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Abstract— This paper introduces the 
classification of iris by building BP neural network 
model. First of all, a three-layer neural network 
model with reasonable structure is constructed; 
then 150 original iris datasets are randomly 
scrambled and divided into 100 training sets and 
50 test sets; then 100 data are put into the model 
for training to get the appropriate weight value; 
finally, through the test set test experiment 
results, the data accuracy is obtained. Finally, the 
data show that the accuracy of this method can 
reach more than 90%, which proves that the 
neural network model has a high accuracy in the 
classification algorithm. At the same time, the 
advantages and disadvantages of BP neural 
network are compared with other machine 
learning algorithms. 
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I. INTRODUCTION 

In the 1980s, the performance of neural networks at 
that time was not outstanding, but the discovery of a 
backpropagation algorithm brought new vitality to 
neural networks. This algorithm also gave detailed 
derivations in the field of mathematics. In the process, 
people call the multi-layer feedforward network using 
this algorithm as a BP network. The discovery of this 
method systematically solves the problem of 
connection learning between hidden layers of many 
multilayer neural networks, which is called BP neural 
network. 

BP neural network is proposed based on the 
principle of human brain nerves responding to external 
stimuli. It is a multi-layer feedforward network. The BP 
algorithm is an algorithm that uses the gradient 
descent method to calculate the minimum target value 
for the purpose of minimizing the mean square error of 
the error. It has excellent nonlinear mapping ability and 
outstanding classification ability. It is the proposal of its 
model that solves most of the problems that can not be 
solved by simple components and realizes more 
comprehensive functions. 

Although the BP neural network has excellent non-
linear mapping capabilities and powerful classification 
capabilities, its overly strong self-learning and adaptive 

capabilities make it also have some difficult problems 
to solve. With in-depth research, these problems have 
also been recognized. One proposed: 1. Excessive 
self-learning ability can easily lead to its local optimal; 
2. Over-fitting phenomenon between detection ability 
and training ability is easy to appear 3. Too 
complicated structure makes it need more time in the 
training process to calculate and adjust, resulting in too 
slow convergence. 

II. DATA PREPROCESSING 

Algorithm assumption: The algorithm is mainly 
composed of three aspects, which are data 
preprocessing, BP neural network realization and the 
presentation of the final result. 

Data preprocessing: The 150 iris data sets used in 
this article need to be processed to store the feature 
values and their labels separately for convenience and 
subsequent calculation and verification. At the same 
time, the data needs to be randomly allocated to 
complete the subsequent training and detection work. 
As the first data preprocessing work to be achieved, it 
is particularly important. If the steps of data 
segmentation and conversion are improperly operated, 
it will directly affect the operation of the entire algorithm 
and even cause it to fail to run correctly. 

BP neural network realization: This aspect is mainly 
divided into two steps, namely data training and result 
verification. During training, the BP neural network 
needs to be carried out with the support of many 
computing components. After defining each important 
component, the pre-allocated training data set will be 
processed according to the operation process 
described in Chapter 2, so as to realize the final 
algorithm and obtain each The result of the weight 
value. During the test, the pre-allocated test data set is 
predicted by a built algorithm model, and the correct 
rate of the final prediction is obtained by comparing the 
original label. 

Result presentation: The calculation of each weight 
value in the neural network algorithm is a very 
important process, so it is necessary to show the 
specific value of each weight value in the model after 
the result is run. At the same time, the accuracy of 
model prediction is also a very important indicator. 
Show it in the final output. 

According to the above three specific steps to 
implement the specific code of the algorithm, the 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 9, September - 2020  

www.jmest.org 

JMESTN42353518 12650 

algorithm can be realized. See below for specific code 
and function of the algorithm. 

The following is the preliminary data preprocessing 
work. 

 Data reading 

This method reads a local file, or you can use the 
iris data set that can be directly called in sklearn, and 
the read content is the same 

raw = pd.read_csv(r'C:\Users\apple\Desktop\iris.csv') 

Read the data value in the file (the content of the 
first four columns) 

raw_data = raw.values 

Save the data values and classification labels in the 
file to two dimensions respectively to facilitate 
subsequent one-to-one correspondence 

raw_feature = raw_data[0:, 0:4] 

Data category conversion 

Convert the iris category in the last column to one-
hot encoding (simplify category storage format, 
improve learning efficiency), the three categories 
correspond to: setosa corresponds to [1, 0, 0]; 
versicolor' corresponds to [0, 1, 0]; viegincia 
corresponds to [0, 0, 1] 

for i in range(len(raw_feature)): 

        fenlei = [] 

        fenlei.append(list(raw_feature[i])) 

        if raw_data[i][4] =='Iris-setosa': 

            fenlei.append([1, 0, 0]) 

        elif raw_data[i][4] =='Iris-versicolor': 

            fenlei.append([0, 1, 0]) 

        else: 

            fenlei.append([0, 0, 1]) 

        data.append(fenlei) 

Data segmentation 

Because the follow-up work requires a training set 
to determine the specific structure of the model and a 
test set to detect the correct rate of the resulting 
model, the original 150 data need to be segmented 

Random scramble data 

numpy.random.shuffle(data) 

Select the first 100 scrambled as the training data 
(the first value (0) is not taken, the last value (100) is 
taken): 

training = data[0:100] 

Select the last 50 scrambled as test data: 

test = data[100:] 

In the process of data preprocessing, the statement 
numpy.random.shuffle(data) is particularly important, 
which will have a great impact on subsequent results. 
When using random.shuffle( ) originally, the results have 
a great impact. The accuracy of the classification 
results has not changed, and the data classifications 
obtained are all in the same array, which does not 
achieve the original desired effect. The reason is that 
random allocation of arrays by random shuffle may not 
be implemented well, sometimes it is good and 
sometimes bad, and the result of random allocation for 
iris data cannot be achieved, so the final output result 
does not change, while shuffle in numpy. This problem 
can be solved very well, so the function in numpy is 
needed to randomly classify the array. 

III. ALGORITHM 

Initial definition: 

def __init__(self, shuru, yinhan, shuchu): 

# shuru is the node of the input layer, yinhan is the node of 

the hidden layer, and shuchu is the node of the output layer 

        self.shuru = shuru + 1  

        self.yinhan = yinhan + 1 

        self.shuchu = shuchu 

#Activate all nodes of the neural network (convert all of 

them to matrix form to facilitate subsequent calculations) 

        self.srjd = [1.0] * self.shuru 

        self.yhjd = [1.0] * self.yinhan 

        self.scjd = [1.0] * self.shuchu 

# Build a matrix to store all weight values 

        self.srqzz = juzhen(self.shuru, self.yinhan) 

        self.yhqzz = juzhen(self.yinhan, self.shuchu) 

# Set the weight value to a random value 

         for i in range(self.shuru): 

            for j in range(self.yinhan): 

                self.srqzz[i][j] = rand(-0.2, 0.2)  

        for j in range(self.yinhan): 

            for k in range(self.shuchu): 

                self.yhqzz[j][k] = rand(-2, 2)  

 Generate a matrix of size I*J, the default zero 
matrix is used to store each weight value 

def juzhen(I, J, fill=0.0): 

    m = [] 

    for i in range(I): 

        m.append([fill] * J) 

    return m 

The sigmoid function is used as an activation 
function 

def sigmoid(x: 

    return 1.0 / (1.0 + math.exp(-x)) 
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The derivative of the sigmoid function, used for 
back propagation calculation  

def dsigmoid(x): 

    return x * (1-x) 

Output layer error calculation and output layer 
weight value update 

#Calculate the error of the output layer: 

scwc = [0.0] * self.shuchu 

        for k in range(self.shuchu): 

            error = targets[k]-self.scjd[k] 

            scwc[k] = dsigmoid(self.scjd[k]) * error 

#Update output layer weight: 

for j in range(self.yinhan): 

            for k in range(self.shuchu): 

                change = scwc[k] * self.yhjd[j] 

                self.yhqzz[j][k] = self.yhqzz[j][k] + lr * change 

Hidden layer error calculation and hidden layer 
weight value update 

#Calculate the error of the hidden layer: 

      yhwc = [0.0] * self.yinhan 

        for j in range(self.yinhan): 

            error = 0.0 

            for k in range(self.shuchu): 

                error = error + scwc[k] * self.yhqzz[j][k] 

            yhwc[j] = dsigmoid(self.yhjd[j]) * error 

#Update hidden layer weight: 

      for i in range(self.shuru): 

            for j in range(self.yinhan): 

                change = yhwc[j] * self.srjd[i] 

                self.srqzz[i][j] = self.srqzz[i][j] + lr * change 

Weight value display 

#Output the updated weight value in real time during the 

training process, making the internal parameters of the 

network structure model more intuitive 

def weights(self): 

        print('Input layer weight:') 

        for i in range(self.ni): 

            print(self.wi[i]) 

        print() 

        print('Output layer weight:') 

        for j in range(self.nh): 

            print(self.wo[j]) 

Training process 

#The training process defaults to 1000 times, and the 

learning rate defaults to 0.1 

def train(self, patterns, iterations=1000, lr=0.1): 

        for i in range(iterations): 

            error = 0.0 

            for p in patterns: 

                inputs = p[0] 

                targets = p[1] 

                self.update(inputs) 

                error = error + self.backPropagate(targets, lr) 

            if i% 100 == 0: 

                print('error: %-.9f'% error) 

self.weights() 

Test process 

def test(self, patterns): 

        count = 0 

        for p in patterns: 

            target = flowerLables[(p[1].index(1))] 

            result = self.update(p[0]) 

            index = result.index(max(result)) 

            print(p[0],':', target,'->', flowerLables[index]) 

            count += (target == flowerLables[index]) 

        accuracy = float(count / len(patterns)) 

#Output correct rate 

        print('accuracy: %-.9f'% accuracy) 

IV.  EXPERIMENTAL RESULTS 

It can be seen from the constructed BP neural 
network model that the weight value of the input layer 
is a matrix of 5 rows and 8 columns, and 4 input data 
plus 1 deviation node (5 nodes in total) correspond to 
7 hidden layer nodes plus 1 deviation node (total 8 
nodes); the hidden layer weight value is a matrix of 8 
rows and three columns, 7 hidden layer nodes plus 1 
deviation node (total 8 nodes) corresponding to three 
output layer nodes, as shown in Figure 4.1. The values 
are all correct. The test result is the data in the 50 test 
data sets that we have pre-allocated. Figure 4.2 shows 
that the test set is allocated correctly. 

The training results show that under good 
parameter conditions, the method can classify the 
correct rate of 94% or even higher in the 150 iris data 
set, achieving the expected training effect, indicating 
that the BP neural network has a high accuracy rate. 
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