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Abstract—Designing a sampling strategy for 
any environmental variable with the aim of 
defining a contour map from field surveys entails 
making decisions about sampling pattern and 
number of samples. This paper is aimed to assess 
the influence of sampling strategies on the spatial 
estimation of PM10 concentration in a quarry 
environment. An intensive field survey consisting 
in more than two hundred samples was planned to 
fully investigate the spatial variability of the 
selected area. Then systematic, random and 
stratified random sampling schemes were 
compared by means of several iterative sub-
samplings of the well known data set deriving 
from monitoring campaigns. Different grid 
resolutions were selected and their correspondent 
variograms plotted. The corresponding structural 
analysis, when compared with output from raw 
data, allowed to point out the best sampling 
approach for this phenomenon 
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I. INTRODUCTION  

The environmental impact assessment is an 
important step towards verifying the environmental 
compatibility of industrial extractive sites with sensitive 
surrounding areas ([1], [2], [3]).both during the 
planning stages of the site and while carrying out the 
urban planning of the adjoining areas ([4], [5]). In this 
framework, the spatial analysis of typical pollutants 
such as airborne PM10, [6], rather than noise levels 
([7], [8]) or ground vibrations plays a key role when a 
real time monitoring activity rather than a forecast is 
required to check the effect of emissions are 
compatible with land use, ([9]) limitations imposed by 
Laws. Therefore the pollution tests must be carried out 
not only at the beginning of the activity, but will need to 
be constantly updated as the work advances and as 

the work face of the quarry changes, [10]. 
Furthermore, while the work is underway it will be 
necessary to monitor the effects generated on certain 
receptors (generally those located in a built up area) 
where the influence of these agents is greater. 

For these reasons, in the extractive sector it may 
be necessary to include air quality measurements from 
the field, which regularly check that emissions remain 
within the limits consented by the law, alongside 
forecasts based upon PM10 dispersion models in the 
atmosphere.  

In any case a space or space-time map ([11]), 
based on data field, describing the airborne 
concentration all over the selected domain is required 
and at least useful for periodical checks. In this 
research the main sampling schemes ([12], [13], [14], 
[15]) are tested taking into account not only the 
systematic or random approach but also including the 
influence that data deriving from sampling campaign, 
such as meteorological ones ([16]), reflect on the total 
amount of samples required to describe the spatial 
trend. The main finding consists in the selection of 
stratified random sampling as the most suitable tool in 
such a phenomenon thus determining a reduction of 
costs and resources in sampling activities without a 
quality reduction in the estimation or output map. 

Traditionally, modelling methods can be classified 
into two main categories: deterministic and stochastic 
([17]). A review of the literature indicates that 
continuing improvements in remote sensing and 
geographic information systems ([18], [19]) have led to 
the incorporation of data mining models for the 
evaluation of local airborne concentration. So, many 
deterministic approaches always more detailed and 
sensitive in quarry environment ([20], [21]) and 
geostatistical ones ([22], [23], [24], []25) have been 
integrated by means of  hybrid approaches ([26], [27]). 

In this framework sampling strategy is a very 
important aspect of spatial analysis since the 
information deriving from hard data are deeply 
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influenced by sample locations and their distribution in 
spatial domain ([28], [29]). In particular, with fixed 
economic availability and with the consequent fixed 
number of potential samples, the quality of 
representation of variability structure of the variable is 
strictly dependent on the way the available information 
sources are located in the spatial domain.  

As just focused, each sampling strategy is 
opportunely applied in any well defined situation, but 
all the methods are grouped into two main divisions 
which are systematic strategies and random ones. The 
first group concerns all the methods based on regular 
division of the spatial context and the systematic 
allocation of samples, while the second one regards a 
random distribution of information sources. Systematic 
sampling strategies are based on regular distribution of 
sites of investigation, based on a simple division of the 
spatial domain in a regular grid, or by following some 
specific demand, as isovalues lines or transects. The 
main typologies are: 

- pure systematic sampling, that is based on the 
simple division of the spatial domain in a regular grid 
and on the sample allocation in each cell of such grid; 

- transect sampling, that is based on the 
distribution of each sample along defined transects; 

- isovalues sampling, that is based on the 
distribution of samples along isovalue lines of the 
investigated variable (whereas they are known). 

The main feature of such kind of methods is the 
capacity to cover uniformly the whole domain of 
investigation, and to explore with details the elements 
of the system that are partially known.  

In any cases, the common feature of such 
methodologies is the lack of relation between the 
spatial behaviour of the variable and the choice on 
samples allocation. In pure systematic sampling only 
the resolution of the grid is defined before (usually as 
function of economic availability), with no consideration 
on eventual over- or under- estimation of the field, 
while the other two methods make some assumption 
on the behaviour of the variable, but with no specific 
knowledge. 

As affirmed in the theory of the regionalized 
variable (Matheron, 1971, 1973), in some applications 
environmental variables are assumed to be well 
described by stochastic modelling, more than by 
deterministic one and the variable itself may be 
considered as a random regionalized function while 
sampled values as realizations of such a function. 
Following such principle, we can assume that the best 
way to create an unbiased sampling plan is to define it 
in a random framework. Nevertheless, a pure random 
sampling strategy can lead to an excessive economic 
waste, because a complete coverage of the domain 
may be achieved only by a large amount of samples. 
In order to join the unbiasedness of random methods 
([32]), and the complete investigation of the site, the 
random and random stratified strategy have been 
tested in this paper and then compared with the 
systematic sampling scheme.  

Such methodology is based on the random 
allocation of each sample in each cell of the regular 
grid previously created over the domain. In this way 
the complete coverage of the area is guaranteed by 
the regular grid and the unbiasedness of the 
investigation is assured by the randomness of samples 
position within the grid. 

The main problem regarding the bias introduced by 
sampling strategy regards the relationship between the 
scale of variability of the field and the scale of the 
exploration grid ([33]). When the frequency of the 
sampling method is so precise, the information at that 
scale are redundant, while the ones at other scales are 
scarce or totally missing. This is the key concept will 
be discussed in this paper. In particular, variograms 
will be used to demonstrate how stratified random 
sampling is the optimizing method for spatial analysis 
in such an application. For what concern the influence 
of sampling approach on the experimental variogram, 
two main features will be analysed in details: the small 
scale lags variability and the pairs abundance. Looking 
at the variograms computed respectively on a 
systematic and a stratified random sampled variable, 
we can note how the main differences regard the 
smallest scale investigable and the distribution of pair 
abundance among the different spatial scales. In 
particular, it is clear how in the case of systematic 
sampling the smallest lag is far to be the smallest 
investigable spatial scale and the pairs abundance is 
biased through the different spatial scales. There are 
many pairs at the multiples of the grid resolution value 
and very few at the intermediate scales. Such relevant 
features are very important for the computation of 
experimental variogram, that is deeply influenced by 
the pair distribution over the lags and that can be 
consequently interpreted in a more or less correct way 
leading to different PM10 concentration maps.  

II. MATERIALS AND METHODS 

The research work was developed in a quarry plant 
in the center of Italy whose aerial view is shown in fig. 
1.  

 

Fig. 1. An aerial view of the quarry. 

The quarrying site extracts limestone, a 
sedimentary rock comprised mainly of calcium 
carbonate, which, thanks to its natural presentation, is 
a highly sought-after non-metal mineral resource. In 
particular, it plays a key role in the construction 
industry, not only due to its wide range of applications 
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as a material for construction and decoration, but also 
since it is one of the main components in the 
manufacture of cement and lime, amongst other uses. 
Limestone is produced using opencast mining 
methods through a multiple bench system which 
consists in removing material by cutting sub vertically 
in single elements from the top of the quarry to the 
quarry floor. This result is achieved with typical 
operations including drilling and blasting, both 
designed with a specific fragmentation curve in 
accordance with the final product to be achieved. After 
blasting, the fragmented material is loaded and 
transported to the grinding and sorting plant. The 
obtained limestone can be used in the aggregate 
industry or for cement and lime, depending on the 
dimensional characteristics of the quarried material. 
The whole quarrying process includes activities 
generating airborne dust emissions whose 
characteristics have been defined by specific Norms 
([34], [35]). Consequently the airborne dust 
concentration represent a severe and critical issue all 
over the productive area and it is periodically checked 
by means of sampling campaigns. 

By collecting data deriving from seasonal checks of 
airborne PM10 a detailed database was assembled 
consisting of more than 250 samples all over the 
property involving not only the processing plant but 
also the extractive area and the haul road zone 
connecting the plant to the blasting and drilling zone. 

To carry out the monitoring program three 
nephelometers were utilised. These devises are based 
on the light scattering method for measuring mass 
concentration and are based on the Mie scattering 
theory of particles. When light strikes suspended 
particles in the air, the light scatters. For some certain 
particle properties, the intensity of the light scattered 
off the particle is proportional to its mass 
concentration. By measuring the intensity of the 
scattered light, the particle mass concentration can be 
obtained by applying the conversion coefficient.This 
method allowed a fast sampling time. In this study 
each sample had a three minute duration.  

Although sampled values were collected in different 
periods referred to about two months, under the 
hypothesis of stationarity, they were considered as 
contemporary. 

Moreover, since a full regular ten meter lag grid 
was difficult to create because of some knots were not 
accessible, an infilling procedure was carried out by 
means of a specific Gaussian simulation.  

These simulated values (32) allowed to fulfill the 
domain and to explore the variability structure in a 
more detailed way.  

In order to test the differences between the 
systematic and random sampling strategies and to 
analyse their influence on the variogram computation, 
is proposed the simulation of several iterative sub-
samplings of the known data set with different grid 
resolutions, and the computation of variographic 
analysis on them. 

The sampled airborne PM10 concentrations were 
assumed to be realizations of a random field Y=Z(x).  

The field Z was first assumed to be isotropic, thus 
leading to semivariogram functions γ(h) that were only 
functions of a single scalar variable, while in the case 
of the flexible variogram model of the field was 
assumed to be anisotropic and a semivariogram 
function γ(h)  h∈R^2 was considered. The first step in 
the applied procedure is the choice of an appropriate 
variogram model to describe the spatial correlation 
structure of the data. For the estimates based on 
isotropic variogram models, an empirical 
semivariogram was computed by the Matheron 
estimator (1973): 

 

𝛾(ℎ. 𝑘) =
1

2|𝑁(ℎ𝑘)|
∑ |𝑧(𝑥𝑖) − 𝑧(𝑥𝑗)|

2

(𝑖,𝑗)∈𝑁(ℎ𝑘)

 

 

where h_k k=1,2,N denotes a finite set of distance 
ranges for which the variogram is estimated, N(h_k 
)denotes the class of all pairs of measuremement 
points whose distance is comprised in the interval 
[h_(K-1/2),h_(k+1/2) ] and N(h_k ) is the number of 
pairs in the class h_k. 

 

III. RESULTS AND DISCUSSION 

The first experimental step consists in the statistical 
exploration of the raw data set. 

 

TABLE I.  BASIC STATISTICS 

Parameter 
Basic statistics  PM10 

concentration [µg/m3] 

Min 0.93 

Max 38.57 

Mean 16.60 

Median 16.55 

Variance 104.58 

St. dev. 10.23 

Skewness -0.04 

Kurtosis 2.11 
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Fig. 2. : Data histogram 

Experimental omnidirectional variogram was 
computed for lag = 10 mt.; # of lags = 35. 

 

Fig. 3. : Variogram of raw data 

As mentioned before, in order to examine the 
differences between the two kind of sampling 
procedures (the systematic one and the random one), 
an iterative subsampling of the original dataset has 
been implemented with different spatial resolutions. 
The ISATIS package from geovariances allows to 
compute two kinds of sampling selections on points: i) 
a regular one in which, once defined the resolution, 
samples are selected at the centre of each cell, and ii) 
a random one in which, once defined the grid, the 
samples are chosen in random way within each cell. 
Subsampling selection has been carried out for 
resolutions 20, 30, 40, 50, 60, 70 meters respectively 
for regular and random method, and experimental 
variogram has been computed for each subset. In the 
fig. 4 and 5, an example of regular and random 
subsampling for 20 mt. resolution is shown.  

 

Fig. 4. : Systematic sampling pattern 

 

Fig. 5. : Random sampling pattern 

It is clear how the total amount of spatial scales 
covered by random sampling is much more than the 
one of regular sampling, while a complete coverage of 
the spatial domain is guaranteed by both the methods. 
Structural analysis has been computed on both the 
sub sampled datasets and shown in figures 6, 7, 8 and 
9. 

 

Fig. 6. : Random sampling lag 30 
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Fig. 7. : Systematic sampling lag 30 

 

Fig. 8. : Random sampling lag 60 

 

Fig. 9. : Systematic sampling lag 60 

 

A general decrease of reliability in variograms may 
be observed. The main concern is just the way and the 
rapidity with which such variograms lose sense. The 
results of variographic analysis reveal the presence of 
many differences in the behaviour of the two groups of 
subsets. First of all the change in the histograms of the 
pairs abundance as shown in the lower part of each 
variogram. As soon as the subsampling resolution 
decreases, the numbers of pairs available for semi 
variance computation decrease uniformly in random 
approach and irregularly in systematic one. In 
particular an overabundance of pairs for lags 
coinciding with sampling scale or multiple of it are 
relevant in regular approach. The uniformity of 
information is crucial for an unbiased computation of 
semi variance values that, in this case, results poorly 
reliable. The irregular oscillation of variogram values, 
as in 10 mt. scale in regular sampling, can be 
connected just with such unbalanced abundance of 
pairs. Conversely, in random sampling, the pairs 
quantity decreases in regular way, so that, even the 
variogram being less reasonable, the semi variance 
values contributing to its shape are wholly consistent 
and affordable. 

Another very important aspect is the 
characterization of the small spatial scale variability 
that is completely lost in regular sampling after the first 
sampling scales. The systematic sampling assume to 
have one information on each cell of the grid and 
consequently to fix the smallest lag exactly to the value 
of sampling grid resolution. It leads to the complete 
lack of information regarding the microstructural 
variability and to the quantification of high nugget 
effects, often not reflecting the reality. Looking at the 
experimental variograms of figures 7 and 9 we can 
note how the small scale variability in systematic 
sampling is lost immediately and some nugget effect is 
modelled. Conversely, random sampling represents 
correctly the uniform variation of the first lags that 
reveals the homogeneity of the variable if compared 
with variogram of raw data. Going on with subsampling 
scale, we can note how the nugget effect modelled by 
systematic sampling variograms is even more evident, 
while random subsets show only a bit increase of it. 
Eventually, at the scale 60-70 mt. the systematic 
sampling variogram is somewhat a pure nugget model, 
while the random one still preserve the correct shape. 
A further step of such a comparison consists in 
quantifying the influence of sampling strategy reflects 
on the data set dimension. To this aim, the small scale 
variability was compared in terms of nugget variance 
while varying the sampling dataset consistency. In fact 
taking into account that, especially when the target is 
an environmental variable, high variations at very small 
scales are unreliable, the non zero value of the nugget 
effect, rather than be constituted by analytic variance, 
can be explained only by the sampling strategy that 
has been not able to model correctly the uniformity of 
the variable. An analytical nugget variance was so 
assessed by means of a fitting procedure in which the 
inference of the experimental variogram is based on a 
least square fit of the experimental values of 
semivariance for each lag. Such fit was made by a 
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series of nested authorized models. Among isotropic 
variograms, we have considered exponential, 
Gaussian, spherical and Nugget variogram models. 
Only exponential and spherical variogram models 
appeared to yield results sufficiently close to the 
corresponding empirical variogram over the whole 
range of spatial lags. 

So, by fitting a continuous mathematical function on 
experimental variogram we can define a nugget 
variance that is the value at zero distance of the 
analytical function. This represents an important 
parameter if referred to the homologous of variogram 
plotted from the whole data set. The graph in fig. 9 
shows the trend of nugget variance with the 
corresponding sampling methods (systematic in violet 
and random in red) when varying the data set 
dimension. As expected, the general outcome is that 
its value tends to decrease and so on to better 
describe the spatial variability when sample number 
grow up but a random selection of samples among the 
full data set determines a reduction by a factor of two 
of the corresponding nugget value.  

 

Fig. 10. : Nugget variance from regular sampling (violet) 
and random (red) 

It implies the same accuracy in spatial analysis may 
be achieved by a large reduction of samples when 
randomly collected. 

A further step towards the correct knowledge of the 
spatial phenomenon is represented by the introduction 
of anisotropy deriving from field information. In the 
framework of airborne pollutants in general, and PM10 
in particular, the main wind direction in the selected 
field, plays a crucial role in the study of spatial 
variability specially dealing with open pit quarrying 
sites. To this aim, a Calmet simulation was performed 
to define in a detailed way the wind vectorial field. In 
particular, taking into consideration meteorological 
data provided by the real time monitoring station 
property of Italian Air Force, few kilometres far from 
the area, the wind vectorial field was drawn. Results 
are shown in the polar diagram in fig. 11. When main 

directions are recorded in the selected period, the 
corresponding sector is marked and so the red zones 
represent those sectors the sampled wind direction lay 
in the selected observation time (two months). In fig. 
12 a daily trend of wind velocity is represented as for 
example. 

 

Fig. 11. : Wind polar diagram of the selected area 

 

 

Fig. 12. : Wind polar diagram of the selected area 

To appreciate this information, spatial study is 
enrich with directional variograms drawn for the same 
lag variation. In the figure 13 and 14, the systematic 
and the stratified random sampling strategy are 
compared. Directional variograms are plotted by 
means of Lag = 25 mt. # of lags = 14. 

 

Fig. 13. : Systematic sxampling lag 50 
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Fig. 14. : Random sampling lag 50 

It is clear how in the case of directional variograms 
(with zero angular tolerance) the differences between 
the two methods are even more evident. First of all for 
what concern the pairs abundance that are hardly 
biased and completely absent for lags 50 and 125 
meters in systematic approach and then for what 
concern the shape of the variograms that are much 
less meaningful and irregular. In stratified random 
strategy, the structure is kept and the original 
anisotropy is honoured too. Another consideration 
consists in investigating how the introduction of field 
information such as wind map, reflects on the quality of 
the resulting variogram. Such an objective is 
investigated by means of a comparison between 
different data set.  From one side, sub datasets are 
randomly sampled from the original database as 
shown before, and from the other one a stratified 
random selection is carried out. In this last one the 
database is divided into smaller groups according with 
sample directions and among them a random selection 
is performed with no replacement. In fig. 12 the two 
trends are shown. The first consideration to be made is 
that according to, the introduction of stratified sampling 
allow to obtain a nugget variance lower if compared 
with that obtained using the same number of samples 
with no subsampling categorization. Both the values 
tend to decrease but the stratified one tends to a more 
constant value and, when growing the entering data 
set, is much more representative and finally (250 
samples) is not calculated (variogram fitting is not 
performed) since its consistency is very low. 

 

Fig. 15. : Nugget variance computed from random sampling 
(orange) and stratified sampling (red). 

 

IV. CONCLUSIONS 

An iterative subsampling of a well known PM10 
concentration map all over a selected domain with 10 
meter resolution, for six different grid resolutions, from 
20 to 70 meters, using a systematic regular sampling 
strategy and a stratified random one has been 
simulated. Structural analysis on the subsets have 
been carried out, computing omnidirectional 
variograms for each scale and comparing results with 
the one computed on raw data. Since the first subsets, 
for which the grid resolution is reasonably high, the 
differences between the two approaches appear clear. 
The systematic sampling approach is not able to keep 
the information of the small scale variability and loses 
it, assuming an increasing nugget effect whose 
presence does not correspond to the experimental 
data outcome. Meanwhile it presents several 
unreliable oscillations, due to the biased amount of 
pairs that are denser in scale equal to the sampling 
one or in the multiples of it and few in the others. 
Conversely, variograms computed on randomly 
sampled subsets, preserve the original shape of the 
raw data variogram and, even decreasing in details 
with the increase of sampling scale, they represent 
conveniently the real variability structure of the 
variable. Such crucial differences reveal the 
importance of the choice of sampling strategy on 
environmental analysis planning. Especially for what 
concerns the spatial estimation of environmental 
variables, the correct and reasonable representation of 
the real structure of the field is a crucial aspect that 
always affects the interpretation step. As known, an 
unreliable image of the variable represents the base 
for an incorrect understanding of the real natural 
processes. If we consider the economic aspect, we 
can observe how with the same economic waste, we 
can obtain more detailed information on the subject, 
simply choosing to locate the samples in a random 
way and not over a systematic grid. This reduction 
may be very important if we consider that the same 
nugget effect is computed for two data set differing 
each other by a factor of 5. Moreover, with stratified 
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random sampling, we can appreciate a further 
reduction in the number of samples which is not 
translated into a corresponding reduction in the quality 
of the variogram, which on the contrary, remains more 
or less unchanged. 

The major findings may be summarized as follows. 
A random sampling approach proved to better fit the 
characteristics of variability of airborne PM10 
concentration than a systematic one. The same 
sample number allowed, in fact, a better variographic 
output and so on a more detailed corresponding 
estimation map.  A further improvement was observed 
when the random sampling strategy was enrich with 
the stratified approach taking into account the main 
wind direction. This addiction allowed a reduction in 
the total amount of samples without determining a 
reduction in the corresponding variogram and 
estimation map.  

In conclusion, a stratified random sampling strategy 
revealed to be the best approach to better represent 
the spatial variability of the observed phenomenon. 
The proposed selection was based on the assessment 
of the main wind direction in the temporary window in 
which samples were collected. By performing a cost 
benefits analysis the final check allowed to reduce the 
number of periodical check from 250 samples to  less 
than 60 thus determining a huge reduction of costs 
deriving from equipment usage and staff involvement. 
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