a realistic theory.  

It is only at a specific frozen time that the position 

and momentum can be assumed to be probabilistic in 

Quantum Mechanics. In order to test the predictions of 

Quantum Theory, you need to pause the time, which 

is not possible. In spite of many bogus claims of 

experimental verifications of Quantum Theory, the fact 

is that there are no ways to carry out a realistic 

Quantum Mechanics experiments since we have no 

ability to pause the time. We have no ability to 

measure Quantum behaviors of particles in Quantum 

Mechanics since all the measurements that are 

realistically possible are in run-time. 

 

Lemma: Simultaneity of a Fourier Transform Pair 

If position x and momentum p pair is a Fourier 

Transform pair, the position operator and the 
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momentum operator must have a shared eigenspace. 

If position operator and momentum operator have a 

shared eigenspace, position and momentum are 

simultaneously measurable. 

 

Corollary: A Must for Fourier Pair 

If position x and momentum p cannot be 

measurable simultaneously, they cannot be a Fourier 

Transform pair. Any Fourier Transform pair must be 

simultaneously measurable. 

 

 

Contrary Theory: Existence 

There will be no Uncertainty Principle per se if the 

position and the momentum are not simultaneously 

measurable since position and momentum cannot be 

a Fourier Transform pair if they are not simultaneously 

measurable. 

 

XXII. EIGENSTATES CANNOT REPRESENT 

PROBABILITY DISTRIBUTIONS 

We have already seen that no wavefunction or 

eigenstate with nulls can represent a probability 

density function of a particle since a particle has no 

escape if the particle is in between nulls. Since all the 

eigen states except the ground state have nulls, none 

of the eigenstate except the ground state can 

represent a probability distribution. Since the ground 

state is the only state that is free of nulls, it appears as 

if the ground state can represent a probability 

distribution or probability density function. However, 

there is another reason why none of the eigenstates, 

including the ground state, cannot represent a 

probability distribution. 

We have seen that the maximum displacement of 

a Harmonic Oscillator is limited by the energy of the 

eigenstate. For state n, the maximum displacement 

xmax is given in eqn. (21.1.5), 

xmax=(2ћ(2n+1)/mωo)
1/2

                       (22.1) 

For any given state n, the displacement x must satisfy, 

|x| ≤ xmax                                      (22.2) 

-(2ћ(2n+1)/mωo)
1/2

 ≤ x ≤ (2ћ(2n+1)/mωo)
1/2

    (22.3) 

As a result, the probability distribution of a particle 

being at any x will have a strictly limited range in x. A 

Quantum Oscillator cannot have an infinite span at 

any eigenstate since the energy of any state is finite. 

An eigenstate of infinite span cannot represent a state 

of a Quantum Oscillator of finite energy. 

The eigenstate ѱn(x), Ɐn, n=0, 1, 2, 3, … does not 

have a bound span. The eigenstate ѱn(x) for any n 

has an infinite span, -∞≤x≤∞. Infinite span eigenstate 

ѱn(x) is unnatural for an Oscillator since it requires 

infinite energy and does not concur with the small 

displacement assumption. As a result, no eigenstate 

including the ground state can represent a probability 

distribution. Neither a state of a particle ѱn(x) nor the 

|ѱn(x)|
2
 can be a probability distribution or probability 

density function of a Harmonic Oscillator. Only a 

function that is span limited between -xmax and xmax 

can represent a probability distribution, where |xmax| is 

the maximum displacement of the state n determined 

by the limited energy of that state, 

-xmax ≤ x ≤ xmax                            (22.4) 

-(2ћ(2n+1)/mωo)
1/2

 ≤ x ≤ (2ћ(2n+1)/mωo)
1/2

   (22.5) 

Oscillating particle does not have energy to be beyond 

the maximum displacement allowed by the energy of 

the particle at any state.  

No particle of finite energy can be of infinite span. 

This is also why the so-called Quantum Tunneling is 

not possible. There is no Quantum Tunneling. No 

Oscillating particle at any state has the energy 

required to be beyond the displacement limits allowed 

by the energy of the Quantum Oscillator at that state. 

State of a Quantum Oscillator cannot be an 

unconstrained solution to the wave equation. 

 

Lemma: Reality Oversight 

An eigenstate of infinite span cannot represent a 

state of a Quantum Oscillator of finite energy.  

 

XXIII. THERE IS NO QUANTUM TUNNELING  

The maximum displacement of a Quantum 

Oscillator at any state is limited by the energy of the 

state. Although the eigenstate ѱn(x) has infinite span 

of x, -∞≤x≤∞, Quantum oscillation cannot have a 

displacement x beyond the maximum displacement 

xmax allowed by the energy of the state. Maximum 

displacement allowed by the energy of the state is 

given by, 

xmax=(2ћ(2n+1)/mωo)
1/2

                  (23.1) 

As a result, the range of x is given by, 

-xmax≤ x ≤xmax                               (23.2) 

-(2ћ(2n+1)/mωo)
1/2

 ≤ x ≤ (2ћ(2n+1)/mωo)
1/2

   (23.3) 

The span of the solution to the wave equation of a 

Quantum Oscillator ѱn(x) that is used in Quantum 

Mechanics is given by, 

-∞ ≤ x ≤ ∞                                              (23.4) 

The eigenstates, ѱn(x), Ɐn, n=0, 1, 2, …, we 

obtained have an unbound span of x. Unbound span 

wavefunction cannot represent a state of a Quantum 

Oscillator of finite energy. It is simply preposterous 

even to think about calling unbound wavefunction as a 

state of a Quantum Oscillator of finite energy. This 

error is due to the mistake in the formulation of the 

Quantum Harmonic Oscillator as an unconstrained 

eigenvalue eigenvector decomposition problem. 

 When we solve the wave equation, we did not 

specify the position and the momentum bounds for the 

Oscillator of finite energy. We should have formulated 

the solution to the wave equation as a conditional 

solution to the wave equation. If we have done so, we 

would have obtained the eigenstates that has a limited 

span that agrees with the energy of the state. 

Although the eigenstates have unbound span of x, 

Quantum Oscillator cannot have an unbounded span 

since the energy at any state is finite. As a result, so-

called Quantum Tunneling is not possible. There is no 

such phenomenon called Quantum Tunneling. 

Quantum Mechanics has turned out to be a chain of 

blunders, one blunder supporting the next. That is 
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exactly what we can expect when the foundation of 

Quantum Mechanics is based on a theoretical and 

conceptual farce supported by experimental 

interpretation blunders. 

No eigenstate can represent a probability of 

particle being at a certain position. Probability cannot 

determine where a particle can be. Position and 

momentum of an Oscillating particle are deterministic, 

not probabilistic. The wavefunction of a Quantum 

particle is as meaningless as the invalid claim that 

particles behave as waves.  

 

There is nothing waving in a moving neutral 

particle [3]. Particles (masses) do not behave as 

waves. Wavefunctions cannot represent a probability 

distribution of particle being at certain location. It is 

only when the moving charge particles are stopped, 

accelerated, or decelerated that they generate 

electromagnetic waves [4]. These generated 

electromagnetic waves travel at the speed of light. A 

particle (mass) of momentum p cannot follow the 

waves that travel at the speed of light. These 

electromagnetic waves do not describe the state of a 

particle since the wave is completely detached from 

the particle that generated the wave. A particle that is 

at a lower speed than the radiation waves cannot 

follow the radiation waves.  

It is known that a neutrino travels at a quite high-

speed close to the speed of light, yet its mass is quite 

negligible. If Special Relativity is true, as the speed of 

a particle reaches the speed of light, the mass of the 

particle must reach infinity. How can a neutrino have a 

negligible mass if it travels close to the speed of light? 

Some of the claims in so-called Modern Physics are 

self-contradictory; it shows the mockery of so-called 

Modern Physics. Mass of a particle does not depend 

on its speed. It is the volume of a particle that 

depends on its speed. Time and mass are 

independent of frame of reference [9]. If relativity 

holds, I should be able to lose weight just by sitting on 

the couch, because according to relativity I am always 

moving relative to somebody really moving even 

though I am still sitting. If relativity holds, I should be 

able to move a mountain by running away from it. It is 

who is doing the work that decides who is moving, not 

the relativity. 

Electrically neutral moving particles (masses) do 

not generate waves. Neutral moving particles 

(masses) do not behave as waves. Momentum does 

not generate waves. No mass can be in multiple 

places simultaneously irrespective of the size of the 

particle. There is no wave particle duality. There are 

no light particles or so-called photons. No particle 

waves. Quantum tunneling is mythical; it only exists in 

the mind of the believer, not in reality. There is no 

Quantum tunneling. 

 

Property: No Charge - No wave 

Movement of electrically neutral particles do not 

generate waves. It is the movement of charge 

particles, chomentum, that generates waves [3]. Once 

generated, these electromagnetic waves are 

completely independent of the behavior of the 

particles and do not represent states of particles. 

 

Impossibility Theorem: 

Quantum Tunneling is not possible. 

 

XXIV. LOGICAL FORMULATION OF QUANTUM 

HARMONIC OSCILLATION 

Quantum oscillator of mass m and restoration force 

constant k have the Hamiltonian H, 

H=(1/2m)p
2
+(1/2)kx

2
                          (24.1) 

Since ωo=(k/m)
1/2

, we have, 

H=(1/2m)p
2
+(1/2)mωo

2
x

2
                          (24.2) 

If the energy of Quantum Oscillator is E, then, at the 

maximum displacement xmax, the momentum p=0. As 

a result, at the maximum displacement, the total 

energy will be in the form of potential energy of the 

Quantum Oscillator, 

(1/2)mωo
2
xmax

2
 = E                                (24.3) 

xmax = (2E/mωo
2
)
1/2

                               (24.4) 

The position x of Quantum particle at the state of 

energy E is bounded by, 

-xmax ≤ x ≤ xmax                                   (24.5) 

-(2E/mωo
2
)
1/2

 ≤ x ≤ (2E/mωo
2
)
1/2

               (24.6) 

If the width of the wavefunction or eigenstate is Δx, 

Δx=2xmax                                    (24.7) 

The width of the wavefunction at state with energy E 

is given by, 

Δx =2(2E/mωo
2
)
1/2

                       (24.8) 

Any state ѱ(x) of a Quantum Oscillator of energy E 

must be within the displacement bound allowed by the 

energy E of the Quantum state. No particle has the 

energy to be outside the range of Δx. 

The wave equation of Quantum Oscillator is given 

by, 

-(1/2m)ћ2∂
2
Ѱn(x)/∂x

2
+(1/2)mωo

2
x

2
ѱn(x)=Enѱn(x)     

(24.9) 
Span unconstrained solutions to the wave equation do 

not represent a Quantum Oscillator since the solutions 

ѱn(x), Ɐn are unbound in the span of x. Eigenstates 

ѱn(x), Ɐn have an infinite span x even though the 

span of a Quantum Oscillator at any state must be 

limited by the energy of the state En.  
Quantum Oscillator of finite energy cannot have an 

infinite displacement. Further, the wave equation 

applies only for small displacement x; it does not 

apply for large displacements, certainly not for infinite 

displacements. Therefore, span unconstrained 

solutions to the wave equation cannot represent the 

states of a Quantum Oscillator. 

In order to represent the states of a Quantum 

Oscillator, the solutions to the wave equation must be 

found under the constrained that the spans of the 

eigenstates are bound by the energy of the particle 

such that -xmax≤x≤xmax, where, xmax = (2E/mωo
2
)
1/2

. 

 

Lemma:  Perfect Non-Reversibility 

Although the state of any Quantum Harmonic 
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Oscillator is an eigenstate of the Hamiltonian 

H=(1/2m)P
2
+(1/2)mωo

2
x

2
, the reverse is not true. Any 

eigenstate of the Hamiltonian H is not a state of a 

Quantum Harmonic Oscillator. 

 

Corollary: Lot More to It 

For any wavefunction ѱn(x) to be a state of a 

Quantum Harmonic Oscillator, although it is 

NECESSARY for it to be an eigenstate of the 

Hamiltonian H=(1/2m)P
2
+(1/2)mωo

2
x

2
, it is NOT 

SUFFICIENT. For any wavefunction ѱn(x) to be a 

state of an Oscillator, the position x of the 

wavefunction must be withing the bounds allowed by 

the energy of the state, -(2En/mωo
2
)
1/2

≤x≤(2En/mωo
2
)
1/2

.  

 

Theorem: Law Abiding 

Eigenstate ѱn(x), Ɐn, n=0, 1, 2, … is a state of a 

Quantum Harmonic Oscillator if and only if ѱn(x) 

satisfies the wave equation, 

-(1/2m)ћ2∂
2
Ѱn(x)/∂x

2
+(1/2)mωo

2
x

2
ѱn(x)=Enѱn(x) 

under the constrain that the displacement x is 

bounded by the energy of the particle so that, 

ѱn(x)>0 Ɐn, for -(2En/mωo
2
)
1/2

 ≤ x ≤ (2En/mωo
2
)
1/2

, 

ѱn(x)=0 Ɐn, otherwise. 

 

If ѱn(x) is normalized so that ∫ѱn(x)dx=1 within the 

range of x given by -(2En/mωo
2
)
1/2

≤x≤(2En/mωo
2
)
1/2

, 

then, ѱn(x) itself can be used to represent a probability 

distribution, no squaring is necessary. 

There is no known closed form solution to this 

constrained wave equation for Quantum Oscillators. 

Since Quantum Mechanics itself is a hypothetical 

theory that does not represent the reality, any effort to 

find solutions to this constrained wave equation will 

not be of any value, a waste of time. Quantum 

Mechanics is a collection of mathematical and 

experimental bloopers. 

 

Lemma: Impossibility 

The wavefunction ѱn(x) in the position domain and 

the wavefunction ѱn(p) in the momentum domain of a 

particle cannot be a Fourier Transform pair since the 

span of the position and the span of the momentum of 

a Harmonic Oscillator are strictly limited by the energy 

of the state, 

ѱn(x)>0 Ɐn, for -(2En/mωo
2
)
1/2

≤x≤(2En/ mωo
2
)
1/2

, 

ѱn(x)=0 Ɐn, otherwise. 

ѱn(p)>0 Ɐn, for -(2mEn)
1/2

≤p≤(2mEn)
1/2

, 

ѱn(p)=0 Ɐn, otherwise, 

where, En is the energy of the state n and  

En=ћωo(2n+1), Ɐn, n=0, 1, 2, 3, …. 

 

Theorem: Catch-22 

Fourier Transform pair cannot have strict 

predefined bandwidth limits. Harmonic Oscillators 

have no existence without strict limits on the position 

span and the momentum span determined only by the 

energy of the particle. As a result, the position and 

momentum of a particle cannot be a Fourier 

Transform Pair. 

 

XXV. THERE IS NO NEGATIVE ENERGY 

The negative momentum, -p means the 

momentum is of opposite direction of +p. Positive or 

negative momentum exists relative to an observer. 

What is considered a positive momentum for one 

observer can be negative for another observer. The 

claim that the negative momentum is associated with 

negative energy [1] is simply meaningless, 

preposterous. Negative energy can only exist in 

human psychic, not in nature.  The energy cannot be 

negative. It is observers who define the negative or 

positive direction, not the nature. Nature has no 

positive or negative directions. What is positive for 

one observer can be negative for another observer. 

The concept of negative energy comes from archaic 

cultural and religious baggage (yin and yang) some of 

us a still carrying unconsciously and has no place in 

science except in voodoo-science. 

 Fourier transform contains both positive and 

negative frequencies simply as a result of bipolar 

mathematical symmetry; there are no negative 

frequencies. Electromagnetic energy comes in 

frequency bursts and the energy of the burst is 

proportional to frequency, E=hf. However, mechanical 

energy is continuous, does not come in bursts and 

hence mechanical energy is not proportional to 

frequency, E≠hf. The relationship E=hf has no 

meaning unless it is associated with a wave burst of 

specific time duration. E=hf does not apply for 

continuous waves. 

In Quantum Mechanics, mechanical energy is 

assumed invalidly to be proportional to frequency, 

E=hf.  As a result, since frequency can be both 

positive and negative due to mathematical bipolar 

symmetry, the energy also appears to be both positive 

as well as negative. Mathematical possibility is not 

always a realistic possibility. There are no negative 

frequencies or negative energies. 

Writing mechanical energy of a particle E as E=pc 

[1], where c is the velocity of light does not make E 

negative when p is negative. The velocity of light c 

also has the same direction as p. If p is negative it is 

because the direction of c is negative. Momentum p 

and speed c cannot be mutually exclusive since 

speed is inherent in the momentum p. When E is 

written as E=pc, the direction of c is part of it since p 

must be mc; the momentum of a particle cannot be 

detached from the speed of the particle. Since a mass 

cannot travel at speed of light c, for any mass p≠mc 

and E≠pc. You cannot separate momentum from 

speed. Speed is a part of momentum. As a result, pc 

can never be negative, pc>0. Although c can be a 

constant, it is still a velocity at the same direction as 

momentum p.  

You cannot write energy of a particle E as pc since 

mass cannot travel at the speed of light. You cannot 

write electromagnetic energy E as pc since 

electromagnetic energy is not associated with a mass. 

There is no momentum without an associated mass. If 
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there is a momentum p of a particle, you cannot get 

the energy of the particle by multiplying p with any 

constant or the speed of light c. Irrespective of 

whether the energy E is electromagnetic energy or 

mechanical energy, writing E as pc is simply incorrect, 

meaningless, nonsense, E≠pc. If E is electromagnetic 

energy, then E=hf. If E is the kinetic energy of a 

particle (mass), then E=(1/2)pv, where p=mv and v is 

the speed of the particle of mass m. You cannot mix 

those two energies. So-called Modern Physics is in 

fact voodoo-physics; nothing is impossible there, 

reality out the window, mathematical and logical 

correctness out the window; it is the place where 

anything goes – professional wrestling of physics. 

Contrary to the claims in Quantum mechanics [1], 

negative momentum does not have negative energy. 

What is negative for one observer is positive for 

another observer; positive or negative direction is 

relative. There is no negative energy. Electromagnetic 

energy, E cannot be written as momentum p times c 

since electromagnetic energy has no association with 

a mass and hence has no momentum E≠pc. 

Electromagnetic energy does not behave as golf balls. 

There is no momentum without a mass. Only the 

mechanical energy, the energy associated with a 

mass can have a momentum.  

Electromagnetic energy has no association with a 

mass and hence no momentum. It is the mistaken 

belief that the light is relative, which lead to the view 

that light has a momentum. Light is not relative [6, 7]. 

When light is not relative, light has no momentum and 

hence E≠pc and E≠mc
2
. In Special Relativity, light is 

given a momentum by assumption, not as a fact. 

When you fire light burst vertically from a bottom of a 

train, the path light takes relative to the train is not 

vertical. It is the vertical representation of this path in 

Special Relativity by assumption without a proof that 

fell physics into the dark abyss of voodoo-science. 

If you make the invalid assumption that mechanical 

energy is also quantized and proportional to the 

frequency f described by deBroglie waves, then for a 

particle of mass m, the energy relationship is given by 

(1/2)pv=hf, where v is the speed of the particle and p 

is the momentum given by p=mv. A wave can start at 

the same speed that it propagates since the speed is 

solely determined by the medium characteristic. 

However, speed of a mass is not solely determined by 

the medium characteristic and hence mass cannot 

start at a same constant speed. A mass has to start 

from stand still and gain kinetic energy to remain at 

constant speed. As a result, the energy of a particle 

cannot be written as momentum p times the speed v. 

For a particle (mass), E≠pc.  

You cannot portray momentum p and speed v as 

two separate entities since the speed of a particle v is 

a momentum per unit mass. If you multiply the 

momentum by a constant to get the energy, that 

constant must be the speed of the particle, it cannot 

be any arbitrary constant. Speed and momentum are 

not disconnected entities. Momentum has the same 

direction as the speed and speed has the same 

direction as the momentum. If the momentum is 

negative, the speed is also negative and hence 

negative momentum does not mean that energy is 

negative. Energy is always positive.  

Writing the energy E as pc and claiming c as a 

directionless constant to introduce negative energy [1] 

is simply meaningless, nonsense. The energy of a 

particle cannot be the product of momentum p and 

speed of light c since no particle is able to reach the 

speed of light c. To obtain energy of a particle, what p 

should be multiplied is p/2m, not speed of light c. 

 Speed of light c has nothing to do with the energy 

of a moving particle. Speed of light c has nothing to do 

with the mass of a moving particle. Time has nothing 

to do with a motion of a particle. Time is independent 

of the motion of a particle. Mass is independent of the 

speed of a particle. Mass is independent of the speed 

of light c. Momentum is a property of a moving mass. 

Propagation of light has nothing to do with moving 

masses or momentum. Light does not propagate by 

the momentum; light has no momentum. Light is not 

an equivalent of a golf ball. Speed of a wave is solely 

determined by the medium or by the lack of it. Speed 

of a particle is not solely determined by the medium. 

It is the volume of a particle that has anything to do 

with the speed of light c. Volume of a particle 

contracts with the motion of the particle. Volume of a 

particle reaches zero when the speed of the particle 

reaches the speed of light c [9]. Physics no longer 

applies when a particle reaches the speed of light. 

When a particle reaches the speed of light, its volume 

reaches zero or in other words its mass density 

reaches infinity, a black hole.  

Particle and the particle wave must be at the same 

speed. Otherwise, particle and particle wave become 

incoherent, and particle wave cannot represent the 

probability of finding a particle at certain position. If 

particle wave travels at the speed of light, you can 

forget about representing a particle wave or wave 

function as a probability distribution. 

At the speed of light, the volume of a particle 

approaches zero [9] while mass density approaching 

infinity and hence physics no longer applies when 

particle reaches the speed of light c. In other words, 

no particle can reach the speed of light. For a moving 

particle of mass m, the energy E must be E=(1/2)pv, 

where p=mv. The energy of a particle can never be 

negative. If the mechanical energy is assumed to be 

quantized, it is one-half of pv that is equal to energy, 

(1/2)pv=hf. The product of momentum p and speed v 

is not equal to energy, pv≠hf. The product of pc is 

meaningless for a particle. Mechanical energy is not 

Quantized and hence Quantum Mechanics is invalid 

at its very foundation.  

You cannot equate energy E to hf wherever you 

come across energy E. All the energies are not 

created equal. It is only the electromagnetic energy 

that comes as electromagnetic frequency bursts that 

can be written as E=hf. Mechanical energy E cannot 
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be written as hf, or in other words, E≠hf for 

mechanical energy. Mechanical energy does not 

come as frequency bursts; mechanical energy of a 

particle exists as long as particle is moving. When 

mechanical energy E cannot be represented as hf, or 

E≠hf, Schrodinger wave equation has no existence. 

 Particles do not have wave representations. 

Motion of a mass, momentum does not generate 

waves. It is a motion of charge, chomentum [3] that 

generates electromagnetic waves when a moving 

charge is stopped, accelerated, or decelerated. It is 

the misrepresentation of the electromagnetic waves 

generated by a moving charge particle when the 

particle is abruptly stopped that lead to the ill-

conceived notion of non-existent particle waves of 

deBroglie wavelength λ=h/p [4]. There are no particle 

waves or deBroglie waves. There is no direct 

connection between the mass and the Plank constant. 

Quantum Mechanics is founded and validated upon 

the misinterpretation of experiments, specifically the 

double-slit experiment and the Stern-Gerlach 

experiment [3, 4]. 

 

XXVI. QUANTUM MECHANICS IS NOT 

EXPERIMENTALLY TESTABLE 

For the almighty hero of Quantum Mechanics, the 

wave function to come alive and takes a particle on a 

probabilistic journey, time has to be paused. For the 

Quantum observables in Quantum Mechanics to 

come alive and display Quantum behavior, time has to 

be paused. We can pause time only on paper, not in 

reality. In reality what we have is run-time. Quantum 

behaviors disappear in run-time.  In run-time, what we 

have is on average observables, which are classical 

observables we can observe in experiments.  

The theory of Quantum Mechanics is a paused-

time theory. The quantum behavior of particles is a 

paused-time behavior. Any paused-time theory is 

hypothetical since time cannot be paused to observe 

its predictions. What we only have access is the run-

time behaviors of particles. Run-time behaviors of 

particles are not Quantum behaviors. Run-time 

behaviors are on-average behaviors in Quantum 

Mechanics lingo or simply what we observe in reality.   

Not surprisingly, all the actions in Quantum 

Mechanics take place at a fixed time. Position of a 

particle take random distribution at a fixed time. 

Momentum of the same particle take a random 

distribution at the same fixed time. If you want to carry 

out an experiment to test the average position, time 

has to be paused, which is impossible. If you want to 

test the average momentum, time as to be paused. 

Otherwise, average position and average momentum 

become a meaningless concept. Time is not in our 

control. We cannot stop time. We cannot pause the 

time to test the Quantum theory. On the other hand, 

momentum has no existence if the time is paused.  

In reality, position cannot change without change of 

time. In fact, time is a definition based on the change 

of position. Time exists because of the change of a 

physical entity. What came first is the change of 

position, not the time. We use the change of position 

of an object to define an entity called time. Time is a 

human definition. If there exist a change of position, 

then, there must be a change of time. Unlike the 

chicken and egg, when it comes to change of the 

position of an object and time, we know exactly what 

came first, the change of the position of an object. 

The claim that the “Quantum Mechanics has been 

proven experimentally” is simply bogus since no run-

time experiment provide paused-time behavior of a 

particle. None of those experiment is carried out when 

time is paused or frozen. If time is paused, nothing will 

take place in a run-time experiment. On the other 

hand, you cannot have Quantum Mechanics 

experiment unless the time is paused. 

Notwithstanding many bogus claims, Quantum 

Mechanics cannot be experimentally proven. The very 

notion of testing the predictions of Quantum 

mechanics experimentally is simply preposterous, 

cannot be done.  

Average position of a particle in Quantum 

Mechanics is not a run-time average. Average 

momentum of a particle in Quantum Mechanics is not 

a run-time average. By repeating an experiment over 

and over, you cannot generate a paused-time time 

average since repeating is done in run-time. 

Ensemble average is not a paused-time average. 

Quantum Mechanics is a theory developed by 

pausing the time. If you want to test Quantum 

Mechanics, you have no option, but to carry out 

experiments by pausing time, which is not something 

that can be done. You cannot pause the time because 

time does not exist. Time is a definition. Any 

experiment carried out in run-time is not a Quantum 

Mechanics experiment. If you develop a theory by 

pausing the time and try to test it using an experiment 

in run-time, there is no sense to what you are doing; 

you have no grasp of what Quantum Mechanics is 

about. Presumed Quantum behavior of a particle in 

Quantum Mechanics is lost in run-time. You can run 

experiment only in run-time where presumed quantum 

behavior has no existence. Quantum behavior of a 

particle is hypothetical. Quantum Mechanics is 

hypothetical, not testable in real run-time. 

 

Lemma: Non-Testability 

Ensemble average is not a paused-time average. 

Paused time behavior of Quantum observables 

cannot be tested using run-time experiments. 

 

XXV. CONCLUSIONS 

Hamiltonian of a Quantum Oscillator has the form 

H=(1/2m)P
2
+(1/2)mωo

2
x

2
. Any state of a Quantum 

Oscillator is an eigenstate of the Hamiltonian H. 

However, the reverse is not true. Any eigenstate of 

Hamiltonian H of a Quantum Oscillator is not a state 

of the Quantum Oscillator. Only a very special 

eigenstates of the Hamiltonian H can be the states of 

a Quantum Oscillator. 
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Similarly, any state or wavefunction of a Quantum 

Oscillator is a solution to the wave equation of the 

Quantum Oscillator, 

-(1/2m)ћ2∂
2
Ѱn(x)/∂x

2
+(1/2)mωo

2
x

2
ѱn(x)=Enѱn(x). 

However, the reverse is not true. Any wavefunction 

that satisfy the wave equation is not a state of a 

Quantum Oscillator. 

Irrespective of the size of a particle, any particle 

that is in Harmonic Oscillation has a limited position 

span that is determined by the energy of the 

Oscillator, 

-(2En/mωo
2
)
1/2

 ≤ x ≤ (2En/ mωo
2
)
1/2

 

where, En is the energy of the state n and  

En=ћωo(2n+1), Ɐn, n=0, 1, 2, 3, …. 

No particle in Harmonic Oscillation can go beyond the 

position span that is allowed by the energy En of the 

particle. The maximum span, xmax of the particle is 

achieved when the total energy is in the form of 

potential energy, which happens when the momentum 

is zero. So, a particle in a Harmonic Oscillation must 

remain within position span of the -xmax and xmax, 

-xmax≤x≤xmax, or else it will not be a Harmonic 

Oscillator.  

In addition, the position and the momentum of any 

Harmonic Oscillator is perfectly correlated negatively. 

Position and the momentum of a Harmonic Oscillator 

cannot be random. It is a perfectly choreograph 

motion and hence each instance of position cannot be 

on-average random positions; each instance of 

momentum cannot be on-average random 

momentums. On average observables at one instant 

of time must be in perfect coherence with the on-

average observables in the adjacent instant of time. 

On-average position and on-average momentum of a 

Quantum Oscillator are mutually perfectly correlated 

at each instant of time. If the behaviors of Quantum 

observables at any instant of time are random, 

coherent on-average run-time Harmonic Oscillator 

relationships of the observables are not possible.  

 Wavefunction of a Quantum Harmonic Oscillator 

of finite energy cannot have infinite span wavefunction 

in the position domain or in the momentum domain. If 

you are getting infinite span wavefunctions as 

solutions to a wave equation of a finite energy 

Quantum Oscillator, those solutions cannot represent 

states of a real Quantum Oscillator; the formulation of 

the wave equation must be incorrect. No harmonic 

Oscillator of finite energy can have an infinite span of 

position or momentum. Properly formulated wave 

equation of any Quantum Harmonic Oscillator must 

always provide eigenstates that have position span 

bound by the energy of the Oscillator. 

On the other hands, free-standing solutions to the 

wave equation of a Quantum Harmonic Oscillator 

have no finite position span, no bounds; they all have 

infinite position spans. Free-standing solutions to the 

wave equation of a Quantum Oscillator cannot 

represent states of a Quantum Oscillator since the 

position span and the momentum span of a Quantum 

Oscillator are strictly limited by the energy of the 

Quantum Oscillator. Although Gaussian function and 

its associated Hermite polynomials are solutions to 

the wave equation of a Quantum Harmonic Oscillator, 

they cannot represent states of a Quantum Oscillator 

of finite energy since they all have infinite spans, 

Ѱn(y)=gn(y)exp(-(1/2)y
2
),  

where, gn(y) is the Hermite polynomial. 

Quantum Oscillator with finite energy cannot have 

infinite position span. The position span of any state 

must comply with the energy of the state.  

In addition, the wave equation for Quantum 

Harmonic Oscillator only applies for small 

displacement x from the equilibrium position. As a 

result, the state or wavefunction Ѱn(y) must also be 

limited only for small displacement y in order for Ѱn(y) 

represent a true realistic state of a Quantum 

Oscillator. 

 Similarly, the momentum span of a Quantum 

Oscillator must also be bound by the energy level of 

the state, 

-(2mEn)
1/2

≤ p ≤ (2mEn)
1/2

 

where, En is the energy of the state n and  

En=ћωo(2n+1), Ɐn, n=0, 1, 2, 3, …. 

No Quantum Oscillator be in a momentum state of 

infinite span. If the state of a Quantum Oscillator in 

position domain is a Gaussian function and the 

position and the momentum are assumed to be a 

Fourier Transform pair, then, the state in the 

momentum domain will also be a Gaussian function of 

infinite span. As a result, the position and the 

momentum cannot be a Fourier Transform pair when 

both position and momentum spans are limited. No 

Fourier Transform Pair can have predefined strict 

bandwidth limits in both domains.  

A particle in Quantum Harmonic Oscillation at finite 

energy state cannot be described by an eigenstate 

that has an infinite span. For an Oscillating particle to 

be at a state with infinite span of position and infinite 

span of momentum requires infinite energy, yet the 

energy of any Quantum state is finite. Irrespective of 

the size of the particle, span of the state in position 

domain as well as the span of the state in momentum 

domain of an Oscillator must be strictly limited by the 

energy of the state. No such strict limits are possible if 

the position and the momentum are a Fourier 

Transform Pair. As a result, position and momentum of 

a Quantum Harmonic Oscillator consisting of strict 

predefined span limits cannot be a Fourier Transform 

pair. Conversely, position and momentum without 

strict span limits determined by the energy cannot be 

a Quantum Oscillator. To be a Quantum Harmonic 

Oscillator, both position span and the momentum 

span must be strictly bound by the energy of the 

particle.  

In addition, linear relationship between the 

restoration force F and the displacement x, F=-kx that 

Harmonic Oscillators founded upon applies only for 

small displacements, and hence wavefunctions of 

infinite span do not represent a Quantum Harmonic 

Oscillators. 
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The restricted span of a particle by the energy of 

the particle must be incorporated into the solution of 

the wave equation. As a result, the solutions to the 

wave equation for a Quantum Oscillator will become 

finding position-constrained solutions to the wave 

equation. For realistic solutions, wave equation of a 

Quantum Oscillator, 

-(1/2m)ћ2∂
2
ѱn(x)/∂x

2
+(1/2)mωo

2
x

2
ѱn(x)=Enѱn(x),  

must be solved under the strict constrain that the 

maximum displacement is limited by the energy of the 

state, 

ѱn(x)>0 for -xmax ≤ x ≤ xmax,  

ѱn(x)=0, otherwise, 
where xmax = (2En/mωo

2
)
1/2

.  

In addition, the momentum of a particle in Harmonic 

Oscillation must also be strictly limited by, 

ѱn(p)>0, for -pmax ≤ p ≤ pmax,  

ѱn(p)=0, otherwise, 
where pmax= (2mEn)

1/2
. 

There is no known closed-form solution to this 

problem. If you disregard the span limits of the 

position and momentum, the solutions you get are the 

unrealistic solutions or solutions that are inconsistent 

with reality of the Quantum Oscillators giving rise to 

illogical concepts such as Quantum Tunneling. If the 

energy of a particle cannot support the displacement, 

it is not a realistic solution; that solution does not exist 

in reality.  

Any realistic Harmonic Oscillator only work for 

small displacements. There are no infinite span 

Harmonic Oscillators. No realistic oscillator can be of 

infinite span of position and infinite span of 

momentum. Hamiltonian of a Quantum Oscillator, 

H=(1/2)P
2
+(1/2)kx

2
 only holds true for small 

displacements x. 

The concept of Quantum Tunneling is false. There 

is no Quantum tunneling. There cannot be any 

Quantum Tunneling since the span of a particle in a 

Quantum Oscillator is limited by the energy of the 

state, which is finite. State of finite energy cannot 

have an infinite span and hence Quantum Tunneling 

is not possible. A particle cannot be at positions where 

the limited energy of the particle is insufficient to 

support. If all you can afford is the bus fare to get 

around in your home-city, you cannot be anywhere in 

the world even though you have the freedom to do so. 

You cannot build a small span model and expect it to 

work for an infinite span; that is non-sense, not 

common-sense. 

There is no reason to use complex operator 

mechanics for solving the unconstrained wave 

equation for Quantum Oscillators. Solution to the 

unconstrained wave equation for Quantum Oscillators 

does not require complex operator mechanics. Step-

Up and Step-Down operators of Quantum Oscillators 

are real, not complex. Step-Up operator is the inverse 

of the Step-Down operator and vice versa. As a result, 

the product of the Step-Up and Step-Down operators 

is a constant. However, this product constant is 2, not 

1 as in the case of a perfect inverse. 

Hamiltonian of a Quantum Harmonic Oscillator is 

real and can be decomposed into a product of two 

real operators of first order, which are also the Step-

Up and Step-Down operators. Since the Hamiltonian 

of a given Oscillator is a Constant, the product of 

Step-Up and Step-Down operators is also a constant, 

and hence for Step-Up and Step-Down operators are 

inverse of each other as expected.  

There exists a one-line solution to the 

unconstrained wave equation for Quantum Oscillators. 

Any unconstrained solution, ѱn(y) must satisfy the 

condition, 

∂
2
ѱn(y)/∂y

2
=[y

2
-(2n+1)]ѱn(y). 

Hermite satisfies this condition. As a result, 

ѱn(y)=gn(y)exp(-(1/2)y
2
)  

is a solution, where gn(y) is a Hermite polynomial of 

any order n, Ɐ, n=0, 1, 2, ... 

If a ground state solution exists for an 

unconstrained wave equation of a Quantum Oscillator, 

its first derivative is also a solution under certain 

condition. This fact itself is sufficient in obtaining both 

Step-Up (U) and Step-Down (D) operators. Step-Up 

and Step-Down operators are absolutely real, not 

complex. One-line solution gives both eigenvalues 

and eigenfunctions simultaneously. The eigenvalues 

of the Hamiltonian are the energy levels of the states, 

while the corresponding eigenfunctions are the 

unconstrained states or wavefunctions. Unconstrained 

here means the solutions to the wave equation 

without span bound; it does not mean free moving, 

which is completely different thing. 

The inability of the position and the momentum of 

Quantum oscillator to be zero simultaneously has 

nothing to do with the Heisenberg Uncertainty 

principle. It is exclusively an inherent property of a 

Harmonic Oscillator that prevents the position and 

momentum from being zero simultaneously. In a 

Harmonic Oscillator, when the displacement is 

maximum, the momentum is zero, and when the 

momentum is maximum displacement is zero. When 

the magnitude of the position increases, the 

magnitude of the momentum decreases, and when 

the magnitude of the momentum increases the 

magnitude of the position decreases. It is this property 

that prevents the position and the momentum from 

being zero simultaneously, not the Heisenberg 

Uncertainty Principle.  

If both position and the momentum are zero 

simultaneously, the energy of the Harmonic Oscillator 

will be zero, and hence there will be no Oscillator. For 

a harmonic Oscillator to exist, the total energy must 

be a non-zero constant. When the kinetic energy is 

maximum the potential energy is at its minimum 

(zero), and when the kinetic energy is minimum 

(zero), the potential energy is maximum. As a result, 

position and momentum of an Oscillator cannot be 

random. Position and momentum are perfectly 

correlated negatively. The maximum displacement is 

achieved when the potential energy is maximum, that 

is when the kinetic energy is zero. So, the 
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displacement of any state of a Quantum Oscillator is 

limited by the energy of the state of the Quantum 

Oscillator. This is the reason why the solution to the 

wave equation for Quantum Oscillators must be 

handled as a maximum displacement constrained 

solution to the wave equation. The use of the word 

Quantum does not allow to override the energy 

requirement. It is not possible to use the Quantum 

Harmonic Oscillator to justify some arbitrary non-

existent Heisenberg Uncertainty Principle; there is no 

link between them. 

Heisenberg Uncertainty Principle is a result of 

invalid forcing of the position and the momentum of a 

particle in Harmonic Oscillation to be a Fourier 

Transform pair. Heisenberg Uncertainty Principle is a 

bandwidth limit between two domains when two 

domains are a Fourier Transform pair. Heisenberg 

Uncertainty Principle cannot prevent the simultaneous 

measurability of observables or their simultaneous 

certainty.  

If the operators of observables have a common 

eigenspace, then, those observables are 

simultaneously measurable irrespective of what 

Uncertainty Principle declares. For two observables to 

be a Fourier Transform pair, they must have a 

common eigenspace. As a result, if two observables 

are assumed to be a Fourier Transform pair, that very 

assumption make those observables to be 

simultaneously measurable, otherwise they will not be 

a Fourier Transform pair. For two observables to be a 

Fourier Transform pair, the operators of two 

observables must have a shared eigenspace. 

 The claim in Quantum Mechanics that the 

operators must commute for observables to be 

simultaneously measurable is false; it is a 

mathematical and theoretical oversight. For 

observables to be simultaneously measurable, all they 

have to have is a shared eigenspace. Commutation of 

operators is not necessary for operators to have a 

shared eigenspace. It is perfectly possible for non-

commuting operators to share an eigenspace. If the 

commutation of two operators is a constant, they have 

a shared eigenspace. The misguided claim that 

operators must commute for them to have a shared 

eigenspace [1] is absolutely false; it is a result of a 

theoretical error. Non-commutation of operators 

cannot prevent them having shared eigenspace.  

 

“For operators to have a shared eigenspace, the 

commutation of operators neither necessary nor 

sufficient.” 

 

Eigenvalues and Eigenfunctions obtained by 

solving the wave equation for Harmonic Oscillator only 

applies to Harmonic Oscillators, where a motion of a 

particle under a potential proportional to the square of 

the displacement. It does not represent the motion of 

electron in an Atom. In an Atom, the motion of 

electrons is under an electrostatic potential 

proportional to the inverse distance. Harmonic 

Oscillator motion and the motion of electrons in an 

Atom are two completely different motions. 

Eigenstates and Eigenvalues of a Harmonic Oscillator 

cannot represent the energy levels of an Atom. 

Applications of Quantum Oscillator solutions are 

limited only to particles with small displacements 

under Hook’s law. Microscopic charge particles do not 

behave under Hook’s law. 

If you want to represent a wavefunction as the 

probability of particle being at a given position, then 

the ground state of a Quantum Oscillator itself can 

represent a probability distribution; no squaring of the 

ground state is necessary. The ground state of a 

Quantum Oscillator is positive in the infinite span of 

the position and contains no nulls. So why square? 

The ground state is magnitude integrable at any 

instant of time. The squaring of the ground state alters 

the probability distribution unnecessarily giving unfair 

emphasis to smaller displacements. 

All the higher eigenstates contain nulls since 

higher states eigenfunctions are negative for ranges 

of positions. As a result, higher eigenstates 

themselves cannot be represented as probability 

distributions since probability distributions cannot be 

negative. It appears that the wavefunctions of higher 

states can represent probability distributions as their 

squares, but this is not possible since all the higher 

state wavefunctions contain nulls. 

If any eigenfunction with nulls is represented as a 

probability distribution, the probability of a particle 

being at a null will be nil. As a result, particle will be 

trapped in between nulls with no mean to liberate itself 

from that entrapment. The situation is just like the 

situation of a wrongfully convicted person who also 

happens to be poor; there is no escape from the 

situation. For this reason, no higher states can 

represent a probability distribution even as squares. 

For eigenstates or their squares to represent a 

probability distribution, particle must be able to be at 

any position within its entire range of positions. In the 

case of unconstrained solutions to the wave equation, 

the range of positions is not finite. The presence of 

any null in the eigenstates prevents the ability of a 

particle to be at any place within its range by 

entrapping the particle in between the nulls. As a 

result, no higher eigenstates can represent a 

probability distribution of a particle being at a certain 

location withing the entire range of positions of the 

eigenstates. It is only the ground state itself that 

appears to be able to represent a probability 

distribution for the case of unconstrained solution to 

the wave equation. However, unconstrained solutions 

even when they are free of nulls do not represent a 

Quantum Harmonic Oscillator.  

In addition, Hook’s law only applies to small 

displacements. Harmonic Oscillation applies only for 

smaller displacements; it does not apply for large 

displacements. It certainly does not apply for infinite 

displacements. Only the constrained solutions to the 

wave function can represent a Quantum Oscillator 
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provided that the span of the Oscillator is within the 

bound allowed by the energy of the state. 

Ground state energy of a Quantum Oscillator 

cannot be a one-half of an energy quantum since 

fractional quanta cannot exist. Fractional quanta defy 

the very definition of quanta. If quantum-half exists, 

then, the quantum-half itself should be the quantum, 

not the quantum itself since the quantum by definition 

is a non-divisible quantity any further. If quantum is 

divisible to smaller units, that quantum is not a 

quantum. If a fractional quantum exists, the smallest 

fractional quantum that is in existence will be the new 

Quantum.  

 

“Quantum-Half is an oxymoron.”  

 

Fractional quanta in Quantum Mechanics is a 

result of deBroglie wavelength error [3]. No particle 

has the energy required to be at deBroglie 

wavelength. Particles only have one-half of the energy 

that is required for them to be at deBroglie 

wavelength. As a result, if a particle is assumed to 

behave as a wave, the wavelength of the particle must 

be twice the deBroglie wavelength. The fractional 

energy quanta and fractional Spins simply disappear 

when the wavelength that the energy of a particle can 

support is used. Quantum is back to its true fake glory. 

States of a Quantum Oscillator are not obtainable 

as free-standing solutions to the wave equation since 

the wave equation does not take into account the 

finite position span limits and the finite momentum 

span limits into account.  Although any state ѱn(y) of a 

Quantum Oscillator is an eigenstate of the 

Hamiltonian H=P
2
+y

2
, any eigenstate ѱn(y) of a 

Hamiltonian H is not a state of a Harmonic Oscillator. 

Hamiltonian H of a Harmonic Oscillator is unique to 

any given state of a Quantum Oscillator ѱn(y) that 

satisfy Hamiltonian H; however, any ѱn(y) that is an 

eigenfunction of the Hamiltonian H, 

Hѱn(y).=Enѱn(y) 

P
2
ѱn(y).+y

2
ѱn(y)=Enѱn(y) 

is not unique to the Quantum Oscillator. An eigenstate 

of the Hamiltonian H does not describe the dynamics 

of the Quantum Oscillator unless the span of ѱn(y) is 

constrained to match the energy En of the Oscillator in 

question.  

 

“Although any state of a Harmonic Oscillator is an 

eigenfunction of the Hamiltonian, any eigenfunction of 

the Hamiltonian is not a state of a Harmonic 

Oscillator.” 

 

Eigenstates of the form, ѱn(y)=gn(y)exp(-(1/2)y
2
)), 

where gn(y) is a Hermite polynomial of any order, 

cannot represent a Harmonic Oscillator since they all 

have infinite span requiring infinite energies, while any 

actual Oscillator has a finite position span with finite 

energies. State of finite energy cannot be described 

by an eigenfunction with infinite energy requirement. 

Although the position of the eigenfunction ѱn(y) is free 

to have an infinite position span, the position of a 

Quantum Oscillator of finite energy is not free to have 

an infinite span. Unless the states of a Quantum 

Oscillator is obtained as a position-span constrained 

solution to the wave equation, what you get as free-

standing solutions to the wave equation of a Quantum 

Oscillator is simply unrealistic and useless; any 

conclusion drawn from the results is going to be 

unrealistic, mystical and spooky; an utterly useless 

exercise. 

Position and momentum of a particle cannot be 

assumed to be a Fourier Transform pair because they 

are not a Fourier Transform pair [5]. You cannot force 

somethings to be what they are not. For a position 

and momentum to be a Fourier Transform pair, a 

particle must be able to be at infinitely many positions 

simultaneously for any given momentum. Similarly, 

the same particle must also be able to be at infinitely 

many momenta simultaneously for a given position. 

No mass can fulfill this task. No mass can be at 

infinitely many positions and momenta simultaneously 

except in voodoo-physics that exists only in human 

psychic and in some university textbooks in physics, 

not in reality. If you want to demonstrate that a particle 

can be at infinitely many positions and momenta 

simultaneously experimentally, you have to pause the 

time, which is not possible. No run-time experiment 

can demonstrate paused time Quantum properties of 

observables. So called Modern Physics is out of touch 

with reality. Universities are out of touch with reality; 

that is understandable since the only goal of 

academician is to increase the number of publications, 

to get more of it. Professors get up in the morning with 

one thing in their mind, “how can I cook up some 

publications today”. There is nothing more annoying 

than the question “how many publications do you 

have?” How does the number matter unless it is 

money or votes we are talking about? 

 Position and momentum of a particle must be 

unique at any time. Irrespective of size, the position 

and momentum of a particle cannot change without 

change of time and without a cause. Any event in the 

nature is causal. Nothing is random in the universe. It 

is we who impose the randomness on the universe 

due to the lack of our understanding of the real 

working of the universe. Heisenberg Uncertainty has 

no effect on the simultaneous measurability of 

observables. Heisenberg Uncertainty Principle does 

not hold since position and momentum cannot be a 

Fourier Transform pair. When position and momentum 

are not a Fourier Transform pair, Quantum Mechanics 

seizes to exist. Position and momentum of a particle 

are not a Fourier Transform pair. 

Particles do not behave as waves. Waves are not 

particles. Motion of a mass does not generate waves. 

It is the irregular motion of a charge that generates 

electromagnetic radiation waves. Since charge has no 

existence without a mass, we get the wrong 

impression that mass generates waves. It is always 

the charge that generates waves. Mass is just a 
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chauffeur for a charge. Particle cannot follow these 

generated electromagnetic radiation waves since the 

radiation waves travel at the speed of light and a 

particle can never reach the speed of light. Once 

generated, these generated electromagnetic radiation 

waves have no attachment whatsoever to the particle 

and they say nothing about the state of a particle. It is 

the misinterpretation of this electromagnetic waves 

resulted from the stopping of a moving charge that 

had led to the concept of particle waves.  

The undeniable fact is that Electrically neutral 

moving particles do not generate waves of any kind 

when they are stopped, accelerated, or decelerated. It 

is only the moving charge particles that generate 

electromagnetic radiation when they are stopped, 

accelerated, or decelerated.  

Energy of a particle is mechanical energy. 

Mechanical energy does not come in quanta. 

Mechanical energy is continuous. Mechanical energy 

has no associated frequency f and hence cannot be 

represented as hf. Mechanical energy does not exist 

without a mass. As a result, mechanical energy 

cannot come in quanta. Anything that has a belonging 

such as mechanical energy cannot come in quanta 

since there is no way to carry the belonging 

information in a quantum.  

Schrodinger equation is nothing more than the 

derivative of the plane wave with respect to time 

under the assumption that particles behave as waves 

of deBroglie wavelength and the energy of a particle is 

quantized. Since particles cannot behave as waves, 

Schrodinger equation has no existence. Since 

mechanical energy of a particle cannot come in 

quanta, Schrodinger equation cannot exist [4, 5]. 

Particles do not behave as waves and mechanical 

energy cannot come in Quanta, E≠hf for mechanical 

energy. 

Light or Electromagnetic waves are not relative 

and hence there are no light particles or photons [6, 

7]. If light consists of spatially random photons, 

directional light is not possible. Photons have no 

existence without being spatially random. Light cannot 

be spatially random. Since the light is not relative, light 

has no momentum. When the light is not relative, 

there is no space-time function. Special relativity and 

General Relativity have no existence since light is not 

relative. If the light is relative, the speed of light cannot 

be a constant due to the presence Shear 

Electromagnetic waves of which speed depends on 

the frame of reference [6]. Quantum Mechanics and 

Relativity are half-baked human crafted prophesies 

based on mathematical mistakes and experimental 

misinterpretations, theoretical and experimental 

deceptions at inception.  

There is nothing more ridiculous than the use of 

light deflection near the sun to justify some ad hoc 

theory of General Relativity. Deflection of light near 

the sun is due to the density gradient of the material 

medium near the sun [7]. It is always the density 

gradient of a material medium that deflects light, not 

some space-time contortion of a made-up theory. 

Gravity has no effect on light. How can a space-time 

hold an object? How can the time create a fabric? 

How can the time create an axis that hold something? 

Does the time exist if nothing changes? Can you tell 

time if you are in an empty box or in an empty 

underground bunker unless you count the heat-beats? 

Light always follow the density gradient of the 

medium. Gravity cannot bend light.  

The recurrent claim in physics that every 

predictions of Quantum Mechanics have been 

experimentally proven is simply laughable, an insult to 

scientific method of discovery. An experiment is as 

good as human interpretation of the result. It is always 

possible to misinterpret experimental result to support 

any theoretical blunder. Quantum Mechanics is one 

such theoretical blunder that had been justified by 

misinterpreted experiments.  

Quantum behavior is a hypothetical pause-time 

behavior, not a run-time behavior. Quantum 

Mechanics is a paused-time theory that can only exist 

on paper or in the muddled human psychic, not in 

reality. For all the probabilistic nature of observables 

to appear, time has to be paused. In reality, nothing 

take place when time is paused by the very definition 

of time. Yes, time is a definition, a human definition. It 

is we who defined the time based on the repetitive 

natural changes in the environment. You can pause 

the time on paper and in your mind, not in reality.  

All our experiments are on run-time experiments. 

All our observations are on run-time observations. We 

have no access to paused-time behaviors of 

observables; access denied. If any changes to the 

observables are taking place at paused-time, it is no 

longer a paused-time. A place in paused time is a 

place where no actions or changes are taking place. 

We only have access to run-time. We do experiments 

in run-time. In run-time, what we have is on average 

observables that are causal. We have no access to 

the Quantum behavior of observables in run-time. We 

only have access to on average behavior of 

observables. A paused-time theory such as Quantum 

Mechanics cannot be tested using run-time 

experiments. A paused-time theory can only exist on 

paper not in reality. 

 

Paused-time Quantum Mechanics cannot be 

tested using a run-time experiment. 

 

Double-Slit experiment and Stern-Gerlach 

Experiments are two such simple experiments that 

have been misinterpreted to support mathematically 

invalid, voodoo-theory of Quantum Mechanics [3,4]. 

This is no different from what TV evangelists do to 

justify bogus miracles of religious faith by putting 

perfectly mobile healthy people on wheelchairs 

secretly for a payment and making them to walk out of 

the wheelchair in front of an audience in front of TV 

cameras after some never-ending chanting at the 

command of a phony preacher. Unsuspecting 
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audience and TV viewers open their wallets in 

disbelief as wheelchair-bound people walk away at 

the command of TV evangelists. If they are capable of 

making such miracles, why do we still have 

wheelchair bound. Can’t they heal them all by their 

command?  

Undoubtedly, People, whose livelihood depends on 

Quantum Mechanics and Relativity, are always going 

to hold on to them in the same way as some people 

hold on to religions. No matter how obvious and 

convincing the fallacies of Quantum Mechanics and 

Relativity are, people who benefits from those 

fallacies are going to hold on to them just like religious 

institutions are trying to hold on to flat-earth and earth-

centric era meaningless bogus non-sensical doctrines 

using every imaginable brutal force they can muster, 

including the incorporation of the religious ideology  

into penal code, to subdue the truth. Similarly, 

mainstream journals take every step to prevent 

publication of any paper that contradicts the current 

state of physics in safeguarding their vested financial 

interest.  

Nobody wants to hear that Large Hadron Collider 

(LHC) is a Billion Dollar Blunder even though it is [5, 

8]. You cannot generate mass by colliding particles. 

When charge particles are collided at high speed, they 

generate electromagnetic radiation, not mass. This 

radiation bursts are not a product of the disintegration 

of particles in the collision. It is the misinterpretation of 

these extraneous radiation bursts as particles that 

lead to the impression of generating mass [5, 8]. It is 

not possible to separate the extraneous radiation due 

to the stopping of the moving charge particles at a 

collision from the intrinsic radiation burst due to the 

disintegration of particles in a collision. As a result, the 

constituent elements of particles cannot be obtained 

by colliding charge particles in a Large Hadron 

Collider (LHC). Although it is possible to obtain the 

constituent elements of electrically neutral and stable 

particles by colliding them, electrically neutral particles 

cannot be accelerated in LHC. LHC is a Billion Dollar 

Blunder hidden in Swiss Alps.  

If collision of particles generate mass, mass of the 

sun must be increasing continuously since there are 

trillions and trillions of high-speed particle collisions 

are taking place in the sun. Mass of the sun is 

decreasing, not increasing. The recurrent claim that 

you can generate mass by colliding particles is simply 

non-sense, not science. You cannot generate mass by 

colliding particles. It is the misinterpretation of the 

extraneous electromagnetic burst due to the stopping 

of charge particles at a collision as particles that gave 

the impression of a false mass generation. 

Electromagnetic radiation wave bursts are not 

particles and they do not constitute a mass. By 

accelerating a charge particle further and further what 

you can increase is mass density, not the mass; mass 

remains unchanged, it the volume that contracts with 

the speed [9]. 

Gravity cannot bend light; it is the density gradient 

of the medium that bends light [7], yet some people go 

on making that claim because it is their job. Time 

cannot be relative and Global Positioning System 

(GPS) has nothing to do with relativity [8], yet some 

go on preaching that GPS is not possible without 

Relativity because it is their job. If you are hired to 

teach relativity, you have no option but to teach it. If 

you are hired to teach particles can be at multiple 

places simultaneously, you have no option but to 

teach it. If you are hired to light some candles, 

carryout some ancient rituals and preach God created 

heaven and earth, you have no option but to preach it, 

because it is your livelihood. If you question the 

validity of what is in the flat-earth and earth-centric era 

non-sensical archaic religious text, you are out of a 

job. If you are hired to analyze LHC data and publish 

the result in junk journals run by editors and reviewers 

whose head swelled up not by knowledge but by 

assumed self-importance and tones of ego (they have 

their PHDs gone right into their head in big time), you 

are going to do it because it is your job; if you 

question the validity of LHC you are out of the job 

because nobody want to accept it as a blunder. If the 

number of foreign students in Graduate Schools is an 

indication, the real reason why people go for PHD is 

that they cannot find real jobs. A PHD is in fact a 

disqualification for a job rather than other way around 

as it justifiably should be. 

LHC is like fortuneteller’s 8
th
 ball, you can prove 

anything, any crafted prophesy with that. All you have 

to do is keep colliding until you get a matching data 

set to prove what you want to prove. If LHC really can 

be used to find the elementary component of particles, 

one collision is all that is required. In fact, if you collide 

neutral particles at high speed, what you get after 

each collision would be the same. The reason for 

different results after each and every collision is that 

the extraneous electromagnetic radiation due to the 

stopping of the particles at each LHC collision differs 

while the outcome due to the disintegration of 

particles remain unchanged in each collision. 

Extraneous radiation due to the stopping of moving 

charges at the collision is a contaminant that must be 

removed from the crash site. This cannot be done 

since it is not possible to separate the extraneous 

radiation due to the stopping of moving charges from 

the intrinsic radiation due to the disintegration of the 

particles by the collision. 

However fallacious the established mainstream 

ideologies in science, religions, or politics are, it is 

safer to sail through life in compliance with the 

establishment than pointing out the mockery of 

mainstream ideologies; it is specially the case with 

some outdated, barbaric, gender discriminatory 

archaic religious doctrine based governing systems. It 

is the same reason why people tolerate kings, 

queens, autocratic rulers, despotic military dictators, 

and countries run by outdated stone-age merciless 

religious doctrines. It is the same reason why majority 

keep quite while some carryout activities that are 
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unhealthy for the wellbeing of the only known planet 

that can support life and the species that live on it.  

Do not wait for the people who are preaching 

Relativity, Quantum Mechanics, outdated flat-earth 

and earth-centric era religious dogmatic non-sense, or 

who are working on Large Hadron Collider (LHC) to 

accept that they are wasting life on fallacious theories 

and doctrines because no theoretical or experimental 

justification is going to change their mind since their 

livelihood depends on propagation of fallacy. When it 

comes to survival and the truth, survival matters the 

most naturally.  

If you are praying for a creator, ask yourself, why 

am I praying for an entity who created so much junk 

real estate than suitable planets that can support life. 

Just in our solar system alone, all the planets are junk 

real estate except a very small portion of a negligibly 

small planet that can support life. If creator created 

the universe and life, that creator has failed miserably 

in doing at least a minimally acceptable job. Not a 

praiseworthy job by any mean. If you are a messenger 

of a creator, should you not have known at least it is 

the earth that orbit the sun not the other way around. 

Yet, all the founders of religions who claimed 

themselves that they were messengers of a creator 

were the people who thought sun goes around the 

earth or earth was flat. Doesn’t that show the mockery 

of claims by some ancient individuals that they were 

the messengers of a creator?  

If you are preaching that particles (masses) can be 

at multiple places simultaneously, just look in a mirror, 

what do you see, a scientist or a fraud? Not a 

scientist, definitely. Quantum Mechanics is a 

mathematically and conceptually invalid human 

crafted prophesy dictated down by misinterpreted 

Double-Slit experiment and Stern-Gerlach experiment 

just like state-enforced gender discriminatory flat-earth 

and earth-centric era illogical religious doctrines that 

claim it is blasphemous or a heresy to express any 

opinion against them; they both only exist in 

misguided and hypnotized human fantasy, not in 

reality. 
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