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Abstract—In this paper, several new metrics to 
evaluate the performance of multi-objective 
optimization algorithms are proposed. A notable 
metric that is based on the probability of obtaining 
the best solution is one of the new of metrics. The 
suggested metrics are concerned with the 
convergence and diversity characteristics of the 
solutions. In addition, the relationship among the 
proposed and existing metrics is investigated. The 
advantages of the proposed metrics are 
highlighted. A computational experiment based on 
a multi-objective supply chain network design 
problem using three metaheuristic algorithms is 
conducted to demonstrate the application of the 
new metrics.  The proposed metrics expand and 
enrich this area of research.  

Keywords—Metrics; Multi-objective; 
Optimization; Meta-heuristics; Supply chain. 

I.  

INTRODUCTION  

In recent years, multi-objective optimization has 
attracted the attention of both academics and 
practitioners. In this regard, various multi-objective 
optimization algorithms have been developed. These 
algorithms are categorized into well-known exact 
methods and meta-heuristic approaches. The 
limitations of using exact methods for solving large 
problems have given rise to the development of a wide 
range of meta-heuristic optimization approaches [1]. 
These approaches include particle swarm, ant colony, 
simulated annealing, and genetic algorithms. The main 
goal of multi-objective optimization is to obtain a set of 
solutions for optimizing several conflicting objective 
functions simultaneously. The general form of the 
multi-objective model is usually stated as: 

Minimize 𝑓 (𝑥)= [𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … . , 𝑓𝑛(𝑥)]        (1)  

    S.t.          𝑥 ∈  𝑆,            

   Where  𝑆 = {𝑋 ∈ 𝑅𝑚: ℎ(𝑥) = 0 , 𝑔(𝑥) ≥ 0},  

  𝑛 > 1, 𝑆 represents the feasible region, and 𝑓 is a 
vector valued objective function. 

In the case of multi-objective optimization, the 
optimality conditions are rather different than the one 
for single objective optimization. The Pareto optimality 
and Pareto dominance concepts are employed for 
characterizing a multi-objective solution. The solution 
is called a Pareto-efficient solution if improving the 

value of one objective degrades at least one other 
objective value. Moreover, if there are no other 
solutions that dominate the solution, it is said to be 
Pareto optimal. 

Many metrics have been developed to evaluate the 
performance of multi-objective algorithms. However, 
most of the available metrics in the literature measure 
only one feature of the solutions for evaluating the 
performance of multi-objective algorithms. Accordingly, 
our suggested approaches take into account more 
than one feature of the solutions.  To be more precise, 
in the comparison of algorithms for multi-objective 
optimization problems, several solutions of an 
algorithm are dominated by the solutions of other 
algorithms. The dominated solutions might have 
extreme (large or small) distances from the ideal 
solution. Such solutions are considered as low-quality 
solutions in terms of the quality of the solutions metric 
such as percent of domination. Taking these solutions 
into account will increase or decrease the existing 
mean ideal distance and spread the non-dominance 
solutions metrics dramatically. Therefore, it is 
worthwhile to eliminate such solutions in computing the 
mean ideal distance and the spread non-dominance 
solutions metrics for the case of comparing different 
algorithms. Consequently, to avoid the drawbacks 
mentioned, new measures are proposed. 

In addition, in this paper a novel metric based on 
the probability of obtaining the best solution is 
proposed. Moreover, new metrics for measuring the 
convergence and the diversity of solutions from the 
grand ideal distance are suggested. Last but not least, 
the relationship among the existing and proposed 
metrics is investigated. A computational experiment is 
conducted to test and demonstrate the use of the 
proposed metrics. The problems used in the 
computational experiment deal with the design of 
supply chain networks in a multi-objective framework.    

The rest of this paper is organized as follows: the 
literature review is provided in section 2, followed by 
the suggested metrics in section 3. Then, the 
relationships between the proposed and existing 
metrics are investigated in section 4. The 
computational experiment to demonstrate the 
application of the proposed metrics is provided in 
section 5. Finally, the conclusions and future work are 
presented in section 6. 
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TABLE I.   NOTATIONS 

n The number of optimal Pareto solutions obtained by an algorithm 

d  Number of dominated solutions by the solutions of another algorithm 

MID Mean ideal distance 

POD Percent of domination  

SNS Spread of non-dominance solution 

𝑀𝐼𝐷𝑁𝐷𝑆 Mean ideal distance of solutions that are non-dominated by another algorithm 

𝑆𝑁𝑆𝑁𝐷𝑆 Spread of non-dominance solutions that are non-dominated by another algorithm 

𝑀𝐺𝐼𝐷 Mean grand ideal distance 

SGNS Spread grand of non-dominance solutions 

𝑓𝑖 Vector of solution i 

𝑓𝑖𝑑𝑒𝑎𝑙 Vector of the ideal point which is the best value of objective that can be obtained by   the 
algorithm when the problem is solved as a single objective 

𝑓 𝑔𝑟𝑎𝑛𝑑−𝑖𝑑𝑒𝑎𝑙 Vector of the grand ideal point which is the best solution selected among all the ideal solutions 
obtained by competing algorithms 

𝑐𝑖 The distance between solution i and the ideal point 

RDC The ratio of the new diversity metric to new convergence metric 

𝐸𝑑𝑖 The Euclidean distance between each solution obtained and the nearest member of the Pareto-
optimal solutions 

𝑃̂𝑖 The fraction of times that the obtaining obtains the best solution 

𝑉𝑎𝑙𝑖 The current value of the performance metric i 

𝑉𝑎𝑙𝑚𝑖𝑛 The minimum value of the metric obtained by the algorithms 

𝑉𝑎𝑙𝑚𝑎𝑥 The maximum value of the metric obtained by the algorithms 

 

II. LITERATURE REVIEW  

Recently, various performance measures for the 
evaluation of multi-objective meta-heuristics algorithms 
have been developed. One of the performance metrics 
is the hypervolume (HV) or S metric [2]. It measures 
the space size of the objective for all the obtained 
solutions.  A reference point is utilized to compute the 
landscape of the objective.  HV can measure both the 
convergence and diversity of solutions. However, the 
major disadvantage of the HV metric is the 
computation time required to calculate the objective 
space. It is also necessary to select the reference point 
carefully. 

Other existing metrics for measuring the 
convergence include the generational distance metric 
(GD), inverted generational distance (IGD) [4], the 
convergence metric [8], and the convergence measure 
(ϒ) [7]. GD measures the average of the minimum 
distances of the solutions from the nearest member of 
the Pareto-optimal solutions. It is developed by Van 
Veldhuizen and Lamont [3] and is computed as:  

          GD = √
∑ 𝐸𝑑𝑖

2𝑛
𝑖=1

𝑛
                             (2) 

The disadvantage of this metric is that it is essential 
to know the nearest Pareto-optimal solutions.  The 
complementary metric of generational distance is IGD. 
This measures the minimum distance of the solutions 
(instead of average) from the nearest member of the 
Pareto-optimal solutions. The unavailability of the 
optimal Pareto front is the major drawback of this 
metric. The convergence measure (ϒ) is the same as 
IGD, but it evaluates the mean distance from the 
optimal Pareto front. This metric cannot be utilized if 
the optimal Pareto solutions are unavailable. 

Moreover, the common convergence metric used 
for evaluating the performance of algorithms in the 
multi-objective supply chain area is the mean ideal 
distance (MID). MID measures the closeness of the 
Pareto solutions to a calculated ideal solution. It is 
calculated through the following formula:  

 

              𝑀𝐼𝐷 =
∑ 𝑐𝑖𝑖

𝑛
 where  𝑐𝑖 = ǁ𝑓 𝑖 −  𝑓 𝑖𝑑𝑒𝑎𝑙 ǁ      (3)                                                                       

The drawback of this metric is that it cannot provide 
more information about the characteristics of solutions. 
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On the other hand, the existing metrics that 
measure the domination of solutions include percent of 
domination (POD) and two set coverage (C-metric) [6]. 
POD measures the ability of the solutions obtained by 
an algorithm to dominate the solutions of other 
algorithms. It is computed as follows, first, all efficient 
solutions obtained by the algorithms are mixed and the 
combination of Pareto efficient solutions is 
constructed. Then, all dominated solutions are deleted 
and the ratio of the solutions belonging to each 
algorithm is computed. POD can be computed by the 
following formula:  

                        𝑃𝑂𝐷(𝑎𝑙𝑔𝑖) =  
𝑛−𝑑

𝑛
                    (4)                                                                                           

The algorithm with the higher POD has better 
performance.                                                              

The C-metric measures the ability of a solution set 
to dominate another set. It does not provide more 
information about the domination and its values are not 
easy to interpret if the two sets of solutions are not 
comparable.   

In contrast, the main existing metrics that measure 
the diversity of solutions include the spread of non-
dominated solutions (SNS) and the spread metric (∆) 
[5]. SNS evaluates the standard deviation of the 
distance of the ideal point from the Pareto solutions. It 
is calculated by the following formula: 

                𝑆𝑁𝑆 = √
∑ (𝑀𝐼𝐷−𝑐𝑖)2𝑛

𝑖=1

𝑛−1
                      (5) 

The disadvantage of these metrics is that they only 
measure the diversity of solutions without considering 
any more information about the solutions. Other 
traditional metrics that evaluate the diversity are the 
diversity metric (DM) [8], the entropy metric [9], the 

diversity spacing [10], and the 𝑀3
∗ metric [11]. The 

drawback of these metrics is that they only consider 
one aspect of the solution characteristic. 

Based on the literature and the drawbacks of the 
existing metrics, this paper proposes new metrics for 
evaluating the performance of multi-objective 
optimization algorithms. This work is distinguished 
from previous studies in the following aspects. First, a 
new metric based on the probability of obtaining the 
closest solution to the ideal solution is developed. 
Second, new metrics that measure the average 
solutions distances and the diversity of solutions from 
the grand ideal distance are proposed. Third, new 
measures related to the convergence and the diversity 
of solutions are proposed. Finally, the relationship 
between new and existing metrics is investigated. 

 

 

III. PROPOSED METRICS  

In this section, the proposed metrics for evaluating 
the performance of algorithms for multi-objective 
optimization problems are presented. 

A. The probability of best solution (P) 

This metric is defined based on the probability of 
success in obtaining the best solution in N trials. A trial 
is a problem of a certain dimension which is called an 
incidence to be solved. To compute P, first, each 
algorithm is utilized to solve N trials of the multi-
objective problem with a certain dimension. At each 
trial, each algorithm might be employed for several 
runs. In this case, the best solution is selected based 
on the minimum distance of the solution from the ideal 
point at each run and then the average is calculated. 
The fraction of times (p̂𝑖) that algorithm i obtains the 
best solution is computed and used as an estimate of 
the probability of obtaining the best solution or 

probability of success. (p̂𝑖) is used as a measure of 
performance and the algorithm with the highest (p̂𝑖) is 
the best. The probability of success is calculated by 
the following formula: 

                𝑃̂𝑖  =
ϒ𝑖

𝑁
                              (6)                                                                                                      

Where ϒ𝑖 is the number for obtaining the best 
solutions for algorithm i. It is known that p̂𝑖 is an 
unbiased and a minimum variance for p̂𝑖. 

B. Mean grand-ideal distance 

      MGID measures the distance of the solutions 
obtained by an algorithm from the grand ideal point.  In 
this metric, the grand ideal point is the best solution 
selected among all the ideal solutions obtained by 
competing algorithms.  The main advantage of  MGID  
is that it computes the mean distance of the solutions 
considering all the ideal solutions obtained from all of 
the algorithms. It is calculated as: 

                         𝑀𝐺𝐼𝐷 = 
∑ 𝐸𝐶𝑖

𝑛
𝑖=1

𝑛  
                          (7) 

where   𝐸𝐶𝑖 = ǁ𝑓 𝑖 − 𝑓 𝑔𝑟𝑎𝑛𝑑−𝑖𝑑𝑒𝑎𝑙 ǁ . 

The algorithm with less MGID has better performance. 

C. Spread grand-of non-dominance solutions 

       It evaluates the standard deviation of the distance 
of the solutions obtained by an algorithm from the 
grand ideal point. It is computed as follows: 

                 𝑆𝐺𝑁𝑆 = √
∑ (𝑀𝐺𝐼𝐷−𝐸𝐶𝑖)2𝑛

𝑖=1

𝑛−1
                         (8) 

The higher value of SGNS produces a better solution 
quality. 

D. Mean ideal distance of non-dominated solutions by 
other algorithms 

𝑀𝐼𝐷𝑁𝐷𝑆 measures the distance of nondominated 
solutions by a competing algorithm from the ideal 
solution. The main advantage of 𝑀𝐼𝐷𝑁𝐷𝑆 is that it 
computes the mean distance of non-dominated 
solutions from the ideal point.  It is calculated as: 

               𝑀𝐼𝐷𝑁𝐷𝑆= 
∑ 𝑐𝑖

𝑛−𝑑
𝑖=1

𝑛−𝑑  
                           (9) 
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The algorithm with less 𝑀𝐼𝐷𝑁𝐷𝑆 has better 
performance. 

E. Spread of non-dominance solutions by other 
algorithms 

       It evaluates the standard deviation of the distance 
of the non-dominated solutions by competing algorithm 
from the ideal solution. This metric is affected, not only 
by the spread of solutions, but also by the quality of 
the solutions as defined by being non-dominated.It is 
computed as follows: 

  𝑆𝑁𝑆𝑁𝐷𝑆  = √
∑ (𝑀𝐼𝐷𝑁𝐷𝑆−𝑐𝑖)2𝑛−𝑑

𝑖=1

𝑛−𝑑−1
      , d < 𝑛 − 1   (10)                                                                  

The higher value of SNSNDS produces a better solution 
quality. 

F. The ratio of the diversity metric to the convergence 
metric 

       This measure combines the two main suggested 
measures in (5) and (6) above. It is calculated using 
the following formula: 

              RDC = 
𝑆𝑁𝑆𝑁𝐷𝑆 

𝑀𝐼𝐷𝑁𝐷𝑆
                                  (11) 

       The higher value of RDC produces a better 
solution quality. The major advantage of RDC is that it 
considers both the diversity and convergence of non-
dominated solutions by other algorithms.   

G. The ratio of the quality metrics (RQ) 

        This metric combines the main performance 
measures of quality solutions of multi-objective 
algorithms. It measures the ratio of the suggested 
mean ideal distance to the percent of non-dominated 
solutions. It is computed as follows: 

                  𝑅𝑄 =
𝑀𝐼𝐷𝑁𝐷𝑆

𝑃𝑂𝐷
                              (12) 

The algorithm with less RQ has better performance. 

 

IV. THE RELATIONSHIP BETWEEN THE EXISTING AND 

PROPOSED METRICS 

       In this section, the relationship between the most 
common existing metrics and the proposed ones for 
evaluating the performance of algorithms for multi-
objective optimization is investigated. We also try to 
show that MIDNDS measures the mean ideal distance 
of the solutions and is affected by the quality of the 
solutions. 

First, the relationship among POD, MID and MIDNDS  is 
presented:  

𝑀𝐼𝐷 =
∑ 𝑐𝑖

𝑛
𝑖=1

𝑛
   =   

∑ 𝑐𝑖 +∑ 𝑐𝑖 
𝑛−𝑑
𝑖=1

𝑑
𝑖=1

𝑛
   

Divide MID by POD, then  
𝑀𝐼𝐷

𝑃𝑂𝐷
 = 

∑ 𝑐𝑖 +∑ 𝑐𝑖 
𝑛−𝑑
𝑖=1

𝑑
𝑖=1

𝑛
 ×  

𝑛

𝑛−𝑑
  =  

∑ 𝑐𝑖 +∑ 𝑐𝑖 
𝑛−𝑑
𝑖=1

𝑑
𝑖=1

𝑛−𝑑 
   

       =  
∑ 𝑐𝑖

𝑑
𝑖=1  

𝑛−𝑑
  +  

∑ 𝑐𝑖
𝑛−𝑑
𝑖=1

𝑛−𝑑  
 

 
𝑀𝐼𝐷

𝑃𝑂𝐷
   =  

∑ 𝑐𝑖
𝑑
𝑖=1  

𝑛−𝑑
  +    𝑀𝐼𝐷𝑁𝐷𝑆                 ( 13) 

     The ratio of  
𝑀𝐼𝐷

𝑃𝑂𝐷
   measures two features of the 

solutions which are: the mean ideal distance (MID) and 
the quality of solutions (POD). The algorithm with 

lower 
𝑀𝐼𝐷

𝑃𝑂𝐷
  is better. From eq.1, the ratio of  

𝑀𝐼𝐷

𝑃𝑂𝐷
  is a 

function in terms of 𝑀𝐼𝐷𝑁𝐷𝑆.   

      To clarify the effect of the domination ratio on the 
convergence metrics, the following lemmas are 
provided: 

Lemma 1: If there is no domination, then MID = 
MIDNDS 

This is obvious, since there is no domination, then d =0 

𝑀𝐼𝐷𝑁𝐷𝑆 = 
∑ 𝑐𝑖

𝑛−𝑑
𝑖=1

𝑛−𝑑 
  =  

∑ 𝑐𝑖
𝑛
𝑖=1

𝑛
 = MID. 

Lemma 2: If there is no domination, then RQ = MID = 
MIDNDS 

Since d = 0 , POD =1 and RQ = 
𝑀𝐼𝐷𝑁𝐷𝑆

1
  = 𝑀𝐼𝐷𝑁𝐷𝑆 = 

MID 

Lemma 3: If d = n, then this is an extreme case and 
the dominated algorithm is not competitive and should 
be eliminated from the comparison. 

       Based on the aforementioned lemmas and the 
formulas of MID and MIDNDS, it can be concluded that 
MID has the same values in all lemmas. This means 
that MID is not affected by the quality and the 
characteristics of solutions acquired by the algorithm. 
On the other hand, the value of MIDNDS   depends on 
the distance of the solutions from the ideal point, the 
number of solutions that are dominated by other 
algorithms, and the characteristics of quality solutions. 
Therefore, MIDNDS is a more suitable measure. 

V. COMPUTATIONAL EXPERIMENT 

        In this section, a computational experiment is 
conducted to illustrate the applicability of the proposed 
multi-criteria measures for evaluating the performance 
of multi-objective algorithms and to demonstrate the 
relationship among the metrics. The application used 
is the design multi-objective, multi-products, five-
echelon supply chain network problem. Thirteen 
problems covering different supply chain network sizes 
are generated, as shown in Table II. 

         For solving these problems, three meta-heuristic 
algorithms are utilized; namely, the tabu search 
algorithm (TS), genetic algorithm (GA), and simulated 
annealing (SA). The objective is to evaluate the 
effectiveness and efficiency of the algorithms for 
solving multi-objective supply chain design problems 
using the existing and the proposed metrics as 
comparison measures. 

The first evaluation metric is the probability of the best 
solution. To assess the applicability of the probability 
of  
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TABLE II. TEST PROBLEM INSTANCES 

Problem 
number  

Suppliers  Plants  warehouses DCs Customers  Products 

1 3 3 3 3 10 4 

2 5 5 5 5 20 4 

3 6 6 6 6 20 4 

4 8 8 8 8 28 4 

5 10 10 10 10 40 4 

6 12 12 12 12 60 4 

7 15 15 15 15 70 4 

8 18 18 18 18 80 4 

9 20 20 20 20 90 4 

10 22 22 22 22 100 6 

11 25 25 25 25 100 6 

12 28 28 28 28 120 6 

13 30 30 30 30 130 6 

best solution metric, the proper number of trials of the 
problem (N) is selected. To do this, several trials of a 
small size-scale are conducted. For each trial, the 
probability of success is computed, as shown in Table 
III.  Then, the median of the probability of success 
obtained by each algorithm for all trials is tested. In this 
regard, we are interested in testing the null hypothesis 
H0: median = m0 against the alternative hypothesis H1: 
median ≠ m0, where m0   is equal to 0.4, 0.1, and 0.5 
for tabu search, genetic algorithm, and simulated 
annealing, respectively. Since the distribution of the 
source of the collected data is unknown, a non-
parametric test called a sign test is utilized to test this 
hypothesis. 

         As a result, the p-value of the test is greater than 
a 0.05 significance level, as shown in Table IV. Thus, 
we do not reject the null hypothesis. This means that 
the probabilities of success for obtaining the best 
solution are 0.4, 0.1, and 0.5 for the tabu search 
algorithm, genetic algorithm, and simulated annealing, 
respectively.   

TABLE III THE PROBABILITY OF SUCCESS IN OBTAINING THE 

SOLUTIONS FOR ALL TRIALS IN A SMALL PROBLEM 

                  Algorithm  
Problem trial   

TS GA SA 

5 0.40 0.00 0.60 

8 0.38 0.13 0.50 

10  0.40 0.10 0.50 

12 0.42 0.08 0.50 

15  0.40 0.13 0.47 

18 0.39 0.11 0.50 

20  0.35 0.10 0.55 

         Accordingly, the proper number of trials is 
selected to be 10. Afterward, the metric is used for 
evaluating the performance of the meta-heuristic 
algorithms by solving three types of problems. The 

problems cover different sizes: small size, medium 
size, and large size. First, each algorithm is utilized to 
solve 10 trials or incidences of a multi-objective 
problem with a certain dimension. 

        At each trial, each algorithm is also employed for 
10 runs. At each run, the best solution is selected 
based on the minimum distance of the solution from 
the ideal point. Then, the average of all the best 
solutions acquired by algorithms is computed for each 
trial, as shown in Table (V-VI).  The number of 
solutions belonging to each algorithm is counted and 
the probability of success is calculated, as shown in 
Table VII. From Table VII, it can be seen that there is a 
slight statistically significant difference between TA 
and SA. However, both algorithms perform better than 
GA in terms of the probability of best solutions metric. 

TABLE III . SIGN TEST OUTPUT OF THE PROPOSED ALGORITHMS 

Algorithm  N Below Equal Above P Median 

Tabu 
search  

 
 
 
7 

3 3 1 0.63 0.40 

Genetic 
algorithm 

2 2 3 1.00 0.10 

Simulated 
annealing  

1 4 2 1.00 0.50 

       Table IX illustrates the performance measures for 
the three algorithms for solving MOSC problems.  
From Table IX, it can be seen that the algorithm that 
obtains the best MID differs from the algorithm that 
obtains the best MIDNDS for many problems. This 
difference is due to the fact that the mean ideal 
distance is affected by the number and characteristic 
of dominated solutions, especially when the dominated 
solutions have an extreme (large or small) distance. 
Taking these solutions into account leads to an 
increase or decrease        

 

TABLE IV. THE AVERAGE OF THE BEST SOLUTIONS OBTAINED BY ALGORITHMS (SMALL SIZE) 
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                        Algorithm 
Trial number 

TS GA SA 

1 60044014.26 63043999.50 62745626.62 

2 104080492.20 105507175.70 104219952.30 

3 67755028.65 71700811.75 66643972.70 

4 76920176.63 76422701.25 76671439.78 

5 57805574.44 61252734.36 58328394.93 

6 68969399.88 68332795.57 66604922.80 

7 70032896.71 75840102.95 68114772.84 

8 36529799.17 38460258.15 35107867.36 

9 100255810.20 101478654.90 100384936.20 

10 59983691.29 62060561.40 59170514.62 
TABLE VI. THE MINIMUM DISTANCE FROM THE IDEAL POINT OBTAINED BY ALGORITHMS (MEDIUM SIZE) 

                        Algorithm 
Trial number  

TS GA SA 

1 151353834.20 152020075.90 153678717.40 

2 86782255.79 85965490.84 84343976.65 

3 142785445.30 138551191.60 135067107.70 

4 67816501.81 62720187.69 65018374.03 

5 70205572.82 69807104.16 68273858.50 

6 35247419.50 37917409.30 35333882.13 

7 46335104.45 49210868.09 36226695.14 

8 155166204.80 159567511.40 158410570.30 

9 90345099.64 92240090.94 94561902.53 

10 109896022.70 108764065.70 111764958.70 
TABLE VII. THE MINIMUM DISTANCE FROM THE IDEAL POINT OBTAINED BY ALGORITHMS (LARGE SIZE) 

                        Algorithm 
Trial number  

TS GA SA 

1 8646811441 8639057104 8643721463 

2 8681940768 8682927950 8683039691 

3 8565666122 8562987969 8561714433 

4 8517262981 8520603121 8523731729 

5 8689624542 8683563088 8673179341 

6 8581128087 8581632342 8587695102 

7 8600058742 8595467975 8590066700 

8 8613730753 8604295121 8590757692 

9 8604144033 8595662478 8598097619 

10 8530176941 8524061770 8522063380 

 

TABLE VII. THE PROBABILITY OF SUCCESS IN OBTAINING THE SOLUTIONS FOR ALL PROBLEMS 

                      Algorithm  
Problem type   

TS GA SA 

Small size  0.40 0.10 0.50 

Medium size  0.40 0.20 0.40 

Large size  0.30 0.20 0.50 

Average  0.37 0.17 0.47 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 4, April - 2020  

www.jmest.org 

JMESTN42353336 11734 

               

 

 

 

 

 

 

 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 4, April - 2020  

www.jmest.org 

JMESTN42353336 11735 

 

 

 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 4, April - 2020  

www.jmest.org 

JMESTN42353336 11736 

                  TABLE XII. AVERAGE OF METRICS OBTAINED BY GA, SA, AND TS 

Algorithm 
 

Performance Metric 

MID Rank SNS Rank SGNS Rank MIDNDS Rank SNSNDS Rank RDC Rank 

GA 0.44 2 0.22 2 0.63 1 0.50 3 0.59 2 0.40 2 

SA 0.27 1 0.98 1 0.58 2 0.49 2 0.69 1 0.70 1 

TS  0.65 3 0.14 3 0.20 3 0.29 1 0.16 3 0.33 3 

 

in the value of MID. Specifically, Table IX shows that 
the tabu search algorithm obtains the best value of 
MIDNDS for many problems, followed by simulated 
annealing, and then genetic algorithm. On the other 
hand, the simulated annealing dominates the other 
algorithms in terms of MID. The reason behind this is 
that a few of the solutions obtained by tabu search 
have large distances. These solutions, which are bad 
in terms of POD, are dominated by the solutions for 
other algorithms. Excluding such solutions leads to a 
reduction in the mean ideal distance.   

         Moreover, Table IX shows the values of the RQ 
and MGID metrics for all algorithms. From this metrics 
perspective, the tabu search algorithm outperforms the 
other algorithms in many problems. Furthermore, the 
average of metrics for all problems is computed as 
shown in Table X. Because the metrics values 
increase dramatically with problem size, the metrics 
values are first normalized using the following formula: 

 𝑓𝑖
𝑛𝑜𝑟𝑚(𝑎𝑙𝑔𝑜) =

𝑉𝑎𝑙𝑖−𝑉𝑎𝑙𝑚𝑖𝑛

𝑉𝑎𝑙𝑚𝑎𝑥−𝑉𝑎𝑙𝑚𝑖𝑛
  , i= 1,2,..,k            (14)                                                                  

       Table X illustrates the ranking of algorithms based 
on the average performance measures. According to 
the ranking, the simulated annealing algorithm 
outperforms the other algorithms in terms of MID. In 
contrast, the tabu search algorithm achieves the 
highest rank among the proposed algorithms in the 
POD, MGID, MIDNDS  , and RQ metrics.   

       The results of the diversity metrics for evaluating 
the performance of the proposed algorithms in solving 
MOSC problems are illustrated in Table XI. The 
average metrics for all problems is also provided in 
Table XII. From Table XII, it can be noted that the 
order of algorithms to obtain SNS is the same order of 
algorithms for obtaining SNSNDS  . This result indicates 
that the behavior of SNSNDS  is the same as the 
behavior of SNS.  With respect to the RDC metric, the 
order of the algorithms to obtain the best value of RDC 
is simulated annealing, followed by genetic algorithm, 
and then the tabu search. The RDC metric measures 
the ratio of MIDNDS and SNSNDS  taking the ratio of 
domination into account. Moreover, the values of  
SNSNDS  and MIDNDS are shown in Fig.1. It can be 
seen that the  SNSNDS  are smaller than MIDNDS. The 
relationship between SNS and SNSNDS  is shown in 
Fig. 2. It is clear that the SNS is greater than SNSNDS  . 
However, both metrics obtain the same result. 

 

 

 

Fig.1 Measures comparison for the average of proposed metric 

 

 

Fig.2 Measures comparison for the average of diversity metrics 

 

VI. CONCLUSION AND FUTURE WORK 

       In recent years, various metrics have been 
proposed to evaluate the performance of algorithms for 
multi-objective optimization problems. In this paper, 
seven new metrics for measuring the performance of 
multi-objective algorithms are proposed. The new 
metrics evaluate the features of multi-objective 
problems relating to the convergence and diversity of 
solutions. In addition, a new metric based on the 
probability of success is developed.  Furthermore, the 
relationship among the existing metrics and the 
proposed metrics is investigated. A computational 
experiment is conducted to test the applicability of the 
proposed metrics.  The results show the powerful 
usage of the proposed metrics for evaluating the 
performance of the algorithms. The proposed 
measures are also more suitable for the evaluation of 
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the algorithms performance. They improve and enrich 
the multi-criteria area.  

In this paper, we select the most common metrics that 
measure convergence and diversity in the multi-
objective supply chain area. For future work, other 
common metrics in different areas could be selected. 
In this study, the best solution obtained by the 
algorithm is selected based on the minimum distance 
from the ideal point. The probability of success metric 
may use other multi-criteria techniques for the 
selection of the best solution. This is an area for future 
research. 
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