
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 6 Issue 12, December - 2019  

www.jmest.org 

JMESTN42353241 11320 

Radio Propagation Modelling of a Typical 
Sudan Savanna Belt Rural Terrain using Soft-

computing and Empirical Techniques 
 

Deme C. Abraham 
Department of Computer Science, 

University of Jos, Nigeria. 
demeabraham@gmail.com, acdeme2000@yahoo.com 

Abstract- This paper describes the path loss 
modeling of a typical Sudan Savanna vegetation 
belt rural terrain using soft-computing and 
empirical techniques. The widely used COST 231 
Hata model was modified via interpolation, and 
then compared for path loss prediction accuracy 
with deep learning network based models, using 
path loss data derived from field strength 
measurements recorded at an operating 
frequency of 1800MHz. Results indicate that while 
the most accurate of the models is the 
Generalized Regression Neural Network (GRNN) 
with an average RMSE value of 3.83dB, the 
adjusted COST 231 Hata model outperforms the 
Multi-Layer Perceptron Neural Network (MLP-NN) 
counterpart. 
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I. INTRODUCTION 
A crucial aspect of the characterization of a wireless 
link is the determination of path loss. Basically, path 
loss refers to the difference between the power 
radiated by a transmitter at one end of a link, and the 
received power recorded by a receiver at the other 
end of the link. Path loss across a given terrain 
significantly depends on the nature of the terrain, 
atmospheric conditions, radiated power, operating 
frequency, transmitter height, receiver height, etc. 
Logically, built-up terrains such as metropolitan 
environments are characterized by higher path loss 
compared to suburban and rural terrains.  

Empirical modelling is one of the most widely 
used techniques in path loss estimation across a 
given terrain. Empirical models are essentially 
created on the basis of extensive measurements 
acquired from the terrain in question [1]. These 

models are not globally applicable due variations in 
terrain nature. Nevertheless, correction factors are 
usually introduced into a given model in order to 
improve path loss estimation accuracy.  
 Recently, techniques based on the deep 
learning aspect of artificial intelligence have been 
used in order to predict path loss with greater 
accuracy. Deep learning networks have been proven 
to handle complex non-linear function approximation 
with a greater accuracy than those techniques which 
are based on linear regression [2][3].  

In this study, the terrain under consideration 

is a typical Sudan Savanna Belt rural terrain. The 

Sudan Savanna Vegetation Belt of Nigeria essentially 

comprises of a mixture of scattered trees and short 

grasses. The terrain under investigation is a thinly 

populated rural terrain between the city of Bauchi and 

Darazo town, comprising of scattered houses and 

trees mostly below 7 meters. 

The COST 231 Hata model is adjusted for 
improved performance, and then compared for 
prediction accuracy with deep learning artificial 
intelligence networks, namely the Generalized 
Regression Neural Network (GRNN) and the Multi-
layer Perceptron Neural Network (MLP-NN). The 
choice of COST 231 Hata is based on its 
consideration of frequencies up to 2000MHz since 
this research considers 1800MHz. 

II. THE COST 231 HATA MODEL 
As described in [2], the COST 231 Hata 

Model stems from the Hata Model, taking into 
consideration a wider range of frequencies (500MHz 
to 200MHz). The Hata model [4] in turn is an 
extension of the Okumura Model. The model is 
suitable for path loss prediction in urban, semi-urban, 
suburban and rural areas. The model expression is 
given by (1) 

 
𝑃𝐿 = 46.3 + 33.9𝑙𝑜𝑔𝑓 − 13.82𝑙𝑜𝑔ℎ𝐵 − 𝑎(ℎm) + (44.9 − 6.55𝑙𝑜𝑔ℎ𝐵)𝑙𝑜𝑔𝑑 + 𝐶                                       (1)     
 
Where,  

- PL = Median path loss in Decibels (dB) 
- C=0 for medium cities and suburban areas 
- C=3 for metropolitan areas 
- f = Frequency of Transmission in Megahertz 

(MHz)(500MHz to 200MHz) 

- hB = Base Station Transmitter height in 
Meters (30m to 100m) 

- d = Distance between transmitter and 
receiver in Kilometers (km) (up to 
20kilometers) 
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- hm = Mobile Station Antenna effective height 
in Meters (m) (1 to 10metres) 

- a(hm) = Mobile station Antenna height 
correction factor as described in the Hata 
Model for Urban Areas. 

- For urban areas, a(hm) = 
3.20(log10(11.75hr))

2
−4.97, for f > 400 MHz  

For sub-urban and rural areas, a(hR) = 

(1.1log(f) - 0.7)hR - 1.56log(f) -0.8 

 

 

III. THE GENERALIZED REGRESSION 
NEURAL NETWORK 

As described in [2], the Generalized 
Regression Neural Network (GRNN), proposed by [5] 
is a type of Artificial Neural Network (ANN) capable 
of approximating virtually any function given sufficient 
data.  In contrast to back-propagation neural 
networks, which may require a large number 
iterations in order to converge to the desired output, 
the GR-NN does not require iterative training, and 
usually requires a fraction of the training samples a 
back-propagation neural network would need [5]. The 
GRNN is used to solve a variety of problems such as 
prediction, control, plant process modeling or general 
mapping problems [6]. As shown in Fig. 1, the GRNN 
comprises of four layers: 

 

 
 

Fig. 1: Generalized Regression Neural Network Architecture [7] 

Input layer: This is the first layer and it is responsible 

for sending inputs to the next layer called the pattern 

layer. 

Pattern layer: This layer computes the Euclidean 

distance between input and training data, and also 

the activation function. 

Summation layer: This layer comprises of two parts: 
the Numerator and the Denominator. The Numerator 
sums up products of training data and activation 
function, while the Denominator sums up activation 
functions. 
 
Output layer: The single neuron contained in this 
layer generates the output through division of the 
Numerator by the Denominator obtained from the 
previous layer.  

The general regression as described by [5] is 

as follows: given a vector random variable, x, and a 

scalar random variable, y, and assuming X is a 

particular measured value of the random variable y, 

the regression of y on X is given by (2) 

𝐸[𝑦|𝑋] =
∫ 𝑦𝑓(𝑋,𝑦)𝑑𝑦
∞

−∞

∫ 𝑓(𝑋,𝑦)𝑑𝑦
∞

−∞

               (2)    

If the probability density function 𝑓(𝑥, 𝑦) is unknown, 

it is estimated from a sample of observations of x and 

y. The probability estimator𝑓(𝑋, 𝑌), given by (3) is 

based upon sample values Xi and Yi of the random 

variables x and y, where n is the number of sample 

observations and  𝑝 is the dimension of the vector 

variable x. 

 

𝑓(𝑋, 𝑌) =
1

(2𝜋)(𝑝+1)/2𝜎(𝑝+1)/𝑛
.

1

𝑛
∑ exp [

(X−Xi )
T

(X−Xi )

2σ2
] . exp [

(Y−Yi)2

2σ2
]𝑛

𝑖=1              (3)                         

A physical interpretation of the probability 

estimate𝑓(𝑋, 𝑌), is that it assigns a sample probability 

of width 𝜎 (called the spread constant or smoothing 

factor) for each sample Xi and  Yi , and the probability 

estimate is the sum of those sample probabilities. 

The scalar function Di
2 is given by (4) 

 

𝐷𝑖
2 = (𝑋 − 𝑋𝑖)𝑇(𝑋 − 𝑋𝑖)           (4)   
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Combining equations (2) and (3) and interchanging 

the order of integration and summation yields the 

desired conditional mean 𝑌́(𝑋), given by (5) 

𝑌́(𝑋) =
∑ 𝑌𝑖𝑒𝑥𝑝(−

Di
2

2σ2)𝑛
𝑖=1

∑ 𝑒𝑥𝑝(−
Di

2

2σ2)𝑛
𝑖=1

                         (5) 

The only free network parameter is the smoothing 

parameter.  Neural network training involves finding 

the optimal value of the smoothing parameter, for 

which the mean squared error is minimum. As a key 

advantage over standard feed-forward neural nets, 

the GNN always converges to a global minimum and 

hence, has no issues with local minima.  It is further 

stated in [5] that when the smoothing parameter 𝜎 is 

made large, the estimated density is forced to be 

smooth and in the limit becomes a multivariate 

Gaussian with covariance σ2. On the other hand, a 

smaller value of 𝜎 allows the estimated density to 

assume non-Gaussian shapes, but with the hazard 

that wild points may have too great an effect on the 

estimate. 

IV. THE MULTI-LAYER PERCEPTRON 
NEURAL NETWORK  

As described in [8], the Multi-Layer Perceptron 
Neural Network (MLP-NN) is a feed forward neural 
network trained with the standard back propagation 
algorithm [9]. They are supervised networks so they 
require a desired response to be trained. They learn 
how to transform input data into a desired response, 
so they are widely used for pattern classification.  
With one or two hidden layers, they can approximate 
virtually any input-output map. They have been 
shown to approximate the performance of optimal 
statistical classifiers in difficult problems. 
 

 
Fig. 2:  Multilayer Perceptron Neural Network with 

one hidden layer [8] 
 
As the name implies, a MLP-NN is a network that 
comprises of an input layer, one or more hidden 
layers and an output layer. Fig. 2 shows that each 
neuron of the input layer is connected to each neuron 
of the hidden layer, and in turn, each neuron of the 
hidden layer is connected to the single neuron of the 

output layer.  As a result, signal transmission across 
the entire network can only be in the forward 
direction, i.e, from the input layer, through the hidden 
layer and eventually to the output layer. Signals 
arriving at the inputs propagate forward from neuron 
to neuron, until they finally arrive at the output neuron 
and emerge as output signals. Error signals 
propagate in the opposite direction from the output 
neuron across the network. 
 
As described in [8] the output of the MLP-NN is 
describe by (6) 
 

                                                                                 
where: 

 woj represents the synaptic weights from neuron j 
in the hidden layer to the single output neuron, 

 xi represents the i
th

 element of the input vector,   

 Fh and F0 are the activation function of the 
neurons from the hidden layer and output layer, 
respectively,  

 wji are the connection weights between the 
neurons of the hidden layer and the inputs. 

 
The learning phase of the network proceeds by 
adaptively adjusting the free parameters of the 
system based on the mean squared error E, 
described in equation (7) between predicted and 
measured path loss for a set of appropriately 
selected training examples: 
 

                           
                       

where, yi is the output value calculated by the 
network and di represents the expected output. When 
the error between network output and the desired 
output is minimized, the learning process is 
terminated and the network can be used in a testing 
phase with test vectors. At this stage, the neural 
network is described by the optimal weight 
configuration, which means that theoretically ensures 
the output error minimization. 

According to [10], a neural network with only 
one hidden layer can approximate any function with 
finitely many discontinuities to an arbitrary precision, 
provided the activation functions of the hidden units 
are non-linear. Problems that require two or more 
hidden layers are rarely encountered in practice.  

V. MATERIALS AND METHODS 

A. Received Power Measurement  
The terrain in question is the rural terrain between 
the towns of Bauchi and Darazo in Northern Nigeria. 
It is essentially a thinly populated rural area with 
scattered houses and trees mostly below 7 meters.  
Received power measurements were recorded from 
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multiple Base Stations scattered across the area. 
The instrument used was a Cellular Mobile Network 
Analyser (SAGEM OT 290) capable of measuring 
signal strength in decibel milliwatts (dBm). The mean 
isotropic radiated power and transmitter height 
provided by the mobile network operator are 46dBm 
and 40 meters respectively. The received power (PR) 
readings were recorded at a mobile height of 1.5 
meters within the 1800MHz frequency band at 
intervals of 0.2km after an initial separation of 0.1km. 
 

B. Adjusting the COST231 Hata Model 
The COST 231 Hata model was adjusted for 
improved performance in accordance with the Least 
Squares Approximation based interpolation 
technique explicitly described in [11]. By solving the 
system of normal equations (8) to determine the 
coefficients a0,a1 and a2, the path loss best fit Least 
squares function can be formulated as (9)  
 

 
 
where,  
Li  - path loss values computed from received  
        power measurements 
di - measurement intervals away from Base   
      Station  
N - number of measurements 

𝐿(𝑑) = 𝑎0 + 𝑎1𝑑 + 𝑎2𝑑2     (9) 
      
The quotients 𝑄1, 𝑄2,. 𝑄𝑁 were obtained at intervals 

𝑑1, 𝑑2,. ,𝑑𝑁 respectively, by dividing the Least 
Squares function value L(di), by the COST 231 Hata 

expression (1) designated as 𝑃L(𝑑𝑖), using (10) 
 

𝑄(𝑑𝑖) =
𝐿(𝑑𝑖)

𝑃𝐿(𝑑𝑖)
   (10) 

       
By solving the system of equation (11) to obtain the 
coefficients b0 and b1, the optimal Least Squares 

function (12) through the quotient points 𝑄1, 𝑄2,. 𝑄𝑁 is 
formulated.  
 

 
 

𝑄(𝑑) = 𝑏0 + 𝑏1𝑑          (12) 
    
 

Finally, the adjusted COST 231 Hata model is 
obtained by multiplying (1) by (12) to obtain (13). 
 

𝑃𝐿𝐴𝑑𝑗 = 𝑃𝐿 ×  𝑄(𝑑)        (13) 

 
 
 

VI. RESULTS AND ANALYSIS 
In this study, the path loss prediction models herein 
considered include the GRNN, MLP-NN, the COST 
231 Hata and the adjusted COST 231 Hata. The 
performance comparison of these models is based 
on the Root Mean Square Error (RMSE), given by 
(14), and the Coefficient of Determination (R

2
), given 

by (15). RMSE is essentially a measure of the 
differences between predicted and observed values.  
R

2
 ranges between 0 and 1, but can be negative, 

which indicates the model is inappropriate for the 
data. A value closer to 1 indicates that a greater 
proportion of variance is accounted for by the model. 
 

𝑅𝑀𝑆𝐸 = √∑
(𝑀− 𝑃)2

𝑁
𝑁
𝑖=1                             (14)                                            

    
Where,  

 M – Measured Path Loss  
 P – Predicted Path Loss  
 N- Number of paired values 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑁
𝑖=1

                            (15)                                                  

Where  
yi is the measured path loss, 
𝑦̂𝑖 is the predicted path loss and 

𝑦̅𝑖 is the mean of the measured path  
   loss values. 

 
Using the interpolation technique earlier described, 
the COST 231 Hata was interpolated onto the 
formulated best fit Least Squares function (16) 
representing the mean measured path loss values.  
 

𝐿(𝑑) = 102.5 + 15.84𝑑 − 1.38𝑑2        (16) 
       
The adjustment function obtained is (17). 
 

𝑄(𝑑) = 0.8859 + 0.0049𝑑       (17) 
       
Hence, the adjusted COST 231 Hata is given by (18), 
considering C=0 for suburban and rural areas. 
 

𝑃𝐿𝐴𝑑𝑗 = (0.8859 + 0.0049𝑑)  × (46.3 + 33.9𝑙𝑜𝑔𝑓 −

13.82𝑙𝑜𝑔ℎ𝐵 − 𝑎(ℎm) + (44.9 − 6.55𝑙𝑜𝑔ℎ𝐵)𝑙𝑜𝑔𝑑)                                             
(18) 
 
During neural network training, validation and testing, 
the set of recorded path loss values for each Base 
Station was randomly split as follows: training- 50%, 
validation-10% and 40%-testing. Figs. 3 to 8 depict 
graphical performance comparisons of the four 
predictors. It can be clearly observed that the COST 

(8) 

(11) 
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231 Hata overestimates the path loss across all the 
BTSs, while the others are convergent in 
performance. The performance indices in Table 1 
indicate that the GRNN based predictor with a RMSE 
value of 3.83dB is the most accurate of all. 
Furthermore, its R

2
 value of 0.86 indicates that it has 

the best fit. Interestingly, it can be observed that the 

adjusted COST 231 Hata model with an average 
RMSE value of 5.62dB is fairly consistent across the 
BTSs and even outperforms the MLP-NN. This is a 
testament to the effectiveness of the interpolation 
technique described in [14]. As stated earlier, the 
table shows that the COST 231 Hata overestimates 
the path loss by 16.06dB. 

 
 

Table 1: Statistical Performance Comparison of Predictors 

MODEL STATS. 
BST 

1 
BST 

2 
BST 

3 
BST 

4 
BST 

5 
BST 

6 
MEAN 

GRNN 
 

RMSE(dB) 4.47 3.60 3.23 3.27 5.43 2.95 3.83 

R
2
 0.86 0.85 0.92 0.93 0.87 0.93 0.89 

MLP-NN 
 

RMSE(dB) 5.58 5.23 9.83 8.12 6.32 5.20 6.71 

R
2
 0.60 0.69 0.27 0.54 0.82 0.79 0.62 

Adjusted COST  
231 Hata 

RMSE(dB) 8.06 5.32 5.90 5.10 5.25 4.06 5.62 

R
2
 0.57 0.87 0.83 0.87 0.89 0.91 0.82 

COST  
231 Hata 

RMSE(dB) 15.51 17.68 17.54 14.49 16.24 14.90 16.06 

R
2
 -0.14 -1.05 -0.50 -0.07 -0.10 -0.26 -0.35 

 
 

          
Fig. 3: BST 1 Model Comparison   Fig. 4: BST 2 Model Comparison 

 

 

         
Fig. 5: BST 3 Model Comparison   Fig. 6: BST 4 Model Comparison 
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Fig. 7: BST 5 Model Comparison  Fig. 8 : BST 6 Model Comparison 

 
 

VII. CONCLUSION 
This paper demonstrates that the widely used COST 
231 Hata model overestimates the path loss across a 
typical Sudan Savanna vegetation belt rural terrain 
when analyzed using data obtained at 1800MHz. 
However, models based on deep learning networks 
along with the modified COST 231 Hata offer 
significant improvements over the actual COST Hata 
model. Results indicate that the most accurate of the 
models considered is GRNN with a RMSE value of 
3.82dB, while the modified COST 231 Hata 
outperforms the MLP-NN model. 
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