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Abstract—The paper is centered on a non-
traditional formulation that makes use of internal 
variables and dissipation functions in order to 
describe the response of elastic-plastic systems. 
A special role is played by the dissipation 
functions, which eventually enforce the 
constitutive law without making use of yield 
functions. The main consequence is that the 
governing equations eventually imply a solution 
of the incremental elastic-plastic problem, which 
corresponds to the minimum point of an non-
constrained convex function, say ω, while 
classical approaches require the presence of 
inequality constraints, as suggested by the 
presence of yield functions. 

Next, an algorithm is briefly discussed, which 
is based on the so-called backward-difference 
iterative scheme and guarantees convergence to 
the solution when the material is stable in 
Drucker’s sense, since it tends to reduce the value 
of the function ω iteration by iteration. 

Finally, it is shown that the entire theoretical 
framework can be applied to the case of elastic-
plastic systems for which piecewise-linear yield 
surfaces are assumed, so that the range of 
possible applications is practically unlimited, 
while (to the authors’ knowledge) the existing 
literature on the internal variable approach 
discussed here has only considered Mises’ yield 
condition, which leads to a straightforward 
definition of the corresponding dissipation 
function. 
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I.  INTRODUCTION 

This work deals with a non-traditional approach to 
the incremental analysis of elastic-plastic systems, 
which is due to Martin [1] and exploits the concept of 
the so-called internal variables (i.e., non-measurable 
variables), which represent non-reversible plastic 
strains or displacements. The most interesting feature, 
however, is that adequate dissipation functions are 
introduced in order to enforce the constitutive law, 
without making use of yield functions. 

The main consequence is that the governing 
equations (both at the material level and at the 
structural level) lead to the solution of the so-called 
incremental elastic-plastic problem, which coincides 
with the minimum point of a convenient non-
constrained convex function, when the equilibrium 
equations are written by considering the initial, 
undeformed configuration (small displacement 
hypothesis) and the material is stable in Drucker’s 
sense (i.e., the yield surfaces are convex and the flow 
rule is associated). 

It should be observed that, in this context, the 
expression incremental elastic-plastic problem is 
generally concerned with the discrete model of an 
elastic-plastic system, whose load history has been 
subdivided into a finite number of time-steps. In 
addition, an input vector (usually load increments) is 
known at the beginning of each time-step, as well as 
the initial nodal displacements, total strains, plastic 
strains and stresses (strains and stresses computed 
at convenient strain points or stress points), while the 
increments of the nodal displacements, total strains, 
plastic strains and stresses (again, increments of 
strains and stresses at the same strain points or 
stress points) are to be determined. 

It can be shown [2, 3] that the value of the non-
constrained convex function mentioned above 
progressively decreases and, hence, convergence 
towards the correct solution of the incremental 
problem is guaranteed, when the backward-difference 
iterative scheme is applied. Such backward-difference 
scheme is essentially aimed at satisfying the 
constitutive law by determining, at each strain point, 
an incremental plastic strain vector Δε

P, such that its 
direction coincides with the direction of the gradient 

φ/σ of the relevant yield function φ(σ)=0 computed 
for σ=σ

o+D (Δε-Δε
P), if σ

o is the stress vector at the 
beginning of the current time-step, D the material 
elastic stiffness matrix and Δε the total incremental 
strain vector. 

In the literature, further details can be found on the 
general features of this internal variable approach [4], 
for which all applications to the most general two-
dimensional and three-dimensional problems, so far, 
have been concerned with materials for which Mises’ 
yield condition is applicable (to the best of the authors’ 
knowledge), since the relevant dissipation function 
can be defined in a straightforward way. 
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Here, we will discuss the possible application of 
the same procedure to the more general case of 
piecewise linear approximations of yield surfaces, 
which virtually allow one to consider any material 
model. 

Elastic-plastic structural systems described by 
introducing piecewise linear yield surfaces have 
represented a major research topic mostly due to 
Maier [5-8] and have been applied to a large spectrum 
of topics (ranging from classical elastic-plastic 
analysis to limit analysis, from shakedown theory to 
inverse problems), in contexts in which the yield 
functions have always maintained their primary role 
and have led to inequality constraints. Here, the 
possible application of piecewise linear yield surfaces 
to the internal variable approach is discussed with the 
aim of deriving the governing equations of any elastic-
plastic system, by considering convenient dissipation 
functions, without making use of inequality constraints. 

II. AN INTERNAL VARIABLE APPROACH: SOME BASIC 

CONCEPTS 

We will start by considering possible mechanical 
models of elastic-plastic structural elements subjected 
to uniaxial stress states. The fundamental component 
of these models is a slip device, which essentially 
consists of a rigid, perfectly-plastic element, which 
remains rigid unless the load (say χ) attains a limit 
value χ+ or χ–. When this condition is satisfied, it is 
assumed that unlimited plastic displacements λ can 
occur, which imply a dissipated energy D=χ+ λ or D=χ– 

λ. 

 
Fig. 1. Typical χ-λ plots for slip devices. 

Typical χ-λ plots are reported in Fig. 1, while the 
corresponding dissipation functions are shown in Fig. 
2. Here, the slopes of the straight lines passing 
through the origin are obviously in the range between 
χ– and χ+. In consequence, it is possible to establish a 
relationship between a function such as D(λ) and the 
force χ acting on the slip device. Namely, χ equals the 

derivative of D(λ) if λ0, while χD(λ) if λ=0. 
Therefore, in this second case, χ is a subgradient of 
D(λ) and, hence, an element of the subdifferential of 
D(λ). 

 
Fig. 2. Typical dissipation functions for slip devices. 

Note that the symbols λP, χP, DP and λN, χN, DN in the 
above figures have been used to identify special slips, 
which can only be subjected to positive or negative 
displacements. 

The slip devices can be combined with adequate 
springs in order to generate mechanical models, which 
describe the response of elastic perfectly-plastic or 
hardening materials. In what follows, we will focus on 
linear kinematic and isotropic hardening, but the 
extension to other materials (especially, nonlinear 
hardening materials) is quite straightforward. 

The elastic perfectly-plastic model is simply 
obtained by connecting a slip device and a linear 
spring in series, while it is possible to describe the 
response of kinematic hardening materials by 
introducing another linear spring (cf. Fig. 3). Instead, 
two slips and a torsion spring are needed in the case 
of isotropic hardening, as shown in Fig. 4. 

 
Fig. 3. Mechanical models for elastic perfectly-plastic 
materials and elastic-plastic materials subjected to 

kinematic hardening. 

It can be easily checked that the response of the 
models in Fig. 3 is governed by the following 
equations 

     F = k u – k λ     ,     -χ = -k u + k λ + g λ (1) 

where u denotes the displacement of the free end, 
while g represents the stiffness of the second spring. 
Of course, we shall set g=0 for the model on the left 
hand side of Fig. 3, while we can introduce a 
convenient function ψ(λ) such that χ=k(u–λ)–dψ/dλ, if 
we must deal with systems characterized by nonlinear 
hardening. In any case, the mechanical models in Fig. 
3 will always feature an elastic range given by χ+–χ–. 

 
Fig. 4. Mechanical model for elastic-plastic materials 

subjected to isotropic hardening. 

When we consider the mechanical model in Fig. 4, 
we have two different slip devices, which are activated 
only if χP=χ+ or χN=χ–, as suggested by the symbols 
placed near the squares that denote these particular 
slips. Eventually, the torsion spring enforces isotropic 
hardening in consequence of the obvious equations 
F=χP+χN and M=½d(χN–χP)=gθ=g(λP–λN)/d, which can be 

immediately derived if we remember that λN0 and 
have a look at the sketch on the right hand side of Fig. 
4 (assuming that displacements are sufficiently small, 
so that the rotation θ of the vertical bar is practically 
equal to the tangent of θ). 

Therefore, if F exceeds the value 2χ+ (which 
represents an initial yield load), the lower slip will be 
subjected to the force χN=F–χ

+
, while the load acting 

on the upper slip will be χP=χ+. Simultaneously, there 
will be a positive inelastic displacement λP and the 
torsion spring will react with a moment gθ, where 
θ=λP/d is the rotation of the spring in this particular 
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(5) 

case. Hence, the forces acting on the slips become 
χP=χ+=½F–gλP/d2, χN=½F+gλP/d2. 

Next, if we unload the system by enforcing the load 
increment ΔF=-F, we have the residual forces -gλP/d2 
and gλP/d2 acting on the upper and lower slip, 
respectively. Thus, further inelastic displacements can 
only occur in the presence of a new force F, which 
exceeds the thresholds 2(χ++gλP/d2) or 2(χ––gλP/d2), 
which represent the updated yield loads. Of course, 
the increments of the yield loads (whose absolute 
values are exactly the same) are typical of systems 
subjected to isotropic hardening. 

It is also obvious that we can consider equations 
such as χP=½F–(dψ*/dλ) and χN=½F+(dψ*/dλ) if we 
intend to describe the response of nonlinear 
hardening systems. 

In the end, the governing equations read (with 
reference to the linear hardening case) 

     F = k u – ½ k (λP + λN)  (2a) 

  -χP = -½ k u + ¼ k (λP + λN) + (g/d2) (λP – λN) (2b) 

  -χN = -½ k u + ¼ k (λP + λN) + (g/d2) (λN – λP) (2c) 

Let us now consider a truss structure, whose 
members are subjected to uniaxial stress states. For 
the sake of brevity, we will only focus on elastic 
perfectly-plastic materials and systems subjected to 
linear kinematic hardening. 

For a truss structure consisting of e structural 
elements, Fi=ki (ui–λi) is the axial force acting on the i-
th bar (i=1,…,e). Therefore, by introducing the vectors 

F, Q, u, U,  (which collect the axial forces, the nodal 
loads, the elongations ui, the nodal displacements 
referred to a global coordinate system and the 
inelastic elongations λi), we can write the equations 

u = C U  ,  Q = C
T F = CT S {u – } = K U + L      (3a,b) 

where C is a compatibility matrix and C
T the 

consequent equilibrium matrix, in view of the principle 
of virtual works (since δU

T
Q=δu

T
F). In addition, we 

have set S=diag[ki], K=C
T
S C and L=-CT

S. 

Similarly, after collecting the forces χi acting on the 
e slips into a vector χ and after introducing the matrix 
G=diag[gi] that collects the hardening parameters gi, 
we can write the equation 

-χ = -F + G  = -S {C U–} + G  = LT
 U + S  + G    (4) 

Of course, we shall set G=0 if we deal with an 
elastic perfectly-plastic material. More importantly, it 
should be noted that the governing equations (3b) and 
(4) imply that the solution of the elastic-plastic 
problem for a given force vector Q corresponds to the 
minimum point of the non-constrained convex function 

ω(u,) = ½ UT K U + ½ T S  + 

+ ½ T G  + UT L  + D() – QT U 

Here, D() denotes the dissipation function of the 
entire structure. In consequence, the optimality 

conditions are represented by the governing 

equations K U+L –Q=0 and LT
U+S +G +χ=0. As for 

the i-th entry of χ (i=1,…,e), we obviously have 

χi=D/λi if λi0 and χiD(λ) if λi=0. 

III INTERNAL VARIABLES AND MULTIAXIAL STRESS 

STATES 

So far, to the best of the authors’ knowledge, the 
internal variable approach discussed here has been 
applied to multiaxial stress states only in the case of 
materials for which it is possible to assume Mises’ 
yield condition. 

Indeed, if this condition is met and we reason in 
terms of deviatoric stresses, it is quite easy to 
generalize eqn. (1b) and introduce a dissipation 
function d(λ) per unit volume, which will eventually 
lead to a function such as D(λ) in eqn. (5). 

The process is relatively simple. First, we can 
define Mises’ yield surface by imposing a limit value, 
say Ed, to the distortion energy per unit volume 

½sijeij=¼sijsij/G, so that we obtain the spherical elastic 
domain of Fig. 5, in view of the equation sijsij=k2, with 
k2=4GEd. Next, we can assume a fictitious slip device 

that remains rigid until the deviatoric stresses attain 
critical values, say ŝij=2Geij, which correspond to a 
point along the initial yield surface. 

 
Fig. 5. Elastic domain in the space of deviatoric stresses 

according to Mises’ yield condition. 

Hence, in the case of elastic perfectly-plastic 
materials, incremental plastic strains Δλij may occur, 
such that ŝij=2Geij–2GΔλij. Instead, hardening materials 
would lead to the relationship ŝij=2Geij–2GΔλij–2G’Δλij, 
where the parameter 2G’ plays the role of the stiffness 
parameter g for the mechanical models concerned 
with linear isotropic or kinematic hardening. In other 
words, the product 2G’Δλij gives the components Δsij 
of a vector, which quantifies the increment of the 
radius of the yield surface for isotropic hardening 
materials or the displacement of the center of the yield 
domain for kinematic hardening materials, as shown 
in Fig. 6. 

http://www.jmest.org/
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(8) 

(9) 

(10) 

 
Fig. 6. Mises’ yield condition: isotropic and kinematic 

hardening. 

In any case, we can define the dissipation function 
per unit volume d(Δγ)=kΔγ by introducing the 
parameter Δγ=(ΔλijΔλij)

½. 

Next, it is possible to consider a structural system 
discretized by e finite elements for which (in view of 
the principle of virtual works) the following equation is 
satisfied: 

Σi  σ
T δε dV  = Σi  b

T δu dV  + Σi  f
T δu dS (6) 

with i=1,…,e. Here, the vectors u, ε, σ, b and f refer to 
displacements, strains, stress, body forces and 
surface forces, respectively. Obviously, the above 
integrals are concerned either with the volume Vi or 
the surface Si of each element (with f=0 if an element 
face is not loaded or does not belong to the surface of 
the continuum). 

As typically happens in the case of finite element 
discrete models, we can make use of the relationships 

       δu = Φi δui   ,   δε = Bi δui  (7a,b) 

        σ = Di {ε – εp} = Di {Bi ui – Ψi i}  (7c) 

where the displacements u and the plastic strains ε
p 

depend on nodal displacements ui and plastic strains 

i of the i-th element at properly selected strain points 
(usually Gauss points in the case of quadrangles and 
hexahedrons) through matrices of shape functions (Φi 
and Ψi), while Di is the element stiffness matrix and Bi 
a matrix that consists of convenient derivatives of the 
shape functions collected in the matrix Φi. 

If there were no plastic strains i, we would derive 
the classical equation δU

T
 K U=δU

T
 Q (i.e., Q=K U) 

concerned with linear elastic systems, where K, U, Q 
denote the structure stiffness matrix, the nodal 
displacements and the equivalent nodal loads, 
respectively. 

Instead, since we are dealing with elastic-plastic 
systems, we shall also consider the integrals 

        Σi  {- εp}T δε dV  = Σi  {-Di Ψi i}
T δε dV  = 

  = Σi  {δui}
T [-Bi

T Di Ψi] i dV  = Σi 
{δui}

T Li i dV 

Therefore, by assembling the e submatrices Li and 

subvectors i, we will eventually derive the 

relationship Q=K U+L , which is formally identical to 
eqn. (3b). 

Since the product {Di Bi ui} gives the stresses 
induced by the displacements ui if the structural 
response is linear elastic, the products {Li

T
ui} and 

{L
T
U} represent generalized forces (with the sign 

changed), which are ideally applied at the strain points 
and are somehow equivalent to the stresses 
distributed in convenient volumes around each strain 
point, as discussed below with some details. 

It is also worth noting that each integral on the left 
hand side of eqn. (6) can be written in the form 

   Σi  σ
T δε dV  = 

= Σi  {δui}
T [Bi –Bi*+Bi*]T Di {[Bi –Bi*+Bi*] ui – εp} dV 

where the matrix Bi* consists of convenient 
derivatives of the entries of the matrix Φi and the 
product Bi*ui gives a vector, say ε*, whose significant 
entries are the volumetric strain εv=ε11+ε22+ε33 divided 
by 3. Thus, the product [Bi–Bi*]ui=e represents a 
vector of deviatoric strains. 

At this stage, if we consider the parameter K (bulk 
modulus), the product 3KBi*ui gives a vector σ*=σ–s, 
whose significant entries are the mean stress 
σm=(σ11+σ22+σ33)/3, while the vector s collects deviatoric 
stresses. 

In view of these remarks, it is possible to express 

the integral on the right hand side of eqn. (9) in a 

slightly different way: 

  Σi  σ
T δε dV  = Σi  {δui}

T {[Bi – Bi*]T 2G [Bi – Bi*] ui + 

     + Bi*
T 3K Bi* ui} – {δui}

T [Bi – Bi*]T 2G Ψi i dV = 

= Σi  {δui}
T {[Bi – Bi*] 2G [Bi – Bi*] + 

 + Bi*
T 3K Bi*} ui dV + Σi {δui}

T Li* i 

Note that, as typical of Mises’ criterion, an 

associated flow rule and deviatoric plastic strains have 

been assumed (in agreement with Figs. 5 and 6). 

Hence, in the above equations, where deviatoric and 

isotropic components of strains and stresses have 

been separated, we can recognize the presence of 

the deviatoric stresses s=2G{e–ε
p}=2G{e–e

p}, since 

ε
p=e

p. 

In addition, deviatoric components are normal to 

isotropic components (and, consequently, possible 

scalar products are equal to zero). Thus, at the end of 

the chain of equations (10) we find an integral (from 

which we can derive the usual element stiffness 

matrix) and a matrix Li* such that the product Li*
T
ui 

represents generalized forces (with the sign changed) 

equivalent to deviatoric stresses acting on properly 

selected volumes around the strain points when the 

structural response is linear elastic. 

By assembling the submatrices Li*, once again we 

derive the governing equation Q=K U+L . Next, it is 

http://www.jmest.org/
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definitely straightforward to introduce the generalized 

forces acting on the slip devices, which are given by 

the relationship χ=-LT
U–S –G , fully analogous to 

eqn. (4) even if they are now equivalent to deviatoric 

stresses. 

As the matrix L is obtained by considering 

deviatoric stresses, S and G are simple diagonal 

matrices, whose entries depend on the stiffness 

parameters G (shear modulus) and G’ (hardening 

parameter). Since we are dealing with generalized 

forces, not stress components, the significant entries 

of S and G actually depend on the stiffness parameter 

G or G’ multiplied by convenient volumes ṼS (where 

the index S refers to the generic strain point S). More 

precisely, a significant entry will be equal to 2ṼSG or 

2ṼSG’ when we have to do with ratios of deviatoric 

stresses to deviatoric strains. Instead, when we need 

to consider ratios of shear stresses to engineering 

shear strains (as often happens in the field of 

computational mechanics), these terms shall be equal 

to ṼSG or ṼSG’. 

Clearly, the volumes ṼS play a significant role in 
this context. Thus, a comprehensive discussion of the 
topics concerned with this internal variable formulation 
requires some details about the volumes of the zones, 
which are around the strain points and are subjected 
to stresses that turn out to be equivalent to the 
generalized forces ideally applied at these strain 
points. 

 
Fig. 7. Discrete model of a plane membrane 

(total area:200x200mm
2
). 

To this aim, it can be useful to briefly summarize 
some recent results [9] concerned with a square plane 
membrane discretized with four isoparametric 
elements with curved edges (cf. Fig. 7). It has been 
proved that the generalized forces ideally applied to a 
strain point are equivalent to the stresses acting on a 
volume ṼS, which can be determined in a rather 
general way through the relationship ṼS=|det[J]| h wξ 

w, in the case of plane systems (while the extension 
to the three-dimensional case is straightforward). In 
this formula, h is the thickness of the plane model, wξ 

and w represent the weights assigned to the strain 
point S (which must coincide with a Gauss point) 
according to Gauss integration method and |det[J]| 

denotes the absolute value of the determinant of the 
Jacobian matrix computed at the same strain point. 

Of course, as typical of isoparametric elements, we 
assume that the usual cartesian coordinates of an 
element point (x and y in the case of plane systems) 
can be found by using convenient shape functions 

fk(ξ,) that depend upon non-dimensional coordinates 

ξ and . Therefore, we shall set x(ξ,)=Σk fk(ξ,) xk and 

y(ξ,)=Σk fk(ξ,) yk, where xk and yk represent the 
coordinates of the k-th node. In consequence, the 
Jacobian matrix can be determined at each 
strain/Gauss point by computing the derivatives of the 

functions x(ξ,) and y(ξ,) with respect to ξ and . 

The above formula is immediately checked by 
assuming, for instance, the following mechanical 
properties and boundary conditions for the system in 
Fig. 7: unit thickness, linear elastic behavior (Young’s 
modulus E=200,000 MPa and Poisson’s ratio ν=0.3), 
zero horizontal displacements along the left vertical 
edge, horizontal displacements equal to 0.1 mm along 
the right edge, constrained vertical displacement of 
the mid-point of the lower edge to prevent free body 
motions. In this way, the system is subjected to 
uniform strain and stress distributions, so that the 
volume ṼS related to a strain point is necessarily 
correct if the generalized forces at that strain point 
coincide with the corresponding stresses multiplied by 
the volume ṼS. 

In actual fact, we obtain uniform normal horizontal 
stresses σ11=Eε11=E 0.1/200=100 MPa for plane-stress 

conditions. Similarly, in the presence of plane-strain 
conditions, the only significant (constant) stresses turn 
out to be σ11=Eε11+νσ33=Eε11/(1-ν2)=109.89 MPa and 

σ33=32.967 MPa, since ε11=(σ11–νσ33)/E=0.1/200=0.005 

and ε33=(σ33–νσ11)/E=0. 

In consequence, the deviatoric stresses are 
s11=66.667 MPa and s22=s33=-σh=-33.333 MPa in the first 

case, while we obtain the deviatoric stress 
components s11=62.271 MPa together with s22=-σh=-

47.619 MPa and s33=-14.652 MPa in the second case 

(where σh denotes the hydrostatic stress). 

These values are in agreement with the volumes 

ṼS=|det[J]| h wξ w and the generalized forces 
determined through the finite element analysis. In fact, 
the volumes concerned with the strain points A, B, C, 
D in Fig. 7 are ṼA=2787.293 mm

3
, ṼB=ṼC=2366.667 

mm
3
, ṼD=2479.373 mm

3
, while the relevant generalized 

forces turn out to be 185819.56 Nmm=s11ṼA, 157777.78 

Nmm=s11ṼB=s11ṼC, 165291.55 Nmm=s11ṼD in the case of 

a plane stress state. Instead, the results are 173567.72 
Nmm =s11ṼA, 147374.85 Nmm =s11ṼB=s11ṼC, 154393.21 

Nmm = s11ṼD,    -40839.464 Nmm = s33ṼA, -34676.435 

Nmm = s33ṼB=s33ṼC, -36327.813 Nmm = s33ṼD for the 

plane strain case. 

Similarly, when we consider the governing 

equation χ=-LT
U–S –G  and need to establish a 

relationship between the entries of χ and a dissipation 

http://www.jmest.org/
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function D() concerned with the entire structure, we 
shall make use of the volumes ṼS defined above. For 
instance, in the case of Mises’ yield conditions, we 
can start from dissipation functions per unit volume 

dS(S)=ŝij
Sij

S, where S, ŝij
S and ij

S are referred to the 
strain point S. Similarly, it will be possible to define the 

dissipation functions DS(S)=ṼS dS(S). Eventually, by 

summing all the contributions DS(S), we will obtain a 

dissipation function D() such that χS=D/S if S0 

and χSD(λ) if S=0. Of course, when S0, the 
components of the subvector χS will represent 
convenient generalized forces, i.e., convenient 
average deviatoric stresses ŝij

S multiplied by ṼS. 

IV CONVERGENCE PROPERTIES OF AN ALGORITHM 

BASED ON THE BACKWARD-DIFFERENCE CONCEPT 

In the case of structural systems subjected to 
uniaxial stress states or multiaxial stress states 
combined with Mises’ yield condition, the governing 
equations discussed in this paper allow us to prove 
that convergence toward the solution of the elastic-
plastic incremental problem can be guaranteed, if we 
adopt a proper algorithm that makes use of the so-
called backward-difference technique. Indeed, it was 
shown that these convergence properties exist both 
for quasi-static and dynamic discrete models [3,4]. 

Here, we will briefly review the proof, since it 
represents a necessary, preliminary step for the an 
application to piecewise-linear yield surfaces, which 
represent the main topic of this paper. 

With reference to typical incremental formulations, 
we can rewrite eqns. (3b) and (4) in the form 

    Q = K {U
o + ΔU} + L {o + Δ}  (11a) 

   -χ = LT {U
o + ΔU} + S {o + Δ} + G {o + Δ} (11b) 

where U
o and o are referred to nodal displacements 

and plastic strains at the strain points at the beginning 

of a given time-step, while ΔU and Δ are the 
unknown quantities to be determined when the 
structural system is subjected to a given vector Q of 
equivalent nodal loads. Clearly, the solution of the 
incremental elastic-plastic problem corresponds to the 
minimum point of the convex function 

      (ΔU, Δλ) = ½ ΔU
T K ΔU + ½ Δλ

T
 S Δλ + 

    + ½ Δλ
T G Δλ + D(Δλ) + ΔU

T L Δλ – ΔU
T Q + (12) 

    + ΔU
T
 {K U

o + L λo} + Δλ
T {L

T Uo + S λo + G λo} 

Therefore, if a certain iterative algorithm steadily 

converges, it must force the function (ΔU,Δλ) to 
decrease at each iteration. Here, we will show that 
this is what exactly happens in the case of a solution 
technique, which is based on the backward-difference 
concept and essentially consists of two phases. 

First, at the i-th iteration, there is a prediction 
phase during which we need to compute the stresses 

or deviatoric stresses that would occur at all the strain 
points if the response to the incremental 

displacements ΔUi=K
-1{Q–L{o+Δi-1}}–U

o were fully 

elastic. Here, Δi-1 denotes the vector of the plastic 
strain increments computed at the end of the previous 
iteration. In consequence, it is usually set equal to 
zero when i=1. 

Next, we need to proceed with a correction phase, 
which essentially consists in satisfying the constitutive 
law for given increments of the displacements and, 
hence, of the total strains or the corresponding 
deviatoric strains. For instance, in the case of Mises’ 
criterion, at every strain point where the predicted 
deviatoric stress components sij=sij

o+2GΔeij denote a 
point, which is outside the elastic domain, we shall 
determine plastic strain increments Δeij

p that satisfy 
two conditions: 

 the deviatoric stresses ŝij=sij
o+2G(Δeij–Δeij

p)–2G’ 

Δeij
p must correspond to a point located along the 

yield surface that characterizes the fictitious slip 
device (of course, with G’=0 in the case of elastic 
perfectly-plastic materials) 

 the plastic strain increments Δeij
p shall be normal 

to the yield surface at the point whose coordinates 
are sij=sij

o+2G(Δeij–Δeij
p) and, hence, denote the 

stress components that take into account the 
contribution of the plastic strain increments 

This means that the correction phase implies a 
radial return when Mises’ yield condition is applicable, 
as schematically shown in Fig. 8 for elastic perfectly-
plastic and hardening materials. Note that, in the case 
of isotropic hardening, the modulus of the vector 
whose components are Δsij=2G’Δeij

p corresponds to 
the increment of the radius of the yield surface, while, 
in the case of isotropic hardening, that vector denotes 
the displacement of the center of the yield surface. 

 
Fig. 8. Mises’ yield condition: correction phase. 

At the end of the correction phase, the plastic 

strain increments Δeij
p will be collected in a vector Δi. 

Then, we can solve the system ΔUi+1=K
-1{Q–

L{o+Δi}}–U
o and continue as before until a 

convenient Euclidean norm (e.g., ΔUi–ΔUi-1/ΔUi-1) 
is below a given threshold. 

That said, we can consider the increment 

=(ΔUi,Δλi)–(ΔUi-1,Δλi-1). If we set U=ΔUi–ΔUi-1, it 
turns out that the term (½ΔUi

T
KΔUi–½ΔUi-1

T
KΔUi-1) is 

equal to (½U
T
KU+U

T
KΔUi-1). Similarly, we obtain 

(½Δi
T
SΔi–½Δi-1

T
SΔi-1)=(½T

S+T
SΔi-1), 

having set =Δi–Δi-1. Of course, we derive an 
analogous result when we deal with the term 

½ΔT
GΔ in eqn. (12). In addition, the binomial 
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(13a) 

(14) 

(ΔUi
T
LΔi–ΔUi-1

T
LΔi-1) can be rewritten in a more 

convenient different way: (ΔUi
T
LΔi–ΔUi-1

T
LΔi-

1+ΔUi
T
LΔi-1–ΔUi

T
LΔi-1). Hence we get (ΔUi

T
LΔi–

ΔUi-1
T
LΔi-1)=(δU

T
LΔλi-1+δλ

T
L

TΔUi) in a straightforward 
way. 

Now, by splitting  into the contributions 1 and 

2, we can eventually set 

1 = ½ δU
T K δU + δU

T K ΔUi-1 + 

+ δU
T L Δλi-1 – δU

T Q + δU
T {K Uo + L λo} 

      2 = ½ δλ
T S δλ + δλ

T S Δλi-1 + ½ δλ
T G δλ + 

+ δλ
T G Δλi-1 + δλ

T LT ΔUi + D(Δλi) – D(Δλi-1) +    (13b) 

+ δλ
T {L

T Uo + S λo + G λo } 

Note that δU
T{K U

o + L λ
o + L Δλ i-1 – Q} in eqn. 

(13a) is equal to -δU
T
K ΔUi. Thus, we end up with the 

result 1=-½ δU
T
KδU, which is obviously less than 

zero for any δU0. 

As for eqn. (13b), we can add and subtract the 
terms ½ δλ

T S δλ and ½ δλ
T G δλ. In consequence, we 

obtain (-½δλ
T
Sδλ+δλ

T
SΔλi) instead of 

(½δλ
T
Sδλ+δλ

T
SΔλi-1) and (-½δλ

T
Gδλ+δλ

T
GΔλi) instead 

of (½δλ
T
Gδλ+δλ

T
GΔλi-1). Therefore, eqn. (13b) 

becomes 

2 = -½ δλ
T [S + G] δλ + δλ

T {L
T {Uo + ΔUi} + 

+ [S + G] {λ
o + Δλi}} + D(Δλi) – D(Δλi-1) 

where the second term on the right hand side 
represents the scalar product between δλ and χi, 
which (in turn) is the vector of generalized forces 
acting on the slip devices at the end of the i-th 
iteration. In view of this result, it is quite obvious that 

2, too, can only be negative for any δλ0, because 

[S+G] is positive definite and D(Δλi-1)D(Δλi)+χi
T{Δi-1–

Δi} since D(Δλ) is convex. 

 
Fig. 9. Discrete model (measures are given in mm). 

The trend of the function (ΔU,Δλ) can be checked 
by solving any incremental elastic-plastic problem. For 

instance, we considered the classical case of an 
elastic perfectly-plastic tube subjected to internal 
pressure [10]. Assuming Mises’ yield condition and 
imposing a plane strain state, we applied an 
increasing internal pressure to the discrete model in 
Fig. 9, which consists of twenty 8-node isoparametric 
elements characterized by four strain points. 

 
Fig. 10. Internal pressure vs. external radial displacement in 

non-dimensional form. 

The relevant response is reported in Fig. 10 by 
using the non-dimensional quantities p/k* and 
2uG/(k*r), where u, r and k* denote the radial external 
displacement, the internal radius and the square root 
of the absolute value of the second invariant of the 
stress deviator, which can be used to define Mises’ 

yield surface by setting s11 s22+s22 s33+s33 s11–s12
2–s23

2–

s31
2=k*2. 

 
Fig. 11. Typical trend of the function (ΔU,Δλ) during a time-

step. 

More precisely, the curve in Fig. 10 was obtained 
by subdividing the load history into fifty time-steps and 

Fig. 11 shows the trend of the function (ΔU,Δλ) 
during the last step. As expected, a steady decrease 
was found. 

V APPLICATIONS TO PIECEWISE-LINEAR YIELD 

SURFACES 

Even though this issue has never been explicitly 
studied before, the internal variable approach 
discussed here is applicable to every elastic-plastic 
material by introducing piecewise-linear yield 
surfaces, which are obviously able to approximate any 
surface with any required degree of accuracy. 

In order to do so, it is necessary to express the 

vectors of the incremental elastic-plastic strains in the 

form Δε
p=Σk nk Δμk, where Δμk represents a plastic 

multiplier, while nk is the unit vector normal to the k-th 

plane, whose distance from the origin of the axes in 
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^   ^    ^ 

^           ^           ^ 

the stress space is rk (k=1,…,m, if m denotes the 

number of planes that define the yield surface). 

Therefore, when we need to satisfy the constitutive 
law at a strain point for a given stress (say σo) at the 
beginning of the current time-step and for any 
increment of the total strains Δε (as typical of the 
correction phase), we shall solve the problem 

   φ = nT {σo + D {Δε – n Δμ}} – {r + H Δμ}  0 (15a) 

Δμ  0   ,   φT Δμ = 0  (15b,c) 

where n is a matrix that collects the unit vectors nk, 
while r and Δμ are vectors whose entries are the 
parameters rk and Δμk. As for φ and H, they are, 
respectively, a vector of yield functions and a 
hardening matrix, which somehow plays the role of the 
matrix G considered above (of course, H=0 for elastic 
perfectly-plastic materials). A constant H-matrix 
implies linear hardening and, in consequence,  the 
conditions (15a,b,c) define a linear complementarity 
problem, for which well-known solution techniques do 
exist [7]. Instead, in the case of nonlinear hardening, 
we can introduce a convenient function ψ(Δμ) and 

consider the vector {ψ/Δμ} instead of the product H 

Δμ. 

Clearly, we can also reason in terms of dissipation 

functions and preserve the framework discussed in 

the previous Sections. In fact, if we assume a number 

of slip devices equal to the number of planes and 

introduce the vector χ'=n
T{σo+ D{Δε–n Δμ}}–H Δμ, the 

dissipated energy per unit volume can be expressed 

in the form d(Δμ)=Σk rk Δμk=r
TΔμ, in which the k-th 

plastic multiplier Δμk can be non-zero only if the k-th 

element of χ' (i.e., χk) is equal to rk. 

At this stage, it should be observed that piecewise-

linear yield functions can be of practical use especially 

in the Haigh-Westergaard space, as suggested by 

classical Tresca or Mohr-Coulomb’s yield surfaces or 

by a possible approximation of Drucker-Prager’s yield 

surface by means of appropriate planes. Therefore, it 

is worth noting that the application of the internal 

variable approach (with its consequent convergence 

properties) is quite straightforward even when the 

constitutive law is enforced in the Haigh-Westergaard 

space, while the unknown vectors ΔU and Δλ are 

defined in a generic x1-x2-x3 space. This statement can 

be immediately checked. 

For instance, it is possible to start from eqns. (11) 
under the hypothesis that the generalized forces are 
equivalent to stresses defined in any Euclidean space 
and that Mises’ yield condition is applicable. The key 
point is that the matrix G, as well as any other term in 

eqn. (11) and in the function (ΔU,Δλ) introduced 
through eqn. (12), maintains its meaning, no matter if 
axis rotations are needed in order to satisfy the 
constitutive law in a different space (e.g., in the Haigh-
Westergaard space). 

In actual fact, everything is fully analogous to the 
process to be followed in the space of deviatoric 
stresses. In the end, as shown below, it simply 
happens that the incremental plastic strains are 
determined at each strain point in the Haigh-
Westergaard space (during the correction phase) and 
transformed into the correct components of the vector 
Δλ by using appropriate rotation matrices. 

For the sake of example, let us consider a 
structural system consisting of an elastic-plastic 
material characterized by linear isotropic hardening, 
whose mechanical properties are E=200,000 Mpa, 
ν=0.3, G’=33,333 MPa and σY=200 MPa (yield stress). 

In the Haigh-Westergaard space, Mises’ criterion 
implies a cylindrical yield surface, which is defined by 
the function σI

2+σII
2+σIII

2–σIσII–σIIσIII–σIσIII–σY
2=0, if σI, σII, 

σIII denote principal stresses. The radius of its circular 

cross section is ř=163.299 MPa. 

Next, just to simulate what might happen in the 
context of a numerical analysis, we can assume that 
the stress components σ11*, σ22*, σ33*, σ12*, σ23*, σ31* 

determined at the end of the prediction phase at a 
certain strain point are 100, 250, 130, 80, 120, 40 MPa. 
Thus, the corresponding principal stresses are 
σI*=52.3417 MPa, σII*=72.3821 MPa, σIII*=355.2762 

MPa, while the point whose coordinates are σI*, σII*, 

σIII* is at a distance equal to 239.583 MPa from the 

axis of the cylindrical yield surface. In other words, 
plastic strain increments Δεij

p must be determined in 

order to find stress components in agreement with 
Mises’ yield condition. 

It turns out that the increments ΔεI
p=-0.0001554500, 

ΔεII
p=-0.0001265131, ΔεIII

p=0.0002819631 satisfy the 

constitutive law in the Haigh-Westergaard space in 
accordance with the backward-difference concept. In 
fact, we obtain the stress vector σ=σ*–D Δε

p=[σI σII 

σIII]
T, whose entries are 76.2570, 91.8456 and 311.8974 

MPa, respectively, if D denotes the stiffness matrix, 
while σ*=[σI* σII* σIII*]T and Δε

p=[ΔεI
p ΔεII

p ΔεIII
p]T. Of 

course, the point whose coordinates are σI, σII, σIII 

must belong to the updated yield surface and the new 
radius of the cross section turns out to be 186.362 
MPa. 

Note that the distance of any point whose 
coordinates are σI, σII, σIII from the hydrostatic axis can 
be easily computed by setting σI=t, σII=t, σIII=t (i.e., by 
writing the parametric equations of the hydrostatic 
axis) and by determining the value of the parameter t, 
which minimizes the square root of ((σI–t)2+(σII–

t)2+(σIII–t)2). 

Since the plastic incremental strains are deviatoric, 
an alternative equation can be considered in order to 
derive the actual stress vector σ in the Haigh-
Westergaard space. Indeed, we can set σ=σ*–2G Δε

p. 
Similarly, when we consider the coordinates of the 
point that represents the stress acting on the slip 
device (and belongs to the initial yield surface), we 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 5, May - 2020  

www.jmest.org 

JMESTN42353380 11884 

obtain χI=σI–2G’ΔεI
p=86.62 MPa, χII=σII–2G’ΔεII

p=100.28 

MPa, χIII=σIII–2G’ΔεIII
p=293.10 MPa. 

As for the energy per unit volume which is given by 
G’((ΔεI

p)2+(ΔεII
p)2+(ΔεIII

p)2) and corresponds to the 
energy stored in the torsion spring in Fig. 4, it is equal 
to G’ Δεij

p
 Δεij

p. Instead, the dissipated energy per unit 
volume χIΔεI

p+χIIΔεII
p+χIIIΔεIII

p is equal to χij Δεij
p and, 

naturally, it is also equal to ř multiplied by the modulus 
of the vector whose components are ΔεI

p, ΔεII
p, ΔεIII

p or 
Δεij

p. Consequently, if we had a piecewise-linear yield 
surface in the Haigh-Westergaard space instead of 
the cylindrical one due to Mises, a product such as χij 

Δεij
p in the x1-x2-x3 space would correspond to the 

dissipated energy d(Δμ)=Σk rk Δμk per unit volume 
introduced above. Thus, it can be stated that the 
convergence properties discussed in the previous 
Section still hold if we consider piecewise-linear yield 
surfaces in the Haigh-Westergaard space and satisfy 
the constitutive law in this space. 

Incidentally, we can also point out that, in the case 
of Mises’ yield criterion, the results obtained in the 
Haigh-Westergaard space are absolutely identical to 
what we could find in the space of the deviatoric 
stresses. As a matter of fact, the relevant (spherical) 
yield surface sij sij–k2 =0 would be characterized by the 
same radius ř=163.299 Mpa and the deviatoric 
stresses sij* corresponding to the stresses σij* would 
eventually lead to the same plastic strain increments 
Δeij

p=Δεij
p. In addition, the dissipated energy per unit 

volume is again equal to ř multiplied by the modulus 
of the vector whose components are Δεij

p. 

VI CLOSING REMARKS 

In the first part of the paper, a non-traditional 
internal variable approach to the elastic-plastic 
analysis of structural systems, whose material is 
stable in Drucker’s sense, has been revised. The main 
feature of the theoretical framework discussed here is 
that the constitutive law is enforced by focusing on 
dissipation functions rather than yield functions. This 
alternative formulation has interesting consequences 
when computational aspects come into play. 

In fact, as already shown in the past with reference 
to the case of Mises’ yield condition, the use of 
dissipation functions implies that the numerical 
solution of an elastic-plastic incremental problem 
corresponds to the minimum point of a convex 
unconstrained function. Instead, convenient 
constrains (to be introduced through yield functions) 
should be taken into account in order to derive similar 
properties by starting with a traditional formulation. 

It has also been observed that convergence 
toward the correct solution can be guaranteed by 
making use of the backward difference concept. As 
explained in the paper, this implicit algorithm 
essentially consists of determining incremental plastic 
strains that satisfy the associated flow rule with 
respect to the stresses and the yield functions 
determined at the end of each time-step. 

The innovative contribution of the present work is a 
detailed investigation of the possible use of piecewise 
linear yield surfaces, which practically allow one to 
consider any yield condition in any stress space (e.g., 
Tresca’s yield criterion in the Haigh-Westergaard 
space). 

Hence, adequate dissipation functions can be 
introduced in order to define the convex 
unconstrained function, whose minimum point must 
correspond to the solution of the elastic-plastic 
incremental problem. 

In the end, it was possible to prove that the internal 
variable approach presented here can be applied to 
any yield criterion (not only to the relatively simple 
case of Mises’ yield condition). Therefore, the relevant 
properties in terms of convergence of the backward-
difference integration scheme still hold, in the 
presence of piecewise linear yield surfaces and 
properly defined dissipation functions, under the 
condition that the material is stable in Drucker’s 
sense. 
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