
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 9, September - 2020

www.jmest.org

JMESTN42353518 12649

Research and Implementation of Iris
Classification Algorithm based on Neural

Network
Bingxing Yu, Hongli Zhu

School of Information and Electronic Engineering
Zhejiang University City College, Hangzhou, China

Corresponding Author: zhuhl@zucc.edu.cn

Abstract— This paper introduces the
classification of iris by building BP neural network
model. First of all, a three-layer neural network
model with reasonable structure is constructed;
then 150 original iris datasets are randomly
scrambled and divided into 100 training sets and
50 test sets; then 100 data are put into the model
for training to get the appropriate weight value;
finally, through the test set test experiment
results, the data accuracy is obtained. Finally, the
data show that the accuracy of this method can
reach more than 90%, which proves that the
neural network model has a high accuracy in the
classification algorithm. At the same time, the
advantages and disadvantages of BP neural
network are compared with other machine
learning algorithms.

Keywords— Irises；machine learning；neural

networks

I. INTRODUCTION

In the 1980s, the performance of neural networks at
that time was not outstanding, but the discovery of a
backpropagation algorithm brought new vitality to
neural networks. This algorithm also gave detailed
derivations in the field of mathematics. In the process,
people call the multi-layer feedforward network using
this algorithm as a BP network. The discovery of this
method systematically solves the problem of
connection learning between hidden layers of many
multilayer neural networks, which is called BP neural
network.

BP neural network is proposed based on the
principle of human brain nerves responding to external
stimuli. It is a multi-layer feedforward network. The BP
algorithm is an algorithm that uses the gradient
descent method to calculate the minimum target value
for the purpose of minimizing the mean square error of
the error. It has excellent nonlinear mapping ability and
outstanding classification ability. It is the proposal of its
model that solves most of the problems that can not be
solved by simple components and realizes more
comprehensive functions.

Although the BP neural network has excellent non-
linear mapping capabilities and powerful classification
capabilities, its overly strong self-learning and adaptive

capabilities make it also have some difficult problems
to solve. With in-depth research, these problems have
also been recognized. One proposed: 1. Excessive
self-learning ability can easily lead to its local optimal;
2. Over-fitting phenomenon between detection ability
and training ability is easy to appear 3. Too
complicated structure makes it need more time in the
training process to calculate and adjust, resulting in too
slow convergence.

II. DATA PREPROCESSING

Algorithm assumption: The algorithm is mainly
composed of three aspects, which are data
preprocessing, BP neural network realization and the
presentation of the final result.

Data preprocessing: The 150 iris data sets used in
this article need to be processed to store the feature
values and their labels separately for convenience and
subsequent calculation and verification. At the same
time, the data needs to be randomly allocated to
complete the subsequent training and detection work.
As the first data preprocessing work to be achieved, it
is particularly important. If the steps of data
segmentation and conversion are improperly operated,
it will directly affect the operation of the entire algorithm
and even cause it to fail to run correctly.

BP neural network realization: This aspect is mainly
divided into two steps, namely data training and result
verification. During training, the BP neural network
needs to be carried out with the support of many
computing components. After defining each important
component, the pre-allocated training data set will be
processed according to the operation process
described in Chapter 2, so as to realize the final
algorithm and obtain each The result of the weight
value. During the test, the pre-allocated test data set is
predicted by a built algorithm model, and the correct
rate of the final prediction is obtained by comparing the
original label.

Result presentation: The calculation of each weight
value in the neural network algorithm is a very
important process, so it is necessary to show the
specific value of each weight value in the model after
the result is run. At the same time, the accuracy of
model prediction is also a very important indicator.
Show it in the final output.

According to the above three specific steps to
implement the specific code of the algorithm, the

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 9, September - 2020

www.jmest.org

JMESTN42353518 12650

algorithm can be realized. See below for specific code
and function of the algorithm.

The following is the preliminary data preprocessing
work.

 Data reading

This method reads a local file, or you can use the
iris data set that can be directly called in sklearn, and
the read content is the same

raw = pd.read_csv(r'C:\Users\apple\Desktop\iris.csv')

Read the data value in the file (the content of the
first four columns)

raw_data = raw.values

Save the data values and classification labels in the
file to two dimensions respectively to facilitate
subsequent one-to-one correspondence

raw_feature = raw_data[0:, 0:4]

Data category conversion

Convert the iris category in the last column to one-
hot encoding (simplify category storage format,
improve learning efficiency), the three categories
correspond to: setosa corresponds to [1, 0, 0];
versicolor' corresponds to [0, 1, 0]; viegincia
corresponds to [0, 0, 1]

for i in range(len(raw_feature)):

 fenlei = []

 fenlei.append(list(raw_feature[i]))

 if raw_data[i][4] =='Iris-setosa':

 fenlei.append([1, 0, 0])

 elif raw_data[i][4] =='Iris-versicolor':

 fenlei.append([0, 1, 0])

 else:

 fenlei.append([0, 0, 1])

 data.append(fenlei)

Data segmentation

Because the follow-up work requires a training set
to determine the specific structure of the model and a
test set to detect the correct rate of the resulting
model, the original 150 data need to be segmented

Random scramble data

numpy.random.shuffle(data)

Select the first 100 scrambled as the training data
(the first value (0) is not taken, the last value (100) is
taken):

training = data[0:100]

Select the last 50 scrambled as test data:

test = data[100:]

In the process of data preprocessing, the statement
numpy.random.shuffle(data) is particularly important,
which will have a great impact on subsequent results.
When using random.shuffle() originally, the results have
a great impact. The accuracy of the classification
results has not changed, and the data classifications
obtained are all in the same array, which does not
achieve the original desired effect. The reason is that
random allocation of arrays by random shuffle may not
be implemented well, sometimes it is good and
sometimes bad, and the result of random allocation for
iris data cannot be achieved, so the final output result
does not change, while shuffle in numpy. This problem
can be solved very well, so the function in numpy is
needed to randomly classify the array.

III. ALGORITHM

Initial definition:

def __init__(self, shuru, yinhan, shuchu):

shuru is the node of the input layer, yinhan is the node of

the hidden layer, and shuchu is the node of the output layer

 self.shuru = shuru + 1

 self.yinhan = yinhan + 1

 self.shuchu = shuchu

#Activate all nodes of the neural network (convert all of

them to matrix form to facilitate subsequent calculations)

 self.srjd = [1.0] * self.shuru

 self.yhjd = [1.0] * self.yinhan

 self.scjd = [1.0] * self.shuchu

Build a matrix to store all weight values

 self.srqzz = juzhen(self.shuru, self.yinhan)

 self.yhqzz = juzhen(self.yinhan, self.shuchu)

Set the weight value to a random value

 for i in range(self.shuru):

 for j in range(self.yinhan):

 self.srqzz[i][j] = rand(-0.2, 0.2)

 for j in range(self.yinhan):

 for k in range(self.shuchu):

 self.yhqzz[j][k] = rand(-2, 2)

 Generate a matrix of size I*J, the default zero
matrix is used to store each weight value

def juzhen(I, J, fill=0.0):

 m = []

 for i in range(I):

 m.append([fill] * J)

 return m

The sigmoid function is used as an activation
function

def sigmoid(x:

 return 1.0 / (1.0 + math.exp(-x))

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 9, September - 2020

www.jmest.org

JMESTN42353518 12651

The derivative of the sigmoid function, used for
back propagation calculation

def dsigmoid(x):

 return x * (1-x)

Output layer error calculation and output layer
weight value update

#Calculate the error of the output layer:

scwc = [0.0] * self.shuchu

 for k in range(self.shuchu):

 error = targets[k]-self.scjd[k]

 scwc[k] = dsigmoid(self.scjd[k]) * error

#Update output layer weight:

for j in range(self.yinhan):

 for k in range(self.shuchu):

 change = scwc[k] * self.yhjd[j]

 self.yhqzz[j][k] = self.yhqzz[j][k] + lr * change

Hidden layer error calculation and hidden layer
weight value update

#Calculate the error of the hidden layer:

 yhwc = [0.0] * self.yinhan

 for j in range(self.yinhan):

 error = 0.0

 for k in range(self.shuchu):

 error = error + scwc[k] * self.yhqzz[j][k]

 yhwc[j] = dsigmoid(self.yhjd[j]) * error

#Update hidden layer weight:

 for i in range(self.shuru):

 for j in range(self.yinhan):

 change = yhwc[j] * self.srjd[i]

 self.srqzz[i][j] = self.srqzz[i][j] + lr * change

Weight value display

#Output the updated weight value in real time during the

training process, making the internal parameters of the

network structure model more intuitive

def weights(self):

 print('Input layer weight:')

 for i in range(self.ni):

 print(self.wi[i])

 print()

 print('Output layer weight:')

 for j in range(self.nh):

 print(self.wo[j])

Training process

#The training process defaults to 1000 times, and the

learning rate defaults to 0.1

def train(self, patterns, iterations=1000, lr=0.1):

 for i in range(iterations):

 error = 0.0

 for p in patterns:

 inputs = p[0]

 targets = p[1]

 self.update(inputs)

 error = error + self.backPropagate(targets, lr)

 if i% 100 == 0:

 print('error: %-.9f'% error)

self.weights()

Test process

def test(self, patterns):

 count = 0

 for p in patterns:

 target = flowerLables[(p[1].index(1))]

 result = self.update(p[0])

 index = result.index(max(result))

 print(p[0],':', target,'->', flowerLables[index])

 count += (target == flowerLables[index])

 accuracy = float(count / len(patterns))

#Output correct rate

 print('accuracy: %-.9f'% accuracy)

IV. EXPERIMENTAL RESULTS

It can be seen from the constructed BP neural
network model that the weight value of the input layer
is a matrix of 5 rows and 8 columns, and 4 input data
plus 1 deviation node (5 nodes in total) correspond to
7 hidden layer nodes plus 1 deviation node (total 8
nodes); the hidden layer weight value is a matrix of 8
rows and three columns, 7 hidden layer nodes plus 1
deviation node (total 8 nodes) corresponding to three
output layer nodes, as shown in Figure 4.1. The values
are all correct. The test result is the data in the 50 test
data sets that we have pre-allocated. Figure 4.2 shows
that the test set is allocated correctly.

The training results show that under good
parameter conditions, the method can classify the
correct rate of 94% or even higher in the 150 iris data
set, achieving the expected training effect, indicating
that the BP neural network has a high accuracy rate.

REFERENCES

[1] Guo G ,Wang H , Bell D A ,et al. KNN Model-
Based Approach in Classification[C]. On The Move to
Meaningful Internet Systems 2003: CoopIS, DOA, and
ODBASE - OTM Confederated International
Conferences, CoopIS, DOA, and ODBASE 2003,
Catania, Sicily, Italy, November 3-7, 2003. Springer,
Berlin, Heidelberg, 2003.

[2] Lecun Y,Bengio Y,Hinton G. Deep
learning.[J]. Nature.2015,521(7553):436.

[3] Tang Yuzheng. Discriminant analysis based
on Euclidean distance: A Study on the classification of
iris [J]. Modern commerce and industry. 2019,40 (9):
187-189

[4] Zhou Qingping. Research on Improved BP
neural network algorithm based on rough set [J].
Modern industrial economy and informatization. 2015
(5): 87-88

[5] Lu Dunli, Ning Qian, Zang Jun. improved KNN
algorithm based on BP neural network decision
making [J]. Computer application. 2017,37 (S2): 65-67

http://www.jmest.org/

