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 Abstract—Fixed photovoltaic (PV) modules are 
able to convert only a fraction of the light energy 
from the sun into electric energy. A tracking 
system constantly adapts the angle of PV 
modules so that the irradiation angle and the light 
intensity remain constant and a maximum of 
electrical energy can be generated. This not only 
helps to exploit every minute of sunshine but also 
to make the best use of diffuse light all year 
round. Due to the changes of the conditions of 
operation, a tracking PV system shows signs of 
variation of its parameters. The aim of this 
research is to analyze the stability of a typical 
single axes PV system, affected by its parameter 
variations and improve its performance and 
robustness. This is achieved by the design of a 
specialized robust controller and the application 
of the method of the Advanced D-partitioning. 
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I.  INTRODUCTION  

For flat-panel photovoltaic systems, trackers are 
used to minimize the angle between the incoming 
sunlight and a photovoltaic panel. Depending on the 
type of tracking system, the panel is either aimed 
directly at the sun or the brightest area of a partly 
clouded sky. A control unit detects the spot in the sky 
with the most intense light and adjusts the PV module 
surface position to face it. A solar panel in a fixed 
orientation between the dawn and sunset extremes 
will see a motion of 75 degrees to either side and 
therefore will lose over 75% of the energy in the 
morning and evening [1]. Rotating the panels to the 
east and west can help recapture those losses. A 
tracker that only attempts to compensate for the east-
west movement of the sun is known as a single-axis 
tracker. Even on a completely cloudy day, the module 
surface is adjusted to face the point of the strongest 
irradiation. If a day starts off sunny with clouds moving 
from the west in the afternoon, the module surface will 
then move back slightly towards the east.  

A tracker that accounts for both the daily and 
seasonal motions is known as a dual-axis tracker. 
Generally speaking, the losses due to seasonal angle 
changes are complicated by changes in the length of 
the day, increasing collection in the summer in 

northern or southern latitudes. There is considerable 
argument within the industry whether the small 
difference in yearly collection between single and 
dual-axis trackers makes the added complexity of a 
two-axis tracker worthwhile. A recent review of actual 
production statistics suggested the difference was 
about 4% in total, which was far less than the added 
costs of the dual-axis systems [2], [3]. This compares 
unfavourably with the 24-32% improvement between 
a fixed-array and single-axis tracker. 

On daily basis changes in the ambient temperature 
may cause variation of some of the parameters of the 
photovoltaic systems [4]. In general, the gain of the 
tracking system is sensitive to temperature variation 
and this may initiate system vibrations due to 
oscillations in the system response. All other system 
parameters are considered approximately constant. 

  
      Control systems must have performance that is 
robust or insensitive to parameter variations. In the 
process of design of a robust control system, it is 
important to determine the regions of stability, 
corresponding to the variation of a specific system 
parameter [5]. The system will be analyzed with the 
method of the Advanced D-partitioning that was 
suggested by the author in 2005 [6], [7]. The method 
will explore the effects of the gain variations on 
system’s stability. The method employs the possibility 
to define regions of stability in the space of the 
system’s parameters.  
 
    One of the contributions of this research is to 
simplify and graphically determine the regions of 
stability for variation of a specific system parameter. 
Further to this analysis, the paper contributes in 
suggesting a strategy of design of a robust control 
system by introducing a robust controller that enforces 
a desired system performance. 
 

II. STRUCTURE AND ANALYSIS OF A SINGLE-AXIS 

TRACKING PV SYSTEM 

A Comparison between a PV fixed and PV single-
axis tracking system is demonstrated in Figure 1. It is 
seen that while a PV fixed tilted system delivers its 
maximum output power in the rate of 1Mw/m

2 
only at 

around 1:12 PM, a single-axes PV tracking system 
delivers maximum output power close to 1Mw/m

2 

during the time interval from 9:00 AM to 6:00 PM.  
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It is obvious that the PV single-axis tracking system 
utilizes significant power in the early mornings and 
late afternoons while the fixed PV solar panel system 
becomes unable to collect a reasonable proportion of 
the available energy [4], [7].  

 

Figure 1: Comparison between Fixed-tilt PV Systems and  
Single – Axes PV Tracker Systems Efficiency 

As seen from Figure 2, the PV panels of the single-
axes PV tracking system are also tilted up to proper 
degrees, necessary to maintain the best angle that is 
south or north toward the sun. The maximum annual 
energy production is achieved when the array is tilted 
at the specific latitude angle of the system location. 

 

 

Figure 2: Single–Axes PV Tracker System aiming at the 
Brightest Point in the Sky 

The tracking platforms can rotate the surface of the 
PV arrays along an axis with the help of a motor. The 
motor itself is connected to a control system that 
determines the position of the sun. Trackers can be 
passive or active. Passive systems tend to be moving 
slowly from the sunrise to the sunset position. Active 
trackers use light sensors that will point the PV 
modules to the brightest point in the sky, not 
necessarily the sun, especially when it is cloudy [5]. 

     The typical operation of a single-axes PV active 
tracking system [6], [7] can be described from the 
diagram shown in Figure 3. 
 

 

Figure 3: Single-Axes PV Active Tracking System 

      The tracking sensor is an error discriminator, 
consisting of two photovoltaic cells mounted behind a 
rectangular slit in a cylinder enclosure. The cells are 
mounted in such a way that when the sensor is 
pointed at the brightest point in the sky, a beam of 
light from the slit overlaps both cells.  
 

     The sensor itself is mounted at 90° to the surface 
of the PV panels.

 
The photovoltaic cells are used as 

current sources and are connected in opposite polarity 
to the input of an operational amplifier. Any difference 
in the currents of the two sells is sensed and amplified 
by the operational amplifier.  
 

     Since the current of each cell is proportional to the 
illumination on the cell, an error signal will be present 
at the output of the amplifier when the light from the 
slit is not precisely aligned on the cells. This error 
voltage when fed to the servo-amplifier will cause the 
motor to drive the system back into alignment. 

 

     The block diagram of the light tracking system is 

shown in Figure 4. The input variable r represents 

the reference angle of the bright light beam, while o 
matches the sensor axis. The difference between 

these two angles depicts the error . The objective of 

the light tracking system is to maintain the error  

between r  and  o near zero. The parameters of the 
system are chosen as follows: Sensor constant Ks = 
0.01 A/rad; OP constant RF = 1000; Servo amplifier 
gain K = Variable; DC motor gain constant Ki = 

0.0125 Nm/A; Armature resistance Ra = 6.25; 
Armature inductance La = 0.01H; Inertia J = 10

-6
 

kg.m
2
; Damping B = 0; Motor constant Kb = 

0.0125V/rad/sec; Motor speed n = 800. 

 
     Initially, the transfer function of the robust 
controller is assumed to be GC(s) = 1. Taking into 
account the system identification [5] and mathematical 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 4, April - 2020  

www.jmest.org 

JMESTN42353329 11694 

description of its components, the transfer function of 
the DC motor can be represented as:  
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K

e ibaaaa
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m
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

                  (1)  

 

     Considering the mathematical description of all the 
single-axes PV active tracking system components 
[8], [9] and substituting the system parameters values, 
the transfer function of the complete open-loop 
system is presented as follows: 
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     Then the transfer function of the complete closed-
loop system is presented as follows: 
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Figure 4: Block Diagram of the Single-Axes PV Active Light Tracking System  
 

The characteristic equation of the closed-loop 
system is determined as:  

                                     
0)005.01)(02.01()(  KssssG                             (4) 

 

The servo amplifier gain K is the variable system’s 
parameter and can be determined by applying the 
method of the Advanced D-partitioning [6], [10].  

 

The gain K can be obtained from the system’s 
characteristic equation as follows: 
 

0)()()(  sKQsPsG                                               (5) 

Where 
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     The D-partitioning curve of the variable gain K, is 

obtained by substituting s = j in (6) and varying the 

frequency within the range      [6], [7], [10]. 
Following the proposed MATLAB procedure, the 
corresponding D-partitioning curve in terms of the 
variable parameter K is shown in Figure 5: 

>> Gp = tf([1],[0.0001 0.025 1 0]) 

>> [den,num]=tfdata(-A1,'v') 

den =  0     0     0    -1 

num = 0.0001  0.0250  1.0000   0 

>> K=tf(num,den) 

>> dpartiton(K) 

  

     The D-partitioning regions are obtained graphically 
in the K-plane by allocating values of the frequency 

within the range     . 

 

Figure 5:  Advanced D-Partitioning Analysis in Terms of the 
Variable Servo Amplifier Gain K 

 

      The D-partitioning shown in Figure 5 determines 
three regions on the K-plane: D(0), D(1) and D(2). 
According to the method of the Advanced D-
Partitioning, only D(0) is the region of stability, since it 
is the one, being always on the left-hand side of the 
D-partitioning curve for a frequency variation from    

 to  [7], [8], [10]. The system is stable within the 

gain range 0  K  250 corresponding to the segment 
AB, being within the stable region. At point B(250, j0) 
the gain is K = 250 and the system becomes marginal. 
 
      The D-partitioning curve in terms of one variable 
parameter can be plotted in the complex plane within 

the frequency range     , facilitated by 
MATLAB the “nyquist” m-code. To avoid any 
misinterpretation of the Advanced D-Partitioning 
procedure, the “nyquist” m-code is modified into a 
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“dpartition” m-code with the aid of the MATLAB Editor 
and a proper formatting. The “dpartition” m-code will 
plot the curve of a specific system parameter in terms 

of the frequency variation from   to  exactly 
similar to the “nyquist” m-code, but it can work only on 
a computer where the new developed “dpartition” m-
code is included in the MATLAB program [11].  

     In order to benefit from the Advanced D-
Partitioning analysis shown in this research, the wider 
engineering community can still use the “nyquist” m-
code for the purpose of plotting the D-partitioning 
curve. The “nyquist” m-code will actually also plot the 

curve of K(j) within the frequency range     . 
 

    The results obtained from the analysis with the aid 
of the Advanced D-partitioning can be compared with 
the outcome from the system’s assessment with the 
aid of the Bode stability criterion [11], [12]. There is a 
close relationship between the results from the 
Advanced D-partitioning and the Bode stability 
criterion analysis. The system open-loop transfer 
function at servo amplifier gain K = 250 is presented 
at equation (9). Achieved by the code below and  
shown in Figure 6, the Bode diagrams of the open-
loop system confirm that the control system is 
marginal when the system’s gain reaches its critical 
value K = 250. At this state the system’s Gain Margin 
(G.M. =0) and the Phase Margin (P.M. = 0). 
 

sss
sG

OL 


23 025.00001.0

250
)(                                   (9) 

 
>> GoL = tf([250],[0.0001 0.025 1 0]) 

  

Transfer function: 
                      250 

-------------------------- 
0.0001 s^3 + 0.025 s^2 + s 

  

>> bode(GoL) 

                 
  

Figure 6: Confirmation of the Marginal Gain of Stability with 
the Aid of the Bode Stability Criterion [GM = 0, PM = 0] 

     The Advanced D-partitioning results can be 
compared also with the outcome the application of the 
Nyquist stability criterion [11], [12]. Again, there is a 
close relationship between the results of the two 
different analysis methods.  

      Achieved by the code shown below and presented 
in Figure 7, the Nyquist diagram of the open-loop 
system crosses the negative part of the real axes 
exactly at a point (-1, j0). This confirms the marginal 
state of the control system when the servo amplifier 
gain is at its critical value K = 250. 
 

>> GoL = tf([250],[0.0001 0.025 1 0]) 
  

Transfer function: 
                      250 

-------------------------- 
0.0001 s^3 + 0.025 s^2 + s 

  

>> nyquist(GoL) 

 

Figure 7: Confirmation of the Marginal Gain of Stability with 
the Aid of the Nyquist Stability Criterion (-1, j0) 

 

     The step response of the system is examined for 
robustness, considering a number of gain values 

within the gain range 0  K  250 and the results are 
shown in Fig. 7.  
 

     It is seen that the step response of the closed-loop 
system varies considerably for different values of the 
gain K while its steady-state error is ess = 0.  
 

 

Figure 8:   Responses of the System with a Variable Gain  
 

      Higher values of the servo amplifier gain K may 
cause considerable oscillation, instability and 
destruction of the control system.  
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III. DESIGN OF A ROBUST CONTROLLER AND 

ACHIEVING THE BEST PV SYSTEM’S PERFORMANCE 

       A control system is robust when maintains certain 
properties like stability and performance in spite of 
external disturbances, noise or parameter variations. 
   
      The “Integral of Time multiplied by the Absolute 
value of Error” (ITAE) [6], [8], [14] reaches a minimum 

value for a relative damping ratio  = 0.707. One of 
the solutions to meet the ITAE criterion is to 
implement a robust controller consisting of a series 
and a forward stage. The controller design employs a 
two-step zero-pole cancelation [9], [14] that enforces a 
desired system damping, stability and time response.  
 
     The design strategy for constructing the series 
stage of the controller is to place its two zeros near 
the desired closed-loop poles, that satisfy the 

condition  = 0.707.  
 

    The closed-loop transfer function shown in equation 
(1) can be also presented as follows: 
  

)(sG
PK Ksss

K

1000010000250

10000
23 

                          (10) 

 

    By applying the ITAE criterion, the optimal value of 
the closed-loop system gain K, corresponding to the 
damping ratio ζ = 0,707, is determined from the 
following MATLAB procedure and is presented 
graphically in Figure 8: 
 

K=[15:0.01:25]; 

                >> for n=1:length(K)  

                  G_array(:,:,n)=tf([10000*K(n)],[1 250 10000 10000*K(n)]); 

        end 

                 >> [y,z]=damp(G_array); 

                   >> plot(K,z(1,:)) 

The relationship between the Damping Ratio  and 
the gain K is presented graphically in Figure 9: 
 

 

Figure 9: Optimal Gain Value Corresponding to 
 Damping Ratio ζ=0,707 

  

      As shown from Fig. 9, if the system’s gain is tuned 
to K = 19.82, the relative damping ratio becomes        

 = 0.707. Then the transfer function of the closed-
loop system is modified to: 
 

19820010000250

198200
23 


sss

GP
                               (11) 

 

      This condition corresponds to the desired closed-

loop poles 21.9  j21.9, which are determined as 
follows: 
 

 >> GP=tf([198200],[1 250 10000 198000]) 

      Transfer function: 

                     198200 
           -------------------------------- 
          s^3 + 250 s^2 + 10000 s + 198000 

    >> pole(GP) 

        ans = 

        1.0e+002 * 

        -2.0615           

      -0.2192 + 0.2190i 

      -0.2192 - 0.2190i 

>> damp(GP) 

                   Eigenvalue                      Damping      Freq. (rad/s)   

                    -2.19e+001 + 2.19e+001i    7.07e-001      3.10e+001     

     -2.19e+001 - 2.19e+001i     7.07e-001      3.10e+001     

 -2.06e+002                          1.00e+000     2.06e+002    

                                                      
      The two zeros of the series controller stage can be 

placed at 22  j22.  Thus, the transfer function of the 
series robust controller Gs(s) is presented as:                                       
 

968

96844

68.9

)2222)(2222(
)(

2



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
ssjsjs

sGS
  (12) 

 

      To realize physically the controller GS (s), two 

controller poles, at 1250, j0, are added so that their 
effect on the system performance is negligible [6], 
[11].   
 
      However, to simplify the analysis, the transfer 
function of the open-loop system after applying the 
series controller will still be determined from the 
equations (3) and (12) as follows:     
 

)005.01)(02.01(
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)(

2

)()(
sss

ssK
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      The unity feedback closed-loop transfer function 
becomes: 
 

)96844(1.0)005.01)(02.01(

)96844(001.0
)(

2

2






ssKsss

ssK
sGCL

   (14) 

 

      As seen from the equations (13) and (14), the 
zeros are in the close vicinity to the poles of the 
closed-loop transfer function and will cancel them. To 
avoid this problem, a forward controller GF (s) [12] is 
added to the closed-loop system.  
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      The poles of GF(s) should cancel the zeros of the 
closed-loop transfer function GCL(s). The transfer 
function of the forward controller is designed as: 
 

96844

968
)(

2
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ss

sGF
                                                   (15) 

 

      The complete control system, incorporating the 
two-stage robust controller is shown in Fig. 10. 

 

 Figure 10: Robust Controller Incorporated in the System  
 

      From the block diagram in Figure 10, the transfer 

function of the total compensated control system is: 
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      The D-partitioning in terms of the variable gain K 
can be determined from the characteristic equation 
based on the total system GT (s) and following the 
procedure:  
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>> K = tf([-0.0001 -0.025 -1 0],[0.001 0.044 2]) 

>> dpartiton(K) 
 

 
 

Figure 11: D-Partitioning Including the Robust Controller 
 

        As seen from Figure 11, the D-partitioning 
determines four regions of the K-plane: D(0), D(1), 
D(2) and D(3). Only D(0) is the region of stability, 
since it is located always on the left-hand side of the 
D-partitioning curve for a frequency variation from 
  to  [12], [13], [15]. From Figure 10, it is seen 

that the system will be stable for any values of K > 0, 
since any such value of the gain is located in D(0). 

     The compensated system is being examined for 
robustness in the time-domain, substituting a number 
of values for the gain K = 100, 200 and 500 in 
equation (16):  
                       

36.1988.1045.00001.0

100

)96844(02.0)005.01)(02.01(

100

23

2100
1 )(












sss

sssss
K

T sG

(18)   

       

4.482.3075.00001.0

200

)96844(05.0)005.01)(02.01(

200

23

2200
2 )(












sss

sssss
K

T sG

(19) 

   

8.964.5125.00001.0

500

)96844(1.0)005.01)(02.01(

500

23

2500
3 )(












sss

sssss
K

T sG

 (20) 

 

      Finally the step responses of the robust control 
system at different gain values are determined by the 
following procedure and are presented in Figure 12: 
 

>> GT1 = tf([100],[0.0001 0.045 1.88 19.36]) 

>> GT2 = tf([200],[0.0001 0.075 3.2 48.4]) 

>> GT3 = tf([500],[0.0001 0.125 5.4 96.8]) 

>> step(GT1,GT2,GT3) 

 

 
Figure 12:  Step Responses of the Robust System for Gains 

 (K = 100, 200, 500) 

 

      It is seen from Fig. 12 that due to the effect of the 

applied robust controller, the compensated system 

becomes quite insensitive to even larger variations of 

the system’s gain K (K = 100, 200 and 500).  

 

     If the values K = 20, 50 and 100 are applied, the 

step response curves are close coincide with each 

other. It is also observed that the robust controller 

introduces a negligible steady-state error ess  0. 
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IV. CONCLUSION 

 

     The PV light tracking system may experience poor 
performance or become unstable due to variation of 
system’s parameters. Specifically the system’s gain is 
subjected to uncertainty due to ambient temperature 
variations.  
 

     The design strategy of the robust controller is 
based on the application of the ITAE criterion. A two-
step zero-pole cancelation is introduced, enforcing a 
desired system damping, stability and time response.  
 
      The light tracking system is analyzed before and 
after the application of the robust controller with the 
aid of the method of the Advanced D-partitioning. This 
method for system stability analysis, suggested by the 
author in 2005, proves to be very efficient for 
graphical determination of the regions of stability in 
terms of system’s uncertain or variable parameters.  
 
      The system robustness is examined after applying 
the robust controller and the obtained results 
demonstrate its insensitivity in terms of gain 
variations. The robust controller efficiency is also 
successfully tested for the cases of time constants 
variations or even for simultaneous variation of 
several different system parameters. As a result of its 
application the control system becomes insensitive to 
any parameter uncertainties within specific limits.  
 
     After applying the robust controller, the robust PV 
light tracking system has no oscillations and becomes 
insensitive to system’s parameter changes. This 
proves to be of high importance for the system 
operation, since due to clouds or other atmospheric 
effects the direction of the brightest light may rapidly 
change.  
 
     With the robust controller, the system avoids stress 
and vibrations and is smoothly redirecting the PV 
panel to its new position. 
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