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 Abstract— A system of a mixture of Helium-3 

and Helium-4 was considered in a weakly 
interacting system in this study. The partition 
function with duo-fermion spin was developed to 
bring out the superfluid properties of the system. 
The partition function was used to study and 
analyze the thermodynamic properties such as 
internal energy, specific heat and entropy of the 
system by singling out the duo-fermion spin 
component. It was found out that the internal 
energy and entropy increases with temperature. 
At high temperatures, the internal energy and 
entropy remains constant due to particle 
saturation. The specific heat increases 
exponentially with temperature and attains a peak 

value of 𝟓. 𝟎𝒙𝟏𝟎𝟏𝟗 𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏 𝑽𝒐𝒍𝒕 𝒑𝒆𝒓 𝒎𝒐𝒍𝒆 𝑲𝒆𝒍𝒗𝒊𝒏 
at 37 Kelvins. 

Keywords—Micro canonical ensemble, Helium-
3, Helium-4, Partition Function, Thermodynamic 
Properties and Duo-spin component 

1.  INTRODUCTION  

A micro canonical ensemble represents a 
collection of configurations of isolated systems that 
have reached thermal equilibrium. A system is 
isolated from its environment if it does not exchange 
either particles or energy with its surroundings. The 
properties of such a system like volume, internal 
energy and number of particles are the same for all 
configurations. In this study a configuration of a 
mixture of Helium-3 and Helium-4 isotope is studied 
considering the role of the duo-fermion spin 
degeneracy. The partition function and internal energy 
were studied by obtaining the most probable 
distribution of boson (Helium-4) – fermion (Helium-3) 
mixture with duo- fermion spin degeneracy. 

First attempt to generalize quantum Bose and 
Fermion statistics for a mixture of bosons and 
fermions was made by Gentile [1]. Gentile proposed 

statistics in which up to N particles (𝑁 ≫ 1 ) were 
allowed to occupy a single quantum state instead of 
just one particle for Fermi case due to Pauli’s 

exclusion principle. However, Gentile’s approach was 
found to be too much generalization and violated the 
conventionally accepted Pauli’s exclusion principle. 
Furthermore his model did not distinguish which 
particles were fermions and which ones were bosons. 
However, his work laid a foundation that statistical 
mechanics of a mixture of bosons and fermions can 
be worked out. 

The next attempt was of Medvedev [2], in his work 
he proposed a new class of identical particles which 
may exhibit both Bose and Fermi statistics with 
respective probabilities of 𝑝𝑏

′  and 𝑝𝑓
′ . The model 

admits only Bose –Einstein and Fermi-Dirac statics as 
existing. He assumed that a particle is neither a pure 
boson nor a pure fermion. He let another particle 
which interacts with the first one, play the role of an 
external observer. During the interaction it performs a 
measurement at the first particle and identifies it either 
a boson or a fermion. According to the result of this 
measurement it interacts with the first particle as if the 
last particle is a fermion or a boson, respectively. The 
first particle is an observer for the second particle and 
so the process is symmetric. Note that (𝑝𝑏

′ + 𝑝𝑓
′ ) is not 

necessarily equal to one and if not, it means that 
second particle (observer) does not detect the first 
particle. The probability of this is (1 − 𝑝𝑏

′ − 𝑝𝑓
′ ). The 

statistical uncertainty introduced here may be either 
the intrinsic property of a particle itself or the 
experimental uncertainty of measurement process. 

Another attempt is the ‘statistical independence 
model’ of Landau and Lifshitz [3] in which two weakly 
interacting subsystems (bosons and fermions) are 
together regarded as one composite system and the 
subsystems are assumed to be quasi-closed. The 
statistical distribution for such a mixture is the product 
of the individual probabilities for two subsystems, one 
corresponding to bosons and the other to fermions. 
With these assumptions, the statistical independence 
model will only hold for and ideal gas assembly of 
bosons and fermions. In reality such an assembly 
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does not exist and hence this model cannot be used 
for real mixtures of bosons and fermions.  

Chan et.al. [4] Studied on disorder on superfluid 

3𝐻𝑒 - 4𝐻𝑒  mixtures. Their studies related more of an 
ideal system rather than a real system. 

Khanna et.al. [5] They developed a statistical 
distribution model for a mixture that was dominated by 
bosons. The partition function developed worked out 

well for liquid 3𝐻𝑒-4𝐻𝑒 mixture. 

Ayodo et.al. [6] Developed a statistical distribution 
model of a mixture that was dominated by fermions. 
They proposed that there exists a pair interaction 
between the bosons and fermions and that the 
concentrations of the bosons and fermions are 
different. Invoking the pair interaction in a given state 
of equilibrium, some fermions will be left unpaired. 
The value of occupation number of fermions in a given 
state will not exceed, rather will be much less than the 
degeneracy of the state so that Pauli’s exclusion 
principle is not violated. A fermion concentration of 0.7 
was used in this model and thermodynamic properties 
of 3𝐻𝑒 - 4𝐻𝑒 mixture were studied. 

Lusamamba et.al. [7] Studied internal energy of 
grand canonical ensemble of a mixture of Helium 
isotopes with duo-fermion spin degeneracy. They 
found out that at low temperatures of below 5K the 
internal energy of the system approaches zero but it 
increases to a maximum value of 0.0025eV. This 
results agrees earlier study by Sakwa et.al. [8]. 

Lusamamba et.al. [10] Studied the effect of duo 
fermion spin degeneracy on the specific heat and 

entropy of a mixture of 3𝐻𝑒  - 4𝐻𝑒  isotopes and 
obtained a peak value of 0.008eV/mol.K at 35K for 
specific heat. 

In this study we seek to study the effect of duo-
fermion spin degeneracy component on a micro 
canonical ensemble and hence develop its partition 
function and study its internal energy, specific heat 
and entropy. 

2.0 THEORETICAL DERIVATIONS 

Consider a micro canonical assembly of N particle 

in which there are 𝑁𝑏  bosons and 𝑁𝑓 fermions such 

that:- 

𝑁 = 𝑁𝑏 + 𝑁𝑓      (1) 

Let 𝜀1, 𝜀2, 𝜀3. 𝜀𝑗 .  be the energy states of the 

assembly and in the statistical equilibrium, the number 
of particles assigned to this energy levels are 

𝑛1, 𝑛2, 𝑛3, . 𝑛𝑗,.  respectively such that the number 𝑛𝑗 

must satisfy the conditions requiring the conservation 

of particles, 𝑁, and conservation of energy, 𝐸 , such 
that:- 

∑ 𝑛𝑗
∞
𝑗=1 = 𝑁 and ∑ 𝑛𝑗𝜀𝑗 = 𝐸∞

𝑗=1    (2) 

and that,  

𝑛𝑗𝑏𝑓 = 𝑛𝑗𝑏 + 𝑛𝑗𝑓     (3) 

Where 𝑛𝑗𝑏 is number of bosons in the j-th energy 

level and 𝑛𝑗𝑓 is number of fermions in the j-th energy 

level. 

Let 𝜔𝑗 be the number of states in the j-th energy 

level, that is, 𝜔𝑗  is the degeneracy of the j-th level. 

Then the number of ways 𝑃𝑗𝑏 in which 𝑛𝑗𝑏 bosons can 

be assigned to 𝜔𝑗  state in the j-th level is given by 

equation (4) 

𝑃𝑗𝑏 = (𝜔𝑗)
𝑛𝑗𝑏      (4) 

Similarly, if for fermions we allow only two particles 
to be put in a compartment, then the number of ways 

𝑃𝑗𝑓 in which 𝑛𝑗𝑓 fermions can be assigned to 𝜔𝑗 states 

in the j-th energy level is given by equation (5) 

𝑃𝑗𝑓 =
𝜔𝑗!

𝑛𝑗𝑓!(𝜔𝑗−𝑛𝑗𝑓)!
     (5) 

The probabilities from the above equations (4) and 
(5) confirms that bosons and fermion occupancy in the 
energy level is due to pair interaction. Occupancy of 
fermions for any energy level is independent of boson 

occupancy of same energy level i.e. 𝑛𝑗𝑏 > 𝑛𝑗𝑓  hence 

the above probability are multiplicative. The combined 

number of ways of assigning 𝑛𝑗𝑏  bosons and 𝑛𝑗𝑓 

fermions in an energy level is given by equation (6) 

𝑃𝑗𝑏𝑓 =
(2𝑗)

𝑛𝑗𝑏 .(2𝑗)!

𝑛𝑗𝑓!(2−𝑛𝑗𝑓)!(𝑛𝑗𝑏−𝑛𝑗𝑓)!
    (6) 

Where, 2 is the spin degeneracy of a binary 
system of helium isotopes particles. Dividing through 

by 𝑛𝑗𝑓! , in equation (6), eliminates the permutations 

among identical pairs. On the other hand, dividing 

through equation (6) by (𝑛𝑗𝑏 − 𝑛𝑗𝑓)! , eliminates all 

identical complexions of unpaired bosons. The 
number of ways of distributing these particles among 
the independent energy levels (𝑗 = 1,2,3. ) is given by 
the product of such expressions in equation (7) 

𝐶𝑏𝑓 = ∏ 𝑃𝑗𝑏𝑓
∞
𝑗=1 = ∏ [

(2𝑗)
𝑛𝑗𝑏 .(2𝑗)!

𝑛𝑗𝑓!(2−𝑛𝑗𝑓)!(𝑛𝑗𝑏−𝑛𝑗𝑓)!
]∞

𝑗=1   (7) 

Equation (7) is used to calculate the most probable 
distribution of particles in a boson – fermion mixture 
with duo-fermion spin degeneracy.  

2.1 MOST PROBABLE DISTRIBUTION OF 
PARTICLES FOR THE ENSEMBLE 

The aim is to calculate the values of to 𝑛𝑗𝑏 and 𝑛𝑗𝑓, 

the statistical count 𝐶𝑏𝑓 is maximum if we allow  𝐶𝑏𝑓 to 

vary with 𝑛𝑗𝑏 and 𝑛𝑗𝑓 and set the result equal to zero 

while N and E are fixed. The distribution numbers and 
corresponding energies must satisfy the following 
conditions, 

∑ 𝑛𝑗𝑏
∞
𝑗=1 = 𝑁𝑏 and ∑ 𝑛𝑗𝑓

∞
𝑗=1 = 𝑁𝑓   (8) 

∑ 𝑛𝑗𝑏𝜀𝑗 = 𝐸𝑏
∞
𝑗=1  and ∑ 𝑛𝑗𝑓𝜀𝑗 = 𝐸𝑓

∞
𝑗=1    (9)  

 Where 𝑁𝑏 and 𝑁𝑓 are total number of bosons and 

fermions in the ensemble such that:-  

 𝑁 = 𝑁𝑏 + 𝑁𝑓     (10)  
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Similarly the total energy E of the ensemble is 
given by:-  

𝐸 = 𝐸𝑏 + 𝐸𝑓      (11) 

Where 𝐸𝑏  and 𝐸𝑓  are internal energies of the 

bosons and fermions respectively. 

For maximum 𝐶𝑏𝑓 we get:- 

𝜕 ln 𝐶𝑏𝑓 =

∑ [
𝜕

𝜕𝑛𝑗𝑏
(ln 𝐶𝑏𝑓)𝑑𝑛𝑗𝑏]

∞
𝑗=1 + ∑ [

𝜕

𝜕𝑛𝑗𝑓
(ln 𝐶𝑏𝑓)𝑑𝑛𝑗𝑓]

∞
𝑗=1 = 0 

      (12) 

Where 𝜕𝑛𝑗𝑏 and 𝜕𝑛𝑗𝑓 are allowable changes in the 

distribution number from the required distribution, they 
should continue to satisfy the equations (8) and (9). 

Since N and E are constant, the variation in 𝑛𝑗𝑏 

and 𝑛𝑗𝑓 must satisfy equations (12) and (13). 

∑ 𝑑𝑛𝑗𝑏 +∞
𝑗=1 ∑ 𝑑𝑛𝑗𝑓

∞
𝑗=1 = 0    (13) 

∑ 𝜀𝑗𝑑𝑛𝑗𝑏
∞
𝑗=1 + ∑ 𝜀𝑗𝑑𝑛𝑗𝑓

∞
𝑗=1 = 0    (14) 

Combining equations (12), (13) and (14) by 

Lagrange’s undetermined multipliers denoted by 𝛼 
and 𝛽. Multiplying 1

st
 and 2

nd
 terms of equation (13) by 

−𝛼𝑏  and −𝛼𝑓  respectively, equation (14) by −𝛽  and 

adding to equation (11) gives equation (15), 

∑ −𝛼𝑏𝑑𝑛𝑗𝑏
∞
𝑗=1 + ∑ −𝛽𝜀𝑗𝑑𝑛𝑗𝑏

∞
𝑗=1 +

∑
𝜕

𝜕𝑛𝑗𝑏
(ln 𝐶𝑏𝑓)𝑑𝑛𝑗𝑏

∞
𝑗=1 = 0    (15) 

Rearranging equation (15) yields equation (16) 

∑ {
𝜕

𝜕𝑛𝑗𝑏
(ln 𝐶𝑏𝑓) − (𝛼𝑏 + 𝛽𝜀𝑗)} 𝑑𝑛𝑗𝑏 = 0∞

𝑗=1   (16) 

In the same case, multiplying 1
st
 and 2

nd
 terms of 

equation (13) by −𝛼𝑏 and −𝛼𝑓  respectively, equation 

(14) by −𝛽  and adding to equation (15), we get 
equation (17), 

∑ {
𝜕

𝜕𝑛𝑗𝑓
(ln 𝐶𝑏𝑓) − (𝛼𝑓 + 𝛽𝜀𝑗)} 𝑑𝑛𝑗𝑓 = 0∞

𝑗=1   (17) 

Adding equation (16) to equation (17), yields 
equation (18), 

∑ {
𝜕

𝜕𝑛𝑗𝑏
(ln 𝐶𝑏𝑓) − (𝛼𝑏 + 𝛽𝜀𝑗)} 𝑑𝑛𝑗𝑏 +∞

𝑗=1

∑ {
𝜕

𝜕𝑛𝑗𝑓
(ln 𝐶𝑏𝑓) − (𝛼𝑓 + 𝛽𝜀𝑗)} 𝑑𝑛𝑗𝑓 = 0∞

𝑗=1    (18) 

In equation (18), we let the coefficients of 𝑑𝑛𝑗𝑏 and 

𝑑𝑛𝑗𝑓 to tend to zero; since 𝑑𝑛𝑗𝑏 and 𝑑𝑛𝑗𝑓 are allowable 

variables hence equation (18) can be written as, 

𝜕

𝜕𝑛𝑗𝑏
(ln 𝐶𝑏𝑓) − (𝛼𝑏 + 𝛽𝜀𝑗) = 0  and  

𝜕

𝜕𝑛𝑗𝑓
(ln 𝐶𝑏𝑓) −

(𝛼𝑓 + 𝛽𝜀𝑗) = 0      (19)  

Since ln (
2

𝑛𝑗𝑏−𝑛𝑗𝑓
) = (𝛼𝑏 + 𝛽𝜀𝑗)  or 

2

𝑛𝑗𝑏+𝑛𝑗𝑓
=

𝑒𝑥𝑝(𝛼𝑏 + 𝛽𝜀𝑗)      (20) 

Then making 𝑛𝑗𝑏 the subject of equation (20) yields 

equation(21), 

𝑛𝑗𝑏 =
2+𝑛𝑗𝑓𝑒𝑥𝑝(𝛼𝑏+𝛽𝜀𝑗)

𝑒𝑥𝑝(𝛼𝑏+𝛽𝜀𝑗)
=

2

𝑒𝑥𝑝(𝛼𝑏+𝛽𝜀𝑗)
+ 𝑛𝑗𝑓  (21) 

Substituting for 𝛽 =
1

𝐾𝑇
 and  𝛼𝑏 =

𝜇𝑏

𝐾𝑇
, in equation 

(21) we get equation (22), 

𝑛𝑗𝑏 =
2

𝑒𝑥𝑝(
−𝜇𝑏+𝜀𝑗

𝐾𝑇
)
+ 𝑛𝑗𝑓 = 2. 𝑒𝑥𝑝 [

𝜇𝑏−𝜀𝑗

𝐾𝑇
] + 𝑛𝑗𝑓  (22) 

Similarly 

𝜕

𝜕𝑛𝑖𝑓
(ln 𝐶𝑏𝑓) − (𝛼𝑓 + 𝛽𝜀𝑗)

= ln (
(2 − 𝑛𝑗𝑓)(𝑛𝑗𝑏 − 𝑛𝑗𝑓)

𝑛𝑗𝑓
)

− (𝛼𝑓 + 𝛽𝜀𝑗) = 0 

Or 

[
(2−𝑛𝑗𝑓)(𝑛𝑗𝑏−𝑛𝑗𝑓)

𝑛𝑗𝑓
] = 𝑒𝑥𝑝(𝛼𝑓 + 𝛽𝜀𝑗)   (23) 

Multiplying equation (23) on both sides by 𝑛𝑗𝑓, we 

get equation (24), 

(2 − 𝑛𝑗𝑓)(𝑛𝑗𝑏 − 𝑛𝑗𝑓) = 𝑛𝑗𝑓. 𝑒𝑥𝑝(𝛼𝑓 + 𝛽𝜀𝑗)  (24) 

Substituting  𝑛𝑗𝑏  from equation (22) into equation 

(24), we get equation (25) 

(2 − 𝑛𝑗𝑓) (
2

𝑒𝑥𝑝(𝛼𝑏+𝛽𝜀𝑗)
) = 𝑛𝑗𝑓. 𝑒𝑥𝑝(𝛼𝑓 + 𝛽𝜀𝑗)  (25) 

Multiplying both sides with 𝑒𝑥𝑝(𝛼𝑏 + 𝛽𝜀𝑗)  in 

equation (25), we obtain equation (26) 

𝑛𝑗𝑓 =
4

2+𝑒𝑥𝑝(𝛼𝑓+𝛽𝜀𝑗).𝑒𝑥𝑝(𝛼𝑏+𝛽𝜀𝑗)
    (26) 

Substituting 𝛼𝑓 =
𝜇𝑓

𝐾𝐵𝑇
 , 𝛽 =

1

𝐾𝐵𝑇
 and 𝛼𝑏 = −

𝜇𝑏

𝐾𝐵𝑇
 in 

equation (26) obtain equation (27); 

𝑛𝑗𝑓 =
4

2+𝑒𝑥𝑝[
−𝜇𝑓+𝜀𝑗−𝜇𝑏+𝜀𝑗

𝐾𝐵𝑇
]
 =

2

1+
1

2
𝑒𝑥𝑝[

2𝜀𝑗−𝜇𝑓+−𝜇𝑏

𝐾𝐵𝑇
]
.  (27) 

Equation (27) gives the expression for the 
distribution particles for a fermion (helium-3 particles) 
which have a spin degeneracy of two. 

From equation (27), letting the exponential term to 
be equal to zero, we obtain equation (28). 

𝑛𝑗𝑓 =
2

1+
1

2
𝑋0

= 2     (28) 

Equation (28) gives a result of 2, this tells us that 
the maximum number of fermions that occupy a given 
energy level is 2 as long as they have opposite spin. 
This satisfies the Pauli’s exclusion principle. 

Similarly, substitute 𝑛𝑗𝑓  in equation (22), we get 

equation (29); 

𝑛𝑗𝑏 = 2 [𝑒𝑥𝑝 (
𝜇𝑏−𝜀𝑗

𝐾𝐵𝑇
)] + 𝑛𝑗𝑓 = 2. 𝑒𝑥𝑝 (

𝜇𝑏−𝜀𝑗

𝐾𝐵𝑇
) +

4 [2 + 𝑒𝑥𝑝 (
2𝜀𝑗−𝜇𝑏−𝜇𝑓

𝐾𝐵𝑇
)]

−1

    (29) 
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Equation (29) gives the most probable distribution 
particles for bosons (Helium-4) in the mixture. Where 
𝑇  is the absolute temperature, 𝐾𝐵  is the Boltzmann 

constant, 𝜇𝑓 if the chemical potential of fermions and 

𝜇𝑏 is the chemical potential of bosons 

Substituting equation (27) and equation (29) into 
equation (3), we get equation (30); 

𝑛𝑗𝑏𝑓 = 2. 𝑒𝑥𝑝 (
𝜇𝑏−𝜀𝑗

𝐾𝐵𝑇
) + 4 [2 + 𝑒𝑥𝑝 (

2𝜀𝑗−𝜇𝑏−𝜇𝑓

𝐾𝐵𝑇
)]

−1

+

4 [2 + 𝑒𝑥𝑝 [
2𝜀𝑗−𝜇𝑓+−𝜇𝑏

𝐾𝐵𝑇
]]

−1

or 

𝑛𝑗𝑏𝑓 =

8 [2 + 𝑒𝑥𝑝 (
2𝜀𝑗−𝜇𝑏−𝜇𝑓

𝐾𝐵𝑇
)]

−1

+ 2. 𝑒𝑥𝑝 (
𝜇𝑏−𝜀𝑗

𝐾𝐵𝑇
) (30) 

Equation (30) gives an expression for the most 
probable distribution for a mixture of bosons and 
fermions with a duo-fermion spin degeneracy. 

2.2 PARTITION FUNCTION 

The partition function (Q) of a micro canonical 
ensemble where 𝑁𝑏  and 𝑁𝑓 are variables can be 

derived from the standard equation (31) [3, 9]. 

𝑄 = 𝑁𝑒𝑥𝑝 (
−𝜇𝑓−𝜇𝑏

𝑘𝑇
)     (31)  

Substituting equation (30) in the equation (31) and 
simplifying it we get equation (32); 

𝑄 = 2 [4 + 2𝑒𝑥𝑝 [
(𝜇𝑏−𝜇𝑓)

(𝑘.𝑇)
] + 𝑒𝑥𝑝 [2.

(−𝜇𝑓+𝜀𝑗)

(𝑘.𝑇)
]] ×

𝑒𝑥𝑝[
−(𝜇𝑓+𝜇𝑏)

(𝑘.𝑇)
]

[2+𝑒𝑥𝑝[
2𝜀𝑗−𝜇𝑏−𝜇𝑓

𝑘.𝑇
]]

      (32) 

Equation (32) gives the partition function of a micro 
canonical ensemble of a mixture of helium isotopes 
where helium-3 particles have a degeneracy of 2. 
From equation (32) it ought to be understood that 
partition function consists of two brackets; the first 
bracket consists of the difference of the chemical 
potential of bosons and fermions and a factor 2 which 
is due to interaction of bosons and fermions in the 

mixture. The second bracket comprises of 𝜇𝑓  which 

implies that fermions are not affected by the 
distribution of the bosons in the mixture because in 
whichever way the bosons are arranged or distributed, 
there should only be two fermions (spin up and spin 
down) 

The partition function as a function of temperature 
is given by equation (33); 

𝑄(𝑇) = {2 [4 + 2𝑒𝑥𝑝 [
(𝜇𝑏−𝜇𝑓)

(𝑘.𝑇)
] + 𝑒𝑥𝑝 [2.

(−𝜇𝑓+𝜀𝑗)

(𝑘.𝑇)
]] ×

𝑒𝑥𝑝[
−(𝜇𝑓+𝜇𝑏)

(𝑘.𝑇)
]

[2+𝑒𝑥𝑝[
2𝜀𝑗−𝜇𝑏−𝜇𝑓

𝑘.𝑇
]]

}     (33)  

2.3  INTERNAL ENERGY 

 For a micro canonical ensemble, internal energy 𝐸 
is given by the standard equation (34)  

𝐸 = 𝑁𝑘𝑇2 (
𝜕𝑙𝑛𝑄

𝜕𝑇
)

𝑉
     (34) 

Substituting equation (33) in equation (34) of 
internal energy and simplifying, it yields equation (35). 
Equation (35) is an expression of internal energy of a 
micro canonical ensemble as a function of 
temperature T. 

𝐸 =

𝑁𝑘𝑇2

[
 
 
 
 
 
[−4×

(𝜇𝑏−𝜇𝑓)

(𝑘𝑇2)
.𝑒𝑥𝑝[

(𝜇𝑏−𝜇𝑓)

(𝑘𝑇)
]−8

(−𝜇𝑓+𝜀𝑗)

(𝑘𝑇2)
.𝑒𝑥𝑝[2.

(−𝜇𝑓+𝜀𝑗)

(𝑘𝑇)
]]

[8+4.𝑒𝑥𝑝[
(𝜇𝑏−𝜇𝑓)

(𝑘𝑇)
]+4𝑒𝑥𝑝[2.

(−𝜇𝑓+𝜀𝑗)

(𝑘𝑇)
]]

×

𝑒𝑥𝑝[
−(𝜇𝑓+𝜇𝑏)

(𝑘.𝑇)
]

[2+𝑒𝑥𝑝[
2𝜀𝑗−𝜇𝑏−𝜇𝑓

𝑘.𝑇
]]

−

𝑙𝑛 [8 + 4𝑒𝑥𝑝 [
(𝜇𝑏−𝜇𝑓)

(𝑘𝑇)
] +

4𝑒𝑥𝑝 [2.
(−𝜇𝑓+𝜀𝑗)

(𝑘𝑇)
]] .

(𝜇𝑓−𝜇𝑏)

(𝑘𝑇2)
.

𝑒𝑥𝑝[
(−𝜇𝑓−𝜇𝑏)

(𝑘𝑇)
]

[2+𝑒𝑥𝑝[
2𝜀𝑗−𝜇𝑏−𝜇𝑓

𝑘𝑇
]]

+

𝑙𝑛 [8 + 4𝑒𝑥𝑝 [
(𝜇𝑏−𝜇𝑓)

(𝑘𝑇)
] +

4𝑒𝑥𝑝 [2.
(−𝜇𝑓+𝜀𝑗)

(𝑘𝑇)
]] .

𝑒𝑥𝑝[
(−𝜇𝑓−𝜇𝑏)

(𝑘𝑇)
]

[2+𝑒𝑥𝑝[
(2𝜀𝑗−𝜇𝑏−𝜇𝑓)

(𝑘𝑇)
]]

.
(2𝜀𝑗−𝜇𝑏−𝜇𝑓)

(𝑘𝑇2)
𝑒𝑥𝑝 [

(2𝜀𝑗−𝜇𝑏−𝜇𝑓)

(𝑘𝑇)
]

]
 
 
 
 
 

 

. (35) 

2.4  SPECIFIC HEAT 

For a micro canonical ensemble, the specific heat 
𝐶𝑣 is given by the standard equation (36) [3, 9] 

𝐶𝑉 = 2𝑁𝑘𝑇 (
𝜕𝑙𝑛(𝑄)

𝜕𝑇
)

𝑉
+ 𝑁𝑘𝑇2 (

𝜕2𝑙𝑛𝑄

𝜕𝑇2 )
𝑉
   (36) 

Substituting equation (33) in equation (36) of 
specific heat and simplifying, it yields equation (37). 
Equation (37) is an expression of specific heat of a 
micro canonical ensemble as a function of 
temperature T. 
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𝐶𝑉(𝑇) = 2𝑁𝑘𝑇

(

 
 
 
 
 
 
 

𝜕𝑙𝑛

(

 
 

2 [4 + 2𝑒𝑥𝑝 [
(𝜇𝑏 − 𝜇𝑓)

(𝑘. 𝑇)
] + 𝑒𝑥𝑝 [2.

(−𝜇𝑓 + 𝜀𝑗)
(𝑘. 𝑇)

]] ×

𝑒𝑥𝑝 [
−(𝜇𝑓 + 𝜇𝑏)

(𝑘. 𝑇)
]

[2 + 𝑒𝑥𝑝 [
2𝜀𝑗 − 𝜇𝑏 − 𝜇𝑓

𝑘. 𝑇
]]

)

 
 

𝜕𝑇

)

 
 
 
 
 
 
 

𝑉

+ 𝑁𝑘𝑇2

(

 
 
 
 
 
 
 

𝜕2𝑙𝑛

(

 
 

2 [4 + 2𝑒𝑥𝑝 [
(𝜇𝑏 − 𝜇𝑓)

(𝑘. 𝑇)
] + 𝑒𝑥𝑝 [2.

(−𝜇𝑓 + 𝜀𝑗)
(𝑘. 𝑇)

]] ×

𝑒𝑥𝑝 [
−(𝜇𝑓 + 𝜇𝑏)

(𝑘. 𝑇)
]

[2 + 𝑒𝑥𝑝 [
2𝜀𝑗 − 𝜇𝑏 − 𝜇𝑓

𝑘. 𝑇
]]

)

 
 

𝜕𝑇2

)

 
 
 
 
 
 
 

𝑉

 

2.5  ENTROPY 

For a micro canonical ensemble, the entropy S is 
given by the standard equation (38) [3, 9] 

𝑆 = 𝑘𝑁 [𝑙𝑛 (
𝑄

𝑁
) + 𝑇

𝜕𝑙𝑛𝑄

𝜕𝑇
] (38) 

Substituting equation (33) in equation (38) of 
entropy and simplifying, it yields equation (39). 
Equation (39) is an expression of entropy of a micro 
canonical ensemble as a function of temperature T. 

 

𝑆(𝑇)

= 𝐾.𝑁

[
 
 
 
 
 
 
 
 
 
 
 
 

ln

[
 
 
 
 
 

[8 + 4. exp [
(𝜇𝑏 − 𝜇𝑓)

(𝑘. 𝑇)
] + 2. exp [2.

(−𝜇𝑓 + 𝜀𝑗)

(𝑘. 𝑇)
]] .

exp [
(−𝜇𝑓 − 𝜇𝑏)

(𝑘. 𝑇) ]

[[2 + exp [
(2. 𝜀𝑗 − 𝜇𝑏 − 𝜇𝑓)

(𝑘. 𝑇) ]] .𝑁]

]
 
 
 
 
 

+ 𝑇. [
 
 
 
 
 
 

[−4.
(𝜇𝑏 − 𝜇𝑓)
(𝑘. 𝑇2)

. exp [
(𝜇𝑏 − 𝜇𝑓)

(𝑘. 𝑇) ] − 4.
(−𝜇𝑓 + 𝜀𝑗)

(𝑘. 𝑇2)
. exp [2.

(−𝜇𝑓 + 𝜀𝑗)
(𝑘. 𝑇) ]] .

exp [
(−𝜇𝑓 − 𝜇𝑏)

(𝑘. 𝑇) ]

[2 + exp [
(2. 𝜀𝑗 − 𝜇𝑏 − 𝜇𝑓)

(𝑘. 𝑇) ]]

− [𝟖 + 4. exp [
(𝜇𝑏 − 𝜇𝑓)

(𝑘. 𝑇) ] + 2. exp [2.
(−𝜇𝑓 + 𝜀𝑗)

(𝑘. 𝑇) ]] .
(−𝜇𝑓 + 𝜀𝑗)

(𝑘. 𝑇2)
.

exp [
(−𝜇𝑓 − 𝜇𝑏)

(𝑘. 𝑇) ]

[2 + exp [
(2. 𝜀𝑗 − 𝜇𝑏 − 𝜇𝑓)

(𝑘. 𝑇) ]]

+ [𝟖 + 4. exp [
(𝜇𝑏 − 𝜇𝑓)

(𝑘. 𝑇) ] + 2. exp [2.
(−𝜇𝑓 + 𝜀𝑗)

(𝑘. 𝑇) ]] .

𝒆𝒙𝒑 [
(−𝝁𝒇 − 𝝁𝒃)

(𝒌. 𝑻) ]

[𝟐 + 𝒆𝒙𝒑 [
(𝟐. 𝜺𝒋 − 𝝁𝒃 − 𝝁𝒇)

(𝒌.𝑻) ]]

𝟐 .
(2. 𝜀𝑗 − 𝜇𝑏 − 𝜇𝑓)

(𝑘. 𝑇2)
. 𝒆𝒙𝒑 [

(𝟐. 𝜺𝒋 − 𝝁𝒃 − 𝝁𝒇)
(𝒌. 𝑻) ]

]
 
 
 
 
 
 

[[8 + 4. 𝑒𝑥𝑝 [
(𝜇𝑏 − 𝜇𝑓)

(𝑘. 𝑇) ] + 𝟐. 𝒆𝒙𝒑[𝟐.
(−𝝁𝒇 + 𝜺𝒋)

(𝒌. 𝑻) ]] . exp [
(−𝜇𝑓 − 𝜇𝑏)

(𝑘. 𝑇) ]]

. [𝟐

+ 𝒆𝒙𝒑[
(𝟐. 𝜺𝒋 − 𝝁𝒃 − 𝝁𝒇)

(𝒌. 𝑻)
]]

]
 
 
 
 
 
 
 
 
 
 
 
 

 

. (39) 

3. Results and Discussion 

To perform calculations we use the experimental 
data in table 1 [4, 11, 12]  

Parameter Liquid Helium-3 Liquid Helium-4 

Volume (cm
3
) 40.00 28.00 

Density (g/cm
3
) 0.07 0.14 

Mass (g) 2.80 3.92 

Chemical 
Potential (eV) 

3.184𝑥10−27 6.215𝑥10−28 

 

Equation (35) is used to investigate the variation of 
internal energy of the system with temperature. Figure 
1 shows the variation of internal energy and 
temperature of the system. The plot shows that as the 
temperature tends to 0 K, the internal energy also 

approaches zero. At low temperature the particles 
occupy the low quantum state. When the temperature 
is increased, the fermions shift quickly to the higher 
state where they possess greater kinetic energy 
usually manifested as internal energy. The increase in 
energy with temperature declines in higher 
temperatures is as a result of particle saturation. This 
plot agrees with [8, 10] 
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Figure 1: The plot of variation of internal energy 
with Temperature 

Equation (37) was used to investigate the variation 
of specific heat and temperature. Figure 2 shows the 
variation of specific heat with temperature in the range 
0K to 100K. At very low temperatures below 10K, the 
specific heat is zero. In this temperature range all the 
particles occupy the lower quantum states. When the 
temperature is increased, there is a shift of fermions 
from the lower states to higher states as a result of 
them gaining energy. Specific heat increasing 
exponentially with increase in temperature to a peak 
value of 5.0 x 10

19
 eV/Mol/K at a temperature of 37K 

and finally, it gradually reduces to very low values. 
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Figure 2: Plot of variation of Specific Heat with 
Temperature. 

Equation (39) was used to investigate the variation 
of entropy with temperature as shown in figure 3. The 
results show that entropy varies logarithmically with 
temperature. At higher temperatures the entropy 
remains constant as temperature increases showing 

that it approaches saturation at higher temperatures. 
Figure 3 shows that the graph of entropy against 
temperature gives a sigmoid curve. The similar 
shapes of the graphs were noted by other researchers 
[8, 10] they noted that the entropy of a system 
increases with increase in temperature and also 
decreases with decrease in temperature. Hence the 
entropy is a temperature dependent property. 
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Figure 3: Plot of variation of Entropy with 
Temperature 

4. Conclusion 

It was found that the internal energy and entropy 
are very low at low temperatures of T<20K because 
at low temperatures there are very few states to be 
occupied by particles. In the temperature range of 

20𝐾 < 𝑇 < 60𝐾  the internal energy and entropy 
increases logarithmically with temperature. The 
internal energy and entropy becomes constant at 

temperatures 𝑇 > 60𝐾 this is due to particle saturation 
of the system. The specific heat at low temperatures 

𝑇 < 10𝐾 is zero, in this temperature range all particles 
occupy the lowest quantum states. As temperatures 
increases particles shifts to higher energy levels and 
the specific heat increases exponentially to a peak 

value of 5.0𝑥1019𝑒𝑉/𝑚𝑜𝑙. 𝐾  at 37K. At 37K a phase 
transition occurs and then the specific heat gradually 
reduces to very low values after the phase transition.  
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