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Abstract—In the stock market, investor 
sentiment has a significant influence on the 
decision making of investors. In this paper, to 
investigate the effects of personality in the 
dynamics of investor sentiment spreading, we 
propose a 2S2IR model while assuming that 
spreading rate of each individual depends on 
his/her personality. We divide the personality of 
individuals into active and passive. The active 
person has the great ability of spreading and 
receiving sentiment. We calculate the basic 
reproduction number based on the next generation 
matrix method and prove that the sentiment free 
equilibrium is global asymptotically stable and the 
positive equilibrium is global attractivity. 
Furthermore, some numerical simulations are 
performed, the results show that the influence of 
different personality of individuals. 

Keywords—sentiment; heterogeneous network; 
stability; basic reproduction number 

I.  INTRODUCTION  

Investor sentiment reflect their emotions, 
attitudes and values when making decisions. It is 
very important research objects in the stock market 
and it also play a vital role in the dynamic behavior of 
investors. The traditional epidemic spreading model 
studies the spread of infectious diseases by 
classifying people. It is a classic model in the field of 
mathematical research. We optimize and improve 
the classic epidemic model to give it a new 
background for studying investor sentiment spreading 
process.   

Scholars have conducted a lot of research on the 
relationship between investor sentiment and financial 
markets, confirming that investor sentiment has a 
considerable impact on the stock market [1][2][3]. It is 
reasonable to apply the epidemic model to investigate 
the spreading of investor sentiment [4]. In the field of 
epidemic model researching, the classic epidemic 
models such as SI [5], SIS [6], SIR [7] is very 
representative. Some people improved the classic 
model like Pan et al. investigate the coupled 
awareness-epidemic dynamics in multiplex networks 
considering individual heterogeneity [8]. Zang et al. 
propose a global awareness controlled spreading 
model (GACS) to explore the interplay between the 
coupled dynamical processes [9]. Chang et al. present 
a stochastic SIRS epidemic model with two different 

nonlinear incidence rates and double epidemic 
asymmetrical hypothesis [10]. In the field of rumor 
spreading investigation, Daley and Kendall first 
introduced the DK model of rumor spreading [11][12], 
then Maki and Thomson proposed a MK rumor 
spreading model [13]. A series of improvements have 
been made. In the recent years, hesitation mechanism 
[14], counterattack and self-resistance mechanisms 
[15], the different attitudes [16] are introduced in the 
rumor spreading models. Wang et al. presented a new 
SIR model by considering the trust mechanism 
between ignorants and spreaders [17], Huo et al. 
investigated the general rumor spreading model with 
psychological effect [18]. Zhao [19][20], Nekovee [21] 
and Gu [22] et al. studied the effects of forgetting and 
remembering mechanism on the rumors spreading 
from different perspectives. Afassinou extend the 
classical SIR model by considering the impact of 
education rates in rumor propagation dynamics [23]. 
Song et al. discussed the impact of scientific 
knowledge [24]. Zhao et al. established a rumor 
spreading model by considering the prevalence of new 
media [25]. Some scholars also improve the 
transmission rate to be more practical. Fu et al. 
proposed a piecewise linear function to characterized 
the infectivity [26], Cheng et al. considering nonlinear 
spreading rate to establish the model’s mean field 
equations [27]. Some scholars found that different 
nodes show the great difference in their activity 
[27][28][29] the active person are more likely to accept 
ang spread rumors. In addition, Jie, Zan et al. studied 
the process of double-rumor propagation in 
homogeneous complex networks [30], and complex 
networks [31]. 
 In this paper, we define investor sentiment as the 
investor's emotional attitude and value towards the 
relevant events. And make the following reasonable 
assumptions: the stock market as a heterogeneous 
network, the investors as nodes in the network. New 
entrants to the stock market are unaware of the 
relevant events and therefore no sentiment. When they 
come into contact with the sentiment spreaders, the 
emotional attitude of the sentiment spreaders will 
influence them to become the corresponding spreaders 
or choose not to spread sentiment. In order to be more 
practical, this paper considers the different personality 
of individuals, and divides the population into two 
types: active and passive. Individuals with different 
personality have different ability to transmit and receive 
sentiment. The purpose of this paper is to provide a 
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theoretical basis for controlling investors' 
decision-making behavior in the stock market by 
studying and analyzing the sentiment spreading 
process of investors. 
 The rest of this paper is organized as follows. In 
section 2, we establish the model of investor sentiment 
propagation and obtain the corresponding mean-field 
equations. In the third section, we discuss and prove 
the stability of the sentiment-free equilibrium, and 
prove the existence and global attractivity of the 
positive equilibrium in the heterogeneous network. In 
section 4, related numerical simulations are performed, 
and the important factor which affects the sentiment 
spreading process are discussed. Finally, some 
conclusions and discussions are given in section 5. 

II. INVESTOR SENTIMENT MODEL 

Assume that each investor in the stock market is in 
one of the following five states: active susceptible 𝑆1, 
who are new to the stock market, whose attitudes to 
events in the stock market will be affected by others 
and their personalities are active; passive susceptible 

𝑆2, their sentiment acceptance is relatively weak; active 
spreader 𝐼1, active individuals who spread sentiment to 
their contacts; passive spreader 𝐼2 , compared with 
active spreaders, their ability to spread sentiment is 
relatively weak; stifler 𝑅, who do not accept or transmit 
sentiment to others, and therefore do not distinguish 
between active and passive types. Among them, 𝑆1 
and 𝑆2  receive sentiment, 𝐼1  and 𝐼2  spread 
sentiment, and 𝑅 do not spread or receive sentiment.  

Assuming that the stock market has a coming rate 
of 𝑒, an leaving rate of 𝑞, an active individual as a 

percentage of new entrants of 𝑝 , the process of 
investor sentiment spreading in the stock market is 

shown in Fig. 1, where 𝛽1, 𝛽2 represents the spreading 
ability of 𝐼1, 𝐼2 , so 𝛽1 > 𝛽2 , 𝜆1 , 𝜆2  stands for the 

sentiment receiving ability of 𝑆1, 𝑆2, so 𝜆1 > 𝜆2, 𝛼1, 𝛼2 
stands for the probability that the spreaders transform 
into stiflers. 

In the heterogeneous networks, the densities of 

five groups with degree 𝑘 at time 𝑡 are 𝑆1𝑘(t), 𝑆2𝑘(𝑡)，

𝐼1𝑘(𝑡)，𝐼2𝑘(𝑡)，𝑅𝑘(𝑡) based on above diagram, the 

dynamic mean-field equations is presented by 

{
 
 
 
 

 
 
 
 
𝑑𝑆1𝑘

𝑑𝑡
= 𝑝𝑒 − 𝑘𝑆1𝑘(𝛽1𝜃1 + 𝛽2𝜃2) − 𝑞𝑆1𝑘

𝑑𝑆2𝑘

𝑑𝑡
= (1 − 𝑝)𝑒 − 𝑘𝑆2𝑘(𝛽1𝜃1 + 𝛽2𝜃2) − 𝑞𝑆2𝑘

𝑑𝐼1𝑘

𝑑𝑡
= 𝑘𝜆1𝑆1𝑘(𝛽1𝜃1 + 𝛽2𝜃2) − (𝛼1 + 𝑞)𝐼1𝑘

𝑑𝐼2𝑘

𝑑𝑡
= 𝑘𝜆2𝑆2𝑘(𝛽1𝜃1 + 𝛽2𝜃2) − (𝛼2 + 𝑞)𝐼2𝑘

𝑑𝑅𝑘

𝑑𝑡
= 𝑘[(1 − 𝜆1)𝑆1𝑘 + (1 − 𝜆2)𝑆2𝑘](𝛽1𝜃1 + 𝛽2𝜃2)

            +𝛼1𝐼1𝑘 + 𝛼2𝐼2𝑘 − 𝑞𝑅𝑘

    

(1) 

where 𝜃1 =
1

<𝑘>
∑𝑘𝑝(𝑘)𝐼1𝑘(𝑡) , 𝜃2 =

1

<𝑘>
∑𝑘𝑝(𝑘)𝐼2𝑘(𝑡) 

and 𝑆1𝑘(𝑡) + 𝑆2𝑘(𝑡) + 𝐼1𝑘(𝑡) + 𝐼2𝑘(𝑡) + 𝑅𝑘(𝑡) = 1。 

 
Fig. 1. The 2S2IR sentiment spreading process 

III. MODEL STABILITY ANALYSIS 

A. The Basic Reproduction Number 𝕽𝟎 

 When there is no sentiment spreading in the 
system, 𝐼1𝑘 = 𝐼2𝑘 = 𝑅𝑘 = 0 , when  𝑡 → ∞ , 𝜃 → 0, 

by {

𝑑𝑆1𝑘

𝑑𝑡
= 𝑝𝑒 − 𝑘𝑆1𝑘(𝛽1𝜃1 + 𝛽2𝜃2) − 𝑞𝑆1𝑘

𝑑𝑆2𝑘

𝑑𝑡
= (1 − 𝑝)𝑒 − 𝑘𝑆2𝑘(𝛽1𝜃1 + 𝛽2𝜃2) − 𝑞𝑆2𝑘

, we 

have 𝑆1𝑘(𝑡) → 𝑝, 𝑆2𝑘(𝑡) → 1 − 𝑝, (t → ∞) . Let the 
sentiment-free equilibrium 𝐸0 = {𝑝, 1 − 𝑝, 0,0,0}𝑘 , so 

𝑆1𝑘: 𝑆2𝑘 = 𝑝: (1 − 𝑝) , (t → ∞) . Make 

{
𝑆1𝑘 = 𝑝(1 − 𝐼1𝑘 − 𝐼2𝑘 − 𝑅𝑘)
𝑆2𝑘 = (1 − 𝑝)(1 − 𝐼1𝑘 − 𝐼2𝑘 − 𝑅𝑘)

, system (1) can be 

written as  

{
  
 

  
 
𝑑𝐼1𝑘

𝑑𝑡
= 𝑘𝜆1𝑝(1 − 𝐼1𝑘 − 𝐼2𝑘 − 𝑅𝑘)𝜃 − (𝛼1 + 𝑞)𝐼1𝑘

𝑑𝐼2𝑘

𝑑𝑡
= 𝑘𝜆2(1 − 𝑝)(1 − 𝐼1𝑘 − 𝐼2𝑘 − 𝑅𝑘)𝜃 − (𝛼2

            +𝑞)𝐼2𝑘
𝑑𝑅𝑘

𝑑𝑡
= 𝑘[(1 − 𝜆1)𝑝 + (1 − 𝜆2)(1 − 𝑝)](1 − 𝐼1𝑘

           −𝐼2𝑘 − 𝑅𝑘)𝜃 + 𝛼1𝐼1𝑘 + 𝛼2𝐼2𝑘 − 𝑞𝑅𝑘

     

(2) 

 Applying the next generation matrix method [32], 
where the rate of new infections is 

ℱ(𝑥) =

(

𝑘𝜆1𝑝(1 − 𝐼1𝑘 − 𝐼2𝑘 − 𝑅𝑘)𝜃

𝑘𝜆2(1 − 𝑝)(1 − 𝐼1𝑘 − 𝐼2𝑘 − 𝑅𝑘)𝜃

𝑘[(1 − 𝜆1)𝑝 + (1 − 𝜆2)(1 − 𝑝)](1 − 𝐼1𝑘 − 𝐼2𝑘 − 𝑅𝑘)𝜃

). 

And the transfer rate of individuals out of compartments 

is 𝒱(𝑥) = (

(𝛼1 + 𝑞)𝐼1𝑘
(𝛼2 + 𝑞)𝐼2𝑘

−𝛼1𝐼1𝑘 − 𝛼2𝐼2𝑘 + 𝑞𝑅𝑘

) , the Jacobian 

matrices of ℱ(𝑥)  and 𝒱(𝑥) , at the sentiment-free 
equilibrium 𝐸0 are as showing 

𝐹 = 𝐷ℱ(𝐸0) = (
𝐹11 𝐹12 0
𝐹21 𝐹22 0
𝐹31 𝐹32 0

), 

𝑉 = 𝐷𝒱(𝐸0) = (

(𝛼1 + 𝑞)𝐸 0 0
0 (𝛼2 + 𝑞)𝐸 0

−𝛼1𝐸 −𝛼2𝐸 𝑞𝐸
). 

Where 
 

𝐹11 =
𝜆1𝑝𝛽1

<𝑘>
(

1 ⋅ 1 ⋅ 𝑝(1) 1 ⋅ 2 ⋅ 𝑝(2) ⋯ 1 ⋅ 𝑛 ⋅ 𝑝(𝑛)
2 ⋅ 1 ⋅ 𝑝(1) 2 ⋅ 2 ⋅ 𝑝(2) ⋯ 2 ⋅ 𝑛 ⋅ 𝑝(𝑛)

⋮ ⋮ ⋱ ⋮
𝑛 ⋅ 1 ⋅ 𝑝(1) 𝑛 ⋅ 2 ⋅ 𝑝(2) ⋯ 𝑛 ⋅ 𝑛 ⋅ 𝑝(𝑛)

) ,  
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𝐹12 =
𝛽2

𝛽1
𝐹11 ,  𝐹21 =

(1−𝑝)𝜆2

𝑝𝜆1
𝐹11 , 𝐹22 =

𝛽2

𝛽1
𝐹21 , 𝐹31 =

[(1−𝜆1)𝑝+(1−𝜆2)(1−𝑝)]

𝑝𝜆1
𝐹11 , 𝐹32 =

𝛽2

𝛽1
𝐹31 . And 𝐸  is an 

identity matrix, 0 indicates zero matrix. It is clear that 

𝑉  is a nonsingular matrix, and  𝐹  is a nonnegative 
matrix. According to the concept of next generation 
matrix, we can get that the basic reproduction number 
of system (1) equals to 

ℜ0 = 𝜌(𝐹𝑉
−1) =

<𝑘2>[𝑝𝛽1𝜆1(𝛼2+𝑞)+(1−𝑝)𝛽2𝜆2(𝛼1+𝑞)]

<𝑘>(𝛼1+𝑞)(𝛼2+𝑞)
 , 

where < 𝑘2 >= ∑𝑘2𝑝(𝑘). According to [32], we obtain 
the following theorem. 

Th1. If the basic reproduction number ℜ0 < 1 , the 
sentiment-free equilibrium 𝐸0 of system (1) is locally 

asymptotically stable, while if ℜ0 > 1,it is unstable. 

B. Global Stability of Sentiment-free Equilibrium 

Th2. If the basic reproduction number ℜ0 < 1, the 
sentiment-free equilibrium 𝐸0 of system (1) is globally 
asymptotically stable. 

Proof. The system (2) can be written as 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 +

𝑧(𝑥), where 𝐴𝑥 is the linear part, 𝑧(𝑥) is the nonlinear 
part, and  

𝑧(𝑥) =

−

(

 
 
 
 
 
 
 

1𝜆1𝑝(𝐼11 + 𝐼21 + 𝑅1)𝜃
⋮

𝑛𝜆1𝑝(𝐼1𝑛 + 𝐼2𝑛 + 𝑅𝑛)𝜃

1𝜆2(1 − 𝑝)(𝐼11 + 𝐼21 + 𝑅1)𝜃
⋮

𝑛𝜆2(1 − 𝑝)(𝐼1𝑛 + 𝐼2𝑛 + 𝑅𝑛)𝜃

1[(1 − 𝜆1)𝑝 + (1 − 𝜆2)(1 − 𝑝)](𝐼11 + 𝐼21 + 𝑅1)𝜃
⋮

𝑛[(1 − 𝜆1)𝑝 + (1 − 𝜆2)(1 − 𝑝)](𝐼1𝑛 + 𝐼2𝑛 + 𝑅𝑛)𝜃)

 
 
 
 
 
 
 

’ 

𝐴 = 𝐹 − 𝑉. Due to 𝑧(𝑥) is negative, thus 
𝑑𝑥

𝑑𝑡
≤ 𝐴𝑥, the 

linear system 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥  only exist one equilibrium 

𝐸0 = (0,⋯ ,0)3𝑛 , from [32], we can see that the 
eigenvalues of the matrix 𝐴 all have negative real part 
when ℜ0 < 1 , so the linear system is stable, i.e. 

𝐼1𝑘 → 0, 𝐼2𝑘 → 0, 𝑅𝑘 → 0(𝑡 → ∞), 𝑘 = 1,2,⋯ , 𝑛. From the 
comparison theorem in [33], when ℜ0 < 1  ,the 

sentiment-free equilibrium 𝐸0  is globally 
asymptotically stable. 

C. Existence of Positive Equilibrium 

 To calculate the positive solution, let 

{
  
 

  
 
𝑝𝑒 − 𝑘𝑆1𝑘(𝛽1𝜃1 + 𝛽2𝜃2) − 𝑞𝑆1𝑘 = 0
(1 − 𝑝)𝑒 − 𝑘𝑆2𝑘(𝛽1𝜃1 + 𝛽2𝜃2) − 𝑞𝑆2𝑘 = 0

𝑘𝜆1𝑆1𝑘(𝛽1𝜃1 + 𝛽2𝜃2) − (𝛼1 + 𝑞)𝐼1𝑘 = 0

𝑘𝜆2𝑆2𝑘(𝛽1𝜃1 + 𝛽2𝜃2) − (𝛼2 + 𝑞)𝐼2𝑘 = 0

𝑘[(1 − 𝜆1)𝑝 + (1 − 𝜆2)(1 − 𝑝)](𝑆1𝑘 + 𝑆2𝑘) ∙

     (𝛽1𝜃1 + 𝛽2𝜃2) + 𝛼1𝐼1𝑘 + 𝛼2𝐼2𝑘 − 𝑞𝑅𝑘 = 0

, we can 

get the positive equilibrium point 
𝐸∗ = (𝑆1𝑘

∗ , 𝑆2𝑘
∗ , 𝐼1𝑘

∗ , 𝐼2𝑘
∗ , 𝑅𝑘

∗), where 

{
 
 
 
 

 
 
 
 
𝑆1𝑘
∗ =

𝑝𝑒

𝑘𝜃+𝑞

𝑆2𝑘
∗ =

(1−𝑝)𝑒

𝑘𝜃+𝑞

𝐼1𝑘
∗ =

𝑝𝑒𝑘𝜆1𝜃

(𝛼1+𝑞)(𝑘𝜃+𝑞)

𝐼2𝑘
∗ =

(1−𝑝)𝑒𝑘𝜆2𝜃

(𝛼2+𝑞)(𝑘𝜃+𝑞)

𝑅𝑘
∗ =

𝑘𝜃[(𝛼1+𝑞)(𝛼2+𝑞)−𝑒𝑝𝜆1(𝛼2+𝑞)−𝑒(1−𝑝)𝜆2(𝛼1+𝑞)]

(𝛼1+𝑞)(𝛼2+𝑞)(𝑘𝜃+𝑞)

       

(3) 

Th3. If the basic reproduction number ℜ0 > 1 ,the 
system (1) exists a unique positive equilibrium 
𝐸∗ = (𝑆1𝑘

∗ , 𝑆2𝑘
∗ , 𝐼1𝑘

∗ , 𝐼2𝑘
∗ , 𝑅𝑘

∗), where the definition of 𝐸∗ is 
given by (3). 

Proof. Let 𝜃 = 𝛽1𝜃1 + 𝛽2𝜃2, then we have  

𝜃 = 𝛽1𝜃1 + 𝛽2𝜃2 =
1

< 𝑘 >
∑𝑘𝑝(𝑘)(𝛽1𝐼1𝑘 + 𝛽2𝐼2𝑘)

=
1

< 𝑘 >
∑𝑘𝑝(𝑘) (

𝛽1𝑝𝑒𝑘𝜆1𝜃

(𝛼1 + 𝑞)(𝑘𝜃 + 𝑞)

+
𝛽2(1 − 𝑝)𝑒𝑘𝜆2𝜃

(𝛼2 + 𝑞)(𝑘𝜃 + 𝑞)
)

=
𝑒𝜃

< 𝑘 >
[
𝛽1𝑝𝜆1
(𝛼1 + 𝑞)

+
𝛽2(1 − 𝑝)𝜆2
(𝛼2 + 𝑞)

]∑
𝑘2𝑝(𝑘)

(𝑘𝜃 + 𝑞)
= 𝑓(𝜃). 

Derivative of 𝑓(𝜃)  when 𝜃 = 0 , since 
𝑑𝑓(𝜃)

𝑑𝜃
|𝜃=0 =

<𝑘2>[𝑝𝛽1𝜆1(𝛼2+𝑞)+(1−𝑝)𝛽2𝜆2(𝛼1+𝑞)]

<𝑘>(𝛼1+𝑞)(𝛼2+𝑞)
= ℜ0, and 𝑓(𝛽1 + 𝛽2) ≤

𝛽1 + 𝛽2, so when ℜ0 > 1, the system (1) exist a unique 
positive equilibrium. 

D. The Global Attractivity of Positive Equilibrium 

Lemma 1. When ℜ0 > 1 ,there exist a positive 

constant ξ > 0 ， such that 

lim𝑡→∞ 𝑖𝑛𝑓{𝑆𝑘(t), 𝐼1𝑘(𝑡), 𝐼2𝑘(𝑡), 𝑅1𝑘(𝑡), 𝑅2𝑘(𝑡)} ≥ 𝜉 [34]. 
Th5. Suppose that  (𝑆𝑘, 𝐼1𝑘 , 𝐼2𝑘, 𝑅1𝑘, 𝑅2𝑘) is a solution 

of system (1), if ℜ0 > 1 , then 
lim𝑡→∞ 𝑖𝑛𝑓{𝑆𝑘(t), 𝐼1𝑘(𝑡), 𝐼2𝑘(𝑡), 𝑅1𝑘(𝑡), 𝑅2𝑘(𝑡)} =
(𝑆𝑘

∗, 𝐼1𝑘
∗ , 𝐼2𝑘

∗ , 𝑅1𝑘
∗ , 𝑅2𝑘

∗ ) , where  𝐸∗(𝑆𝑘
∗, 𝐼1𝑘

∗ , 𝐼2𝑘
∗ , 𝑅1𝑘

∗ , 𝑅2𝑘
∗ ) 

satisfying (3) for k = 1,2,⋯. 

Proof：  According to Th4 , there exist a positive 

constant 0 < ξ <
1

4
 and a large enough constant T > 0 

so that 𝐼1𝑘(𝑡) ≥ 𝜉, 𝐼2𝑘(𝑡) ≥ 𝜉, (𝑡 > 𝑇) , Therefore, we 

have 𝛽1 + 𝛽2 ≥ 𝜃 > (𝛽1 + 𝛽2)𝜉, (𝑡 > 𝑇)，Substituting it 

into the first equation of system (1), we get  

𝑆1𝑘̇ ≤ 𝑝𝑒 − 𝑘𝑆1𝑘(𝛽1 + 𝛽2)𝜉 − 𝑞𝑆1𝑘, (𝑡 > 𝑇) 
By the comparison principle of differential equation, we 

get ∀0 < 𝜉1 <
𝑘(𝛽1+𝛽2)𝜉+(1−𝑝)𝑒

2(𝑘(𝛽1+𝛽2)𝜉+𝑞)
,∃𝑡1 > 𝑇 

s. t. 𝑆𝑘 ≤ 𝑋𝑘
(1)
− 𝜉1, (𝑡 > 𝑡1),  

where 𝑋𝑘
(1)
=

𝑝𝑒

𝑘(𝛽1+𝛽2)𝜉+𝑞
+ 2𝜉1 < 1. 

From the second equation of system (1), we have  

𝑆2𝑘̇ ≤ (1 − 𝑝)𝑒 − 𝑘𝑆2𝑘(𝛽1 + 𝛽2)𝜉 − 𝑞𝑆2𝑘, (𝑡 > 𝑡1) 

∴ ∀0 < 𝜉2 < 𝑚𝑖𝑛{
1

2
, 𝜉1,

𝑘(𝛽1+𝛽2)𝜉+𝑝𝑒

2(𝑘(𝛽1+𝛽2)𝜉+𝑞)
},∃𝑡2 > 𝑡1 

s. t. 𝑆2𝑘 ≤ 𝑌𝑘
(1) − 𝜉2, (𝑡 > 𝑡2),  

where 𝑌𝑘
(1)
=

(1−𝑝)𝑒

𝑘(𝛽1+𝛽2)𝜉+𝑞
+ 2𝜉2 < 1. 

From the third equation of system (1), we have  

𝐼1�̇� ≤ 𝑘𝜆1(𝛽1 + 𝛽2)(1 − 𝐼1𝑘) − (𝛼1 + 𝑞)𝐼1𝑘, (𝑡 > 𝑡2) 
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∴ ∀0 < 𝜉3 < 𝑚𝑖𝑛 {
1

3
, 𝜉2,

𝛼1+𝑞

2(𝜆1𝑘(𝛽1+𝛽2)+𝛼1+𝑞)
},∃𝑡3 > 𝑡2 

s. t. 𝐼1𝑘 ≤ 𝑍𝑘
(1)
− 𝜉3, (𝑡 > 𝑡3),  

where 𝑍𝑘
(1)
=

𝜆1𝑘(𝛽1+𝛽2)

𝜆1𝑘(𝛽1+𝛽2)+𝛼1+𝑞
+ 2𝜉3 < 1. 

From the fourth equation of system (1), we have  

𝐼2�̇� ≤ 𝑘𝜆2(𝛽1 + 𝛽2)(1 − 𝐼2𝑘) − (𝛼2 + 𝑞)𝐼2𝑘, (𝑡 > 𝑡3) 

∴ ∀0 < 𝜉4 < 𝑚𝑖𝑛 {
1

4
, 𝜉3,

𝛼2+𝑞

2(𝜆2𝑘(𝛽1+𝛽2)+𝛼2+𝑞)
},∃𝑡4 > 𝑡3 

s. t. 𝐼2𝑘 ≤ 𝑊𝑘
(1)
− 𝜉4, (𝑡 > 𝑡4),  

where 𝑊𝑘
(1)
=

𝜆2𝑘(𝛽1+𝛽2)

𝜆2𝑘(𝛽1+𝛽2)+𝛼2+𝑞
+ 2𝜉4 < 1. 

On the other hand, substituting θ ≤ 𝛽1 + 𝛽2 into the 
first equation of system (1), we get  

𝑆1𝑘̇ ≥ 𝑝𝑒 − 𝑘(𝛽1 + 𝛽2)𝑆1𝑘 − 𝑞𝑆1𝑘, (𝑡 > 𝑇) 

∴ ∀0 < 𝜉5 < 𝑚𝑖𝑛 {
1

5
, 𝜉4,

𝑝𝑒

2(𝑘(𝛽1+𝛽2)+𝑞)
},∃𝑡5 > 𝑡4 

s. t. 𝑆1𝑘 ≥ 𝑥𝑘
(1) + 𝜉5, (𝑡 > 𝑡5),  

where 𝑥𝑘
(1)
=

𝑝𝑒

𝑘(𝛽1+𝛽2)+𝑞
− 2𝜉5 > 0. 

Similarly, from the second equation of system (1), we 

have 𝑆2𝑘̇ ≥ (1 − 𝑝)𝑒 − 𝑘(𝛽1 + 𝛽2)𝑆2𝑘 − 𝑞𝑆2𝑘, (𝑡 > T) 

∴ ∀0 < 𝜉6 < 𝑚𝑖𝑛 {
1

6
, 𝜉5,

(1−𝑝)𝑒

2(𝑘(𝛽1+𝛽2)+𝑞)
},∃𝑡6 > 𝑡5 

s. t. 𝑆2𝑘 ≥ 𝑦𝑘
(1)
+ 𝜉6, (𝑡 > 𝑡6),  

where 𝑦𝑘
(1)
=

(1−𝑝)𝑒

𝑘(𝛽1+𝛽2)+𝑞
− 2𝜉6 > 0. 

From the third equation of system (1), we have  

𝐼1�̇� ≥ 𝜆1𝑘𝑥𝑘
(1)
(𝛽1 + 𝛽2)𝜉 − (𝛼1 + 𝑞)𝐼1𝑘, (𝑡 > 𝑡6) 

∴ ∀0 < 𝜉7 < 𝑚𝑖𝑛 {
1

7
, 𝜉6,

𝜆1𝑘𝑥𝑘
(1)
(𝛽1+𝛽2)𝜉

2(𝛼1+𝑞)
},∃𝑡7 > 𝑡6 

s. t. 𝐼1𝑘 ≥ 𝑧𝑘
(1)
+ 𝜉7, (𝑡 > 𝑡7),  

where 𝑧𝑘
(1)
=

𝜆𝑘𝑥𝑘
(1)
(𝛽1+𝛽2)𝜉

𝛼+𝑞
− 2𝜉7 > 0. 

From the fourth equation of system (1), we have  

𝐼2�̇� ≥ 𝜆2𝑘𝑦𝑘
(1)
(𝛽1 + 𝛽2)𝜉 − (𝛼2 + 𝑞)𝐼2𝑘, (𝑡 > 𝑡7) 

∴ ∀0 < 𝜉8 < 𝑚𝑖𝑛 {
1

8
, 𝜉7,

𝜆2𝑘𝑦𝑘
(1)
(𝛽1+𝛽2)𝜉

2(𝛼2+𝑞)
},∃𝑡8 > 𝑡7 

s. t. 𝐼2𝑘 ≥ 𝑤𝑘
(1)
+ 𝜉8, (𝑡 > 𝑡8),  

where 𝑤𝑘
(1)
=

𝜆2𝑘𝑦𝑘
(1)
(𝛽1+𝛽2)𝜉

𝛼2+𝑞
− 2𝜉8 > 0. 

Since 𝜉  is a constant small enough, obviously ：

0 < 𝑥𝑘
(1) < 𝑋𝑘

(1) < 1 , 0 < 𝑦𝑘
(1) < 𝑌𝑘

(1) < 1 , 0 < 𝑧𝑘
(1) <

𝑍𝑘
(1) < 1, 0 < 𝑤𝑘

(1) < 𝑊𝑘
(1) < 1. 

Let 𝑚(𝑗) =
1

〈𝑘〉
∑𝑘𝑝(𝑘) (𝛽1𝑧𝑘

(𝑗)
+ 𝛽2𝑤𝑘

(𝑗)
), 

𝑀(𝑗) =
1

〈𝑘〉
∑𝑘𝑝(𝑘)(𝛽1𝑍𝑘

(𝑗)
+ 𝛽2𝑊𝑘

(𝑗)
) , j = 1,2,⋯ 

It is clear that：0 < 𝑚(𝑗) ≤ 𝜃 ≤ 𝑀(𝑗) < 𝛽1 + 𝛽2, t > 𝑡8. 

So, we get 𝑆1𝑘̇ ≤ 𝑝𝑒 − 𝑘𝑆1𝑘𝑚
(1) − 𝑞𝑆1𝑘, (𝑡 > 𝑡8) 

By the comparison principle of differential equation, we 

get ∀0 < 𝜉9 < 𝑚𝑖𝑛 {
1

9
, 𝜉8},∃𝑡9 > 𝑡8 

s. t. 𝑆1𝑘 ≤ 𝑋𝑘
(2) ≜ 𝑚𝑖𝑛 {𝑋𝑘

(1) − 𝜉1,
𝑝𝑒

𝑘𝑚(1)+𝑞
+ 𝜉9} , (𝑡 > 𝑡9). 

Similarly, we have 

𝑆2𝑘̇ ≤ (1 − 𝑝)𝑒 − 𝑘𝑆2𝑘𝑚
(1) − 𝑞𝑆2𝑘, (𝑡 > 𝑡9) 

∴ ∀0 < 𝜉10 < 𝑚𝑖𝑛 {
1

10
, 𝜉9},∃𝑡10 > 𝑡9 

s. t. 𝑆2𝑘 ≤ 𝑌𝑘
(2)
≜ 𝑚𝑖𝑛 {𝑌𝑘

(1) − 𝜉2,
(1−𝑝)𝑒

𝑘𝑚(1)+𝑞
+ 𝜉10} , (𝑡 > 𝑡10). 

And then 𝐼1�̇� ≤ 𝜆1𝑘𝑋𝑘
(2)𝑀(1) − (𝛼1 + 𝑞)𝐼1𝑘 , (𝑡 > 𝑡10) 

∴ ∀0 < 𝜉11 < 𝑚𝑖𝑛 {
1

11
, 𝜉10},∃𝑡11 > 𝑡10 

s. t. 𝐼1𝑘 ≤ 𝑍𝑘
(2)
≜ 𝑚𝑖𝑛 {𝑍𝑘

(1) − 𝜉3,
𝜆1𝑘𝑋𝑘

(2)
𝑀(1)

𝛼1+𝑞
+ 𝜉11} , (𝑡 >

𝑡11). From the fourth equation of system (1), we have  

𝐼2�̇� ≤ 𝜆2𝑘𝑌𝑘
(2)𝑀(1) − (𝛼2 + 𝑞)𝐼2𝑘, (𝑡 > 𝑡11) 

∴ ∀0 < 𝜉12 < 𝑚𝑖𝑛 {
1

12
, 𝜉11},∃𝑡12 > 𝑡11 

s. t. 𝐼2𝑘 ≤ 𝑊𝑘
(2)
≜ 𝑚𝑖𝑛 {𝑊𝑘

(1) − 𝜉4,
𝜆2𝑘𝑌𝑘

(2)
𝑀(1)

𝛼2+𝑞
+ 𝜉12} , (𝑡 >

𝑡12). Turning back to system (1), we can obtain  

𝑆1𝑘̇ ≥ 𝑝𝑒 − 𝑘𝑆1𝑘𝑀
(2) − 𝑞𝑆1𝑘, (𝑡 > 𝑡12) 

∴ ∀0 < 𝜉13 < 𝑚𝑖𝑛 {
1

13
, 𝜉12,

𝑝𝑒

2(𝑘𝑀(2)+𝑞)
},∃𝑡13 > 𝑡12 

s. t. 𝑆1𝑘 ≥ 𝑥𝑘
(2) + 𝜉13, (𝑡 > 𝑡13),  

where 𝑥𝑘
(2)
= 𝑚𝑎𝑥 {𝑥𝑘

(1) + 𝜉5,
𝑝𝑒

𝑘𝑀(2)+𝑞
− 2𝜉13}. 

It follows that  

𝑆2𝑘̇ ≥ (1 − 𝑝)𝑒 − 𝑘𝑆2𝑘𝑀
(2) − 𝑞𝑆2𝑘, (𝑡 > 𝑡13) 

∴ ∀0 < 𝜉14 < 𝑚𝑖𝑛 {
1

14
, 𝜉13,

(1−𝑝)𝑒

2(𝑘𝑀(2)+𝑞)
},∃𝑡14 > 𝑡13 

s. t. 𝑆2𝑘 ≥ 𝑦𝑘
(2)
+ 𝜉14, (𝑡 > 𝑡14),  

where 𝑦𝑘
(2)
= 𝑚𝑎𝑥 {𝑦𝑘

(1) + 𝜉6,
(1−𝑝)𝑒

𝑘𝑀(2)+𝑞
− 2𝜉14}. 

From the third equation  

𝐼1�̇� ≥ 𝜆1𝑘𝑥𝑘
(2)
𝑚(1) − (𝛼1 + 𝑞)𝐼1𝑘, (𝑡 > 𝑡14) 

∴ ∀0 < 𝜉15 < 𝑚𝑖𝑛 {
1

15
, 𝜉14,

𝜆1𝑘𝑥𝑘
(2)
𝑚(1)

2(𝛼1+𝑞)
},∃𝑡15 > 𝑡14 

s. t. 𝐼1𝑘 ≥ 𝑧𝑘
(2)
+ 𝜉15, (𝑡 > 𝑡15),  

where 𝑧𝑘
(2)
= 𝑚𝑎𝑥 {𝑧𝑘

(1) + 𝜉7,
𝜆1𝑘𝑥𝑘

(2)
𝑚(1)

𝛼1+𝑞
− 2𝜉15}. 

Then 𝐼2�̇� ≥ 𝜆2𝑘𝑦𝑘
(2)
𝑚(1) − (𝛼2 + 𝑞)𝐼2𝑘, (𝑡 > 𝑡15) 

∴ ∀0 < 𝜉16 < 𝑚𝑖𝑛 {
1

16
, 𝜉16,

𝜆2𝑘𝑦𝑘
(2)
𝑚(1)

2(𝛼2+𝑞)
},∃𝑡16 > 𝑡15 

s. t. 𝐼2𝑘 ≥ 𝑤𝑘
(2)
+ 𝜉16, (𝑡 > 𝑡16),  

where 𝑤𝑘
(2)
= 𝑚𝑎𝑥 {𝑤𝑘

(1) + 𝜉8,
𝜆2𝑘𝑦𝑘

(2)
𝑚(1)

𝛼2+𝑞
− 2𝜉16}. 

Similarly, we carry out step h(h ≥ 3) of the calculation 

and get ten sequences: {𝑋𝑘
(ℎ)}, {𝑌𝑘

(ℎ)}, {𝑍𝑘
(ℎ)}, {𝑊𝑘

(ℎ)}, 

{𝑥𝑘
(ℎ)}, {𝑦𝑘

(ℎ)}, {𝑧𝑘
(ℎ)}, {𝑤𝑘

(ℎ)}. Obviously, the first four 

sequences are monotone decreasing and the last four 
sequences are monotone increasing. Thus, there exist 

a large enough positive integer G, s. t. when h ≥ G we 

have 𝑋𝑘
(ℎ) =

𝑝𝑒

𝑘𝑚(ℎ−1)+𝑞
+ 𝜉8ℎ−7, 𝑌𝑘

(ℎ) =
(1−𝑝)𝑒

𝑘𝑚(ℎ−1)+𝑞
+ 𝜉8ℎ−6, 

𝑍𝑘
(ℎ) =

𝜆1𝑘𝑋𝑘
(ℎ)
𝑀(ℎ−1)

𝛼1+𝑞
+ 𝜉8ℎ−5 , 𝑊𝑘

(ℎ) =
𝜆2𝑘𝑌𝑘

(ℎ)
𝑀(ℎ−1)

𝛼2+𝑞
+

𝜉8ℎ−4, 𝑥𝑘
(ℎ) =

𝑝𝑒

𝑘𝑀(ℎ)+𝑞
− 2𝜉8ℎ−3, 𝑦𝑘

(ℎ) =
(1−𝑝)𝑒

𝑘𝑀(ℎ)+𝑞
− 2𝜉8ℎ−2, 

𝑧𝑘
(ℎ) =

𝜆1𝑘𝑥𝑘
(ℎ)
𝑚(ℎ−1)

𝛼1+𝑞
− 2𝜉8ℎ−1, 𝑤𝑘

(ℎ) =
𝜆2𝑘𝑦𝑘

(ℎ)
𝑚(ℎ−1)

𝛼2+𝑞
− 2𝜉8ℎ . 

Obviously, 𝑥𝑘
(ℎ) ≤ 𝑆1𝑘 ≤ 𝑋𝑘

(ℎ)
, 𝑦𝑘

(ℎ) ≤ 𝑆2𝑘 ≤ 𝑌𝑘
(ℎ)

, 

𝑧𝑘
(ℎ) ≤ 𝐼1𝑘 ≤ 𝑍𝑘

(ℎ)
, 𝑤𝑘

(ℎ) ≤ 𝐼2𝑘 ≤ 𝑊𝑘
(ℎ)

, and the limit of 

the above sequence exists, let limh→∞Ω𝑘
(ℎ) =

Ω𝑘 ,where Ω𝑘
(ℎ) =

{𝑋𝑘
(ℎ), 𝑌𝑘

(ℎ), 𝑍𝑘
(ℎ),𝑊𝑘

(ℎ), 𝑥𝑘
(ℎ), 𝑦𝑘

(ℎ), 𝑧𝑘
(ℎ), 𝑤𝑘

(ℎ)} ,  Ω𝑘 =

{𝑋𝑘, 𝑌𝑘, 𝑍𝑘,𝑊𝑘, 𝑥𝑘, 𝑦𝑘, 𝑧𝑘, 𝑤𝑘} . For 0 < 𝜉ℎ <
1

ℎ
, when 

h → ∞, 𝜉ℎ → 0.Thinking h → ∞ by directly calculating, 
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we get 𝑋𝑘 =
𝑝𝑒

𝑘𝑚+𝑞
, 𝑌𝑘 =

(1−𝑝)𝑒

𝑘𝑚+𝑞
, 𝑍𝑘 =

𝜆1𝑘𝑋𝑘𝑀

𝛼1+𝑞
, 𝑊𝑘 =

𝜆2𝑘𝑌𝑘𝑀

𝛼2+𝑞
, 𝑥𝑘 =

𝑝𝑒

𝑘𝑀+𝑞
, 𝑦𝑘 =

(1−𝑝)𝑒

𝑘𝑀+𝑞
, 𝑧𝑘 =

𝜆1𝑘𝑥𝑘𝑚

𝛼1+𝑞
, 𝑤𝑘 =

𝜆2𝑘𝑦𝑘𝑚

𝛼2+𝑞
. Let M =

1

〈𝑘〉
∑𝑘𝑝(𝑘) (𝛽1𝑍𝑘 + 𝛽2𝑊𝑘) , m =

1

〈𝑘〉
∑𝑘𝑝(𝑘) (𝛽1𝑧𝑘 + 𝛽2𝑤𝑘).  

So M =
1

〈𝑘〉
∑𝑘𝑝(𝑘) (𝛽1

𝜆1𝑘𝑀

𝛼1+𝑞

𝑝𝑒

𝑘𝑚+𝑞
+ 𝛽2

𝜆2𝑘𝑀

𝛼2+𝑞

(1−𝑝)𝑒

𝑘𝑚+𝑞
) , i.e. 

1 =
1

〈𝑘〉
∑𝑘𝑝(𝑘)

𝑘𝑒

(𝑘𝑚+𝑞)

𝛽1𝜆1𝑝(𝛼2+𝑞)+𝛽2𝜆2(1−𝑝))(𝛼1+𝑞)

(𝛼1+𝑞)(𝛼2+𝑞)
     

(4) 

and m =
1

〈𝑘〉
∑𝑘𝑝(𝑘) (𝛽1

𝑘𝜆1𝑚

𝛼1+𝑞

𝑝𝑒

𝑘𝑀+𝑞
+ 𝛽2

𝑘𝜆2𝑚

𝛼2+𝑞

(1−𝑝)𝑒

𝑘𝑀+𝑞
) , so 

1 =
1

〈𝑘〉
∑𝑘𝑝(𝑘)

𝑘𝑒

(𝑘𝑀+𝑞)

𝛽1𝜆1𝑝(𝛼2+𝑞)+𝛽2𝜆2(1−𝑝))(𝛼1+𝑞)

(𝛼1+𝑞)(𝛼2+𝑞)
     

(5) 
By (4)-(5), we obtain 

 0 = (M −m)
𝛽1𝜆1𝑝(𝛼2+𝑞)+𝛽2𝜆2(1−𝑝))(𝛼1+𝑞)

(𝛼1+𝑞)(𝛼2+𝑞)

𝑒

〈𝑘〉
 

           ∙ ∑ 𝑘3𝑝(𝑘)
1

(𝑘𝑀+𝑞)(𝑘𝑚+𝑞)
. 

So, we get that M = m , i.e. 𝑧𝑘 = 𝑍𝑘，𝑤𝑘 = 𝑊𝑘. k =
1,2,⋯ . So 
lim𝑡→∞ 𝑆1𝑘(𝑡) =𝑋𝑘 = 𝑥𝑘 ,  lim𝑡→∞ 𝑆2𝑘(𝑡) =𝑌𝑘 =
𝑦𝑘 ,  lim𝑡→∞ 𝐼1𝑘(𝑡) =𝑍𝑘 = 𝑧𝑘 ,  lim𝑡→∞ 𝐼2𝑘(𝑡) =𝑊𝑘 = 𝑤𝑘 . 
Finally 𝑋𝑘 = 𝑆1𝑘

∗ , 𝑌𝑘 = 𝑆2𝑘
∗ , 𝑍𝑘 = 𝐼1𝑘

∗ ,𝑊𝑘 = 𝐼2𝑘
∗ .  Due to 

𝑅𝑘 = 1 − 𝑆1𝑘 − 𝑆2𝑘 − 𝐼1𝑘 − 𝐼2𝑘 , therefore 
lim𝑡→∞ 𝑅𝑘(𝑡) =𝑅𝑘

∗ . so 𝐸∗(𝑆1𝑘
∗ , 𝑆2𝑘

∗ , 𝐼1𝑘
∗ , 𝐼2𝑘

∗ , 𝑅𝑘
∗) is global 

attractivity. 

IV. NUMBERICAL SIMULATIONS 

 In this section, some numerical simulations were 
performed to analyze the process of investor sentiment 
spreading and verify the theory presented in the 
previous section. We first establish a heterogeneous 
network and set the relevant parameters as: 𝑝 =
0.6, 𝑒 = 𝑞 = 0.1, 𝛽1 = 0.8, 𝛽2 = 0.6, 𝜆1 = 0.8, 𝜆2 =
0.6, 𝛼1 = 0.5, 𝛼2 = 0.6, under this circumstances, the 
basic reproduction number ℜ0 > 1, the density with 
time of the five groups is shown in Fig. 2 (a). It can be 

seen from the figure that when ℜ0 > 1, in the final 
state, the sentiment spreader persists and maintains a 
relatively stable state. In Fig. 2 (b) shows the 
parameters are set as: 𝑝 = 0.6, 𝑒 = 𝑞 = 0.1, 𝛽1 =
0.1, 𝛽2 = 0.05, 𝜆1 = 0.1, 𝜆2 = 0.05, 𝛼1 = 0.05, 𝛼2 = 0.06, 
the ℜ0 < 1, in the final state, the sentiment spreader 
and stifler disappear, and only the susceptible exists, 
that is, there is no sentiment spreading in the system. 

 
(a) 

 
(b) 

Fig. 2. The densities of five groups with time when ℜ0 > 1 

(a) and ℜ0 > 1 (b) 

 From the Fig. 2 (a), we can see that when ℜ0 > 1, 
in the initial state 𝑆1, 𝑆2 exist in the ratio of 𝑝: 1 − 𝑝, the 
densities of sentiment susceptible firstly decrease 
sharply and then rise to a steady value, and in the 
process of sentiment spreading, the density of active 
and passive susceptible is always 𝑝: 1 − 𝑝 . The 
densities of two kinds of spreaders rapidly sour to the 
peak and then fall a steady value, the density of active 
spreaders is greater than the passive spreaders under 
steady state. This is due to the new arrivals of active 
accounted for a larger, and in the process of sentiment 
spreading the active one is strong in the spreading and 
acceptance of sentiment. The density of stiflers 
increased rapidly and reached the peak, then 
decreased gradually and became stable. When 

ℜ0 < 1 , because the values of the propagation 
parameter and the acceptance parameter are small, 
the densities of susceptible decreases first and then 
increases gradually, finally exists in the system with the 

density of 𝑝  and 1 − 𝑝 , the spreader’s density 
decreases gradually and finally equals to zero, the 
density of stiflers increases to a peak, then decreases, 
and finally disappears into the system. As we all know, 
the greater the capacity to spread and receive 
sentiment, the greater the chance that a susceptible 
will transfer to a spreader, so as the parameters 
𝛽1, 𝛽2, 𝜆1, 𝜆2 increase, the final proportion of spreaders 

in the system will increase, as the parameters 𝛼1, 𝛼2 
increase, the final density of stiflers will increase. 
Therefore, external intervention to suppress or 
encourage the corresponding sentiment spreading can 
make the system in a positive sentiment prevalence 
and negative sentiment disappeared. 
 Fig. 3 shows the densities curve of five groups in 

the system as the degree of nodes 𝑘 changes. It can 
be seen from the figure that as the degree 𝑘 
increases, the density of the two types of susceptible 
gradually decreases, and the peak value of two types 
of spreaders gradually increases, and the final density 
increases very small. Therefore, it is believed that the 
degree 𝑘 has basically no effect on the density of the 
sentiment spreaders, and the greater the degree, the 
susceptible more easily to accept sentiment and 

transfer into spreaders. The greater the degree 𝑘, the 
greater the proportion of stiflers in the final state, that 
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is, the more people in the system do not spread or 
accept sentiment.  

Next, we will discuss the influence of the 

personality parameter 𝑝 on the spreading process. As 

shown in Fig. 4, as 𝑝 changes, the ratio of 𝑆1 and 𝑆2 
is always 𝑝: 1 − 𝑝 , but the ratio of 𝐼1  and 𝐼2  is 
changing during the spreading process, With the 

increase of 𝑝 , the density of passive spreaders 
changes small, while the active spreaders gradually 
increases. And there is also a slight increase in the 
density of stiflers at final state. Therefore, the larger the 
proportion of active individuals among the new 
entrants, the greater the density of active sentiment 
spreaders in the final state, and the lower the density of 
passive spreaders. The proportion of active individuals 
increases can conducive to the further spreading of 
sentiment. 

 

 

 
Fig. 3. The densities if five groups with different degrees 

 
𝑝 = 0.4 

 
𝑝 = 0.5 

 
𝑝 = 0.6 
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𝑝 = 0.7 

Fig. 4. The densities of five groups with different personality 
parameter 𝑝 

V. CONCLUSION 

Sentiment spreading is a complicated process. In 
this paper, we have improved the classic epidemic 
model and considered individual differences in 
personality established an investor sentiment 2S2IR 
model. Dividing individuals in the stock market into five 
categories, which have different abilities to accept or 
spread emotions. 

Through numerical analysis and proof, we 
conclude that when the system's basic reproduction 
number ℜ0 < 1, there is no sentiment spreaders in the 
system, that is, there is no sentiment spreading in the 
system, and the sentiment-free equilibrium is globally 

stable. When ℜ0 > 1 , the system exists a unique 
positive equilibrium point, that is, the sentiment 
spreaders continue to exist in the steady state, and the 
positive equilibrium point is globally attractive. 

In this paper, a heterogeneous network is used for 
numerical simulation. The results confirm that the basic 
reproduction number is the threshold for sentiment 
spreading, that is, when ℜ0 < 1  the sentiment will 

disappear in the system, when ℜ0 > 1 the sentiment 
will be broken out. The following conclusions are also 
obtained: 1. Increasing the spreading parameters and 
acceptance parameters is conducive to the 
transmission of sentiment, so through the relevant 
external interventions, the sentiment spreading and 
acceptance parameters can be adjusted to achieve the 
purpose of encouraging or inhibiting sentiment 
transmission. 2. The greater the degree, the fewer the 
susceptible in the stable state, and the greater the 
number of spreaders and stiflers. Therefore, the 
proportion of five groups in the stable state is controlled 
by the behaviors and concepts of the people with 
greater influence. 3. Personality parameters have a 
great influence on the process of sentiment spreading. 
The increase in personality parameter 𝑝 can increase 
the number of active sentiment spreaders. Therefore, 
increasing the proportion of active individuals among 
new entrants can speed up the transmission of 
sentiment. Conversely, it inhibits. 
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