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Abstract—This paper is focused on a 
generalized Voigt model applicable to three-
dimensional stress states and suitable for the 
numerical analysis of structural systems made of 
bituminous mixtures. In this context, it is noted 
that viscoelastic-plastic models, in principle, can 
be easily and effectively utilized in the field of 
pavement analysis and design, since they require 
limited computational effort. In fact, modern 
computers and well tested algorithms are 
definitely adequate for the nonlinear analysis of 
structural systems, although elastic discrete 
models are obviously easier to handle, because 
the response to external actions is obtained by 
solving a single linear system of equations. 
Instead, even in the case of quasi-static loading 
conditions, viscous materials require an 
incremental analysis, which is carried out by 
subdividing the load history into a finite number 
of time-steps. In addition, when plastic 
deformations are considered, an iterative 
algorithm is needed to find the non-reversible 
strains during each step. 

The main objective of the paper is the estimate 
of the mechanical properties, since any material 
model can be used if it is possible to determine its 
parameters, preferably by means of simple testing 
procedures. Therefore, a linear elastic analysis 
(when reasonably applicable) represents the most 
appealing option, thanks to the additional 
advantage provided by the easy estimate of 
elastic properties, while the parameters that 
govern the response of viscous materials 
inevitably imply more difficult challenges—and 
further efforts are required in the presence of 
plastic strains. 

However, it is shown that the parameters 
concerned with viscoelastic-plastic materials can 
actually be estimated on the basis of traditional, 
simple compression tests on cylindrical 
specimens. Optimal values can be found by using 
classical system identification procedures, but we 
preferred to give attention to some special 
features of the material model discussed here and 
eventually implemented a trial and error algorithm 
specifically designed for viscoelastic-plastic 
specimens. Numerical simulations do suggest 
that the proposed approach is suitable and 

effective for the estimate of the parameters, which 
are needed to characterize these materials. 

Keywords—bituminous mixtures; deviatoric 
and isotropic stress/strain components; discrete 
numerical models; finite element method; 
parameter estimate; structural analysis; system 
identification; viscoelastic-plastic materials; Voigt 
model 

I.  INTRODUCTION 

The bituminous mixtures which are commonly used 
as flexible pavement materials are generally 
characterized by focusing on a significant stiffness 
parameter. In this context, a special role is often 
played by the complex modulus or the resilient 
modulus, which essentially quantify an 
average/equivalent elastic stiffness. These parameters 
can be determined by studying the response of 
convenient test specimens subjected to repeated 
cyclic stresses. 

Of course, if the elastic stiffness (or a sort of 
equivalent elastic stiffness) is the only mechanical 
property of interest, the end result is that the structural 
behavior of pavements is described through a simple 
elastic analysis [1-3] and a viscoelastic problem is 
changed into an associated elastic problem. 

Nonetheless, a little more effort (with minor impact 
in view of today’s computational tools) is required, if 
the behavior of bituminous mixtures is described by 
considering viscoelastic-plastic material models, 
which can take into account the non-reversible strains 
and the consequential permanent deformation of 
pavements (rutting) caused by repeated loads. 

Actually, viscoelastic-plastic materials can be 

efficiently applied in the framework of finite element 

discrete models and are able to simulate the response 

to a wide range of load conditions. For instance, these 

include quasi-static loads, load pulses (with convenient 

rest periods) and sinusoidal external forces, as shown 

in Fig. 1. Here, the plots are concerned with a 

cylindrical test specimen, which was modelled by 

exploiting the presence of two planes of symmetry and 

considering a convenient portion (Fig. 2a). The mesh 

is characterized by a regular pattern (Fig. 2b), for 

which it is possible to recognize a certain number of 

layers and dihedral angles. Of course, the number of 
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elements belonging to a given layer and a given 

dihedral angle is always the same: for instance, there 

are three elements that satisfy this condition in the 

case of the discrete model in Fig. 2b, which features 

four layers and four dihedral angles. In the end, the 

total number of elements concerned with the mesh of 

Fig. 2b is 48 (=4x4x3) and the total number of nodes is 

279 (since 15-node pentahedral and 20-node 

hexahedral elements have been used). 

Coming back to the plots in Fig. 1, it should just be 
noted that the curve on the left refers to a quasi-static 
uniaxial compression load applied during 1 s, 
maintained constant for 19 s and removed during 1 s; 
the curve in the middle is concerned with an indirect 
tension test simulated by considering pulse loads 
characterized by haversine waveforms, a rise time of 

0.125 s and a repetition period of 3 s; the curve on the 
right shows the response to a sinusoidal compressive 
load (with a 2 Hz frequency) ranging between zero 
and the peak value. 

In view of these graphs and of the typical behavior 

of bituminous mixtures, viscoelastic-plastic materials 

appear to be suitable for the structural analysis of 

pavements, but the relevant parameters are needed in 

order to obtain reliable results. 

Thus, the aim of the present paper is the estimate 

of the parameters, which are required to define the 

mechanical properties of macroscopically 

homogeneous viscoelastic-plastic materials subjected 

to multiaxial stress states. 

 

Fig. 1. Typical displacement-time plots due to different load conditions (units: mm, s). 

 

 

Fig. 2. Test specimen and discrete model. 

 

Namely, we will discuss a generalization of the 

classical Voigt model (concerned with uniaxial 

stresses) by considering three-dimensional stress 

states. We will also show that the relevant mechanical 

properties can be determined by exploiting classical 

compression tests on cylindrical specimens subjected 

to uniaxial quasi-static loads. Incidentally, it will also 

be observed that the estimates only depend on the 

actual material, while the test specimen does not have 

any influence on the results. 

It is worth noting that this final remark is not so 
obvious and insignificant as it might seem at first 
glance. For instance, as reported in the specialized 
literature and in documents concerned with standard 
testing procedures [4], the indirect tension test can be 
used to estimate a stiffness modulus, but the final 
outcome does not appear to be test-independent. 

As well known, the indirect tension test requires a 
cylindrical specimen, which is subjected to 
compression loads along two opposite surface 
segments (s1, s2) parallel to the cylinder axis (for 
instance, s1 can be the segment AB in Fig. 2b). Then, 
if we measure the diametral deformation of the 
specimen δ (in the direction which is orthogonal to the 
plane passing through the segments s1 and s2), we 
obtain an estimate of the stiffness modulus SM by 
setting SM=F∙(ν+0.27)/(δ∙w), where F is the applied load, 
ν Poisson’s ratio and w the thickness of the specimen 
[4]. 

In order to use a formula of this kind and obtain 
unique results, a well-defined size of the specimen 
should be specified. Instead, different diameters are 
usually recommended (e.g., ranging between 80 and 
200 mm [4]), as well as different values of the 
thickness (e.g., ranging between 30 and 75 mm [4]). 
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The inevitable consequence is that the estimate of the 
stiffness modulus is test-dependent or, if you prefer, 
specimen-dependent, because the diametral 
deformation δ does depend on the specimen diameter, 
unless the thickness of the cylinder tends to infinite. 
This fact can be easily checked through a simple finite 
element elastic analysis whose results are 
summarized in Table I. 

TABLE I. INFLUENCE OF THE SPECIMEN THICKNESS AND DIAMETER 

ON THE DIAMETRAL DEFORMATION. 

d [mm] w [mm] F [N] F/w 

[Nmm-1] 

δ [mm] 

80 30 112.50 3.75 0.0022896 

80 50 187.50 3.75 0.0021767 

80 60 225.00 3.75 0.0021014 

80 75 281.25 3.75 0.0020083 

80 800 3000.00 3.75 0.0020827 

200 30 112.50 3.75 0.0023245 

200 50 187.50 3.75 0.0023136 

200 60 225.00 3.75 0.0023049 

200 75 281.25 3.75 0.0022880 

200 2000 7500.00 3.75 0.0020815 

We assumed a linear elastic homogeneous 
material and different diameters d (80 mm, 200 mm), 
combined with different values of the specimen 
thickness w (30 mm, 50 mm, 75 mm, 10∙d, where the 
product 10∙d is meant to approximate the case of a 
cylinder characterized by an infinite length). 

The displacements in Tab. 1 were obtained by 
setting Young’s modulus equal to 2000 MPa and 
Poisson’s ratio equal to 0.35. The load per unit length 
(F/w) was maintained constant and the diameter did 
not appear to have any significant influence on δ only 
when w= 10∙d. 

II. VISCOELASTIC-PLASTIC MATERIALS AND 3D FINITE 

ELEMENT ANALYSIS 

In this Section, we will briefly discuss a generalized 
Voigt model and its possible applications to three-
dimensional discrete models suitable for a finite 
element structural analysis. Note that, in this context, 
the term generalized is referred to the possible 
presence of non-reversible strains and to the fact that 
multiaxial stress states can be dealt with. 

 
Fig. 3. Mechanical model for viscoelastic systems. 

A convenient starting point is the classical 
mechanical model in Fig. 3, concerned with 
viscoelastic materials [5] and uniaxial stress states. 
Here, we have a linear elastic spring, characterized by 
the stiffness parameter k, combined with a second 
elastic spring (whose stiffness parameter is g) and a 
viscous element, whose response (in turn) is 
governed by the coefficient h. Such viscous element, 

in parallel with the second spring, is typical of Voigt’s 
model. The relevant governing equation reads 

Q = k u = g u
V
 + h u

V
   (1) 

where u represents the elongation of the first spring 
and u

V
 is the viscous component of the total 

displacement (which corresponds to the elongation of 
the second spring), while the last term in (1) denotes 
the time derivative of u

V
. 

If we consider elastic moduli and a convenient 
parameter η instead of h, the above equation can be 
rewritten in terms of stresses σ and strains ε or ξ 
(elastic and viscous components of the strains): 

σ = E ε = E* ξ + η ξ   (2) 

Next, it is possible to derive a more general 
equation by introducing a relationship that takes into 
account multiaxial stress states. This can be done by 
considering two separate contributions, related to 
isotropic and deviatoric stresses/strains: 

σm = K εv = K* ξ v + η
V
 ξ v  (3a) 

sij = 2 G eij = 2 G* dij + 2 η
D
 dij  (3b) 

Here, σm=(σ11+σ22+σ33)/3 is the mean stress, 

εv=ε11+ε22+ε33 the volumetric elastic strain, ξv the 

corresponding viscous volumetric strain, sij a 
deviatoric stress component and dij a viscous 
deviatoric strain component, while K and K* denote 
bulk moduli, G and G* shear moduli, ηV 

 and ηD 

coefficients of viscosity. 

Equations (3) can be combined and rewritten in 
matrix form in order to obtain relationships, which will 
be easier to handle, when we introduce discrete finite 
element models: 

       σ = σm + s = 3 K εm + 2 G e = 

= 3 K* ξm + 2 G* d + 3 η
V
 ξm + 2 η

D
 d 

where σ=[σ11 σ22 σ33 σ12 σ23 σ31]
T, σm=[σm σm σm 0 0 0]T, 

s=[s11 s22 s33 s12 s23 s31]
T. Similarly, εm=[εv/3 εv/3 εv/3 0 0 

0]T, e=[e11 e22 e33 e12 e23 e31]
T. Of course, the vectors ξm 

and d are fully analogous to εm and e (with the 
significant entries ξv and dij instead of εv and eij). 

Note that an increment of the strain energy per unit 
volume is given by the expression (σm

T dεm+s
T M de) 

or, alternatively, (3K εm
T dεm+2G eT M de), where M is a 

diagonal matrix whose significant entries are 

M11=M22=M33=1 and M44=M55=M66=2. In fact, the scalar 

products (σm
T dεm) and (3K εm

T dεm) correspond to σm 

dεv, while the scalar products (sT M de) and (2G eT M 

de) correspond to sij deij (with i and j ranging between 
1 and 3). 

Now, it is possible to derive the elastic stiffness 
matrix of any finite element by applying the principle of 
virtual displacements, which requires the computation 
of some integrals concerned with the volume and the 
boundary (or external surface) of each element: 

. 

. 

. 
. 

(4) . . 

. 
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(7) 

(9) 

(10) 

(11) 

{σm+s}T {δεm+M δe} dV = 

= {3K εm+2G e}T {δεm+M δe} dV = (5) 

= b
T δu dV + f

T δu dS 

Here, the vectors u, b and f refer to elastic 
displacements, body forces and surface forces, 
usually defined with reference to local coordinates. As 
typical of finite element formulations, we can introduce 
a matrix of shape functions Φ, such that u=Φ uN, as 

well as the matrices BV and BD of convenient 

derivatives of the entries of the matrix Φ, in order to 
set εm=BV uN and e=BD uN, if uN denotes the vector of 

the nodal elastic displacements of the element. 
Hence, we obtain 

{σm+s}T {δεm+M δe} dV =  

   = δu
N

T [ 3K B
V

T B
V
 dV] u

N
 +  (6) 

+ δu
N

T [ 2G B
D

T M B
D
 dV] u

N
 

and 

 b
T δu dV +  f

T δu dS = 

= δu
N

T { ΦT b dV +  Φ
T f dS } = δu

N

T q
N
 

where q
N
 represents the traditional vector of 

equivalent nodal loads. 

As suggested by (6), the scalar products between 

vectors concerned with isotropic and deviatoric 

quantities disappear, since εm=[εv/3 εv/3 εv/3 0 0 0]T, 

while the first three entries of the vector {M δe} are 

δe11, δe22, δe33. Hence, in full agreement with well-

known properties related to isotropic and deviatoric 

quantities, the product (σm
T M δe) is zero, since 

σm=3Kεm and εv=e11+e22+e33. For similar reasons, we get 

s
T δεm=0. 

After computing the integrals in the square 

brackets of (6), we determine the entries of the 

stiffness matrices related to the bulk modulus K (say 

K') and the shear modulus G (say K"). Of course, we 

can set [K'+K"]=Ke, if Ke represents the traditional 

elastic stiffness matrix of the generic e-th element. 

Therefore, we can write the equation 

δu
N

T [K' + K"] u
N
 = δu

N

T K
e
 u

N
   (8) 

Obviously, (7) must be equal to (8) for any δu
N
. 

This property implies the equilibrium equation Ke 

uN=qN, from which we can proceed with the assembly 

process (in order to include the contributions due to all 
elements) and obtain the system of equations K U=Q, 
where Q and U are obviously referred to a global 
system of coordinates. Alternatively, we can end up 
with the fully analogous linear system [KV+KD] U=Q 

(with K=KV+KD) and continue to distinguish the 

contributions due to the stiffness parameters K and G. 

Next, we should apply the principle of virtual work 
by considering the same external forces and the 

quantities concerned with viscous strains. Thus, for 
any finite element we obtain 

{3 K* ξm + 2 G* d + 3 η
V
 ξm + 2 η

D
 d}T {δξm + M δd} dV = 

= δû
N

T q
N
 

Here, we can deal with the term on the left hand 

side exactly as we did with the second term in the 

chain of equations (5), by setting ξm=B
V
 û

N
 and d=B

D
 

û
N
, where û

N
 denotes nodal viscous displacements, 

usually referred to a local coordinate system. Finally, 

the linear system [SV+SD] Û+[HV+HD] Û=Q will be 

derived by means of obvious substitutions. In this 

relationship Û collects all the nodal viscous 

displacements referred to global coordinates, S
V
 and 

SD are the contributions to the elastic stiffness matrix 

concerned with the time-dependent response (i.e., the 

contributions due to the stiffness parameters K* and 

G*), H
V
 and H

D
 are the matrices that govern the 

response to the time derivatives of Û (or, in other 

words, are the matrices that depend on the viscous 

parameters ηV and ηD). 

At this stage, it is possible to carry out an 
incremental viscoelastic analysis by subdividing the 
load history into a given number of time-steps. As 
typical of time-dependent problems, we can assume 
that we know the configuration of the system (in terms 
of displacements U=Uo and Û=Ûo) at the beginning of 
each step, say at time t=to, when the vector of the 
equivalent nodal loads is Q=Qo. Of course, at time t=0, 
we have Uo=0, Ûo=0, Qo=0. 

Thus, we can compute the vector ΔU, which solves 
the elastic problem K ΔU=ΔQ, where ΔQ is the load 
increment concerned with the present time step. Next, 
we need to satisfy the equation 

[S
V
 + S

D
] {Ûo + ΔÛ (t–to)/Δt} + [H

V
 + H

D
] Û(t) = 

= K {Uo + ΔU (t–to)/Δt} 

with totto+Δt. 

As we write the above equation, we implicitly 
assume a constant velocity ΔÛ/Δt during the current 
time-step. The obvious consequence is a linear 
increment of the displacement ΔÛ, while the vector 
{[HV+HD] ΔÛ/Δt} remains constant during the entire 

time-step. Therefore, the best compromise is to satisfy 
(10) at time t=to+Δt/2, when the terms which depend 
on ΔU and ΔÛ attain their mean values during the 
time interval between to and to+Δt. This implies the 
solution of the linear system 

[S
V
 + S

D
] {Ûo + ½ΔÛ} + [H

V
 + H

D
] ΔÛ/Δt = 

= K {Uo + ½ΔU) 

in which the only unknown is the vector ΔÛ. 

When plastic strains are considered, we simply 
need to set σm=3K(εm-εp) and s=2G(e-ep) instead of 
σm=3Kεm and s=2Ge in (4), since the elastic, reversible 

. . 

. 

. 
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(12a) 

(12b) 

(14) 

components of the strains become (εm-εp) and (e-ep), 
which must replace the vectors εm and e used in (4). 

Then, by considering nodal displacements u
N
 

which also include the plastic components, we easily 

derive a couple of integrals to be algebraically added 

to (6): 

-δu
N

T{ 3K B
V

T εp dV}u
N
 = -δu

N

T [ 3K B
V

T Φ

 dV] 

e
 = 

= -δu
N

T L' 
e
 

-δu
N

T{ 2G B
D

T M ep dV}u
N
 = 

-δu
N

T [ 2G B
D

T M Φ

 dV] 

e
 = -δu

N

T L" 
e
 

where e and e collect (for each element) the values 

of εp and ep at convenient (internal) strain points, which 
usually coincide with points where the value of an 
integrand function is to be computed when numerical 
integration formulas are used. Therefore, Φ=Φ are 

the usual matrices of shape functions, which give the 
plastic strain components anywhere inside the 

elements, when εp and e
p (i.e., vectors e and e) are 

known at the selected strain points. 

In the end, instead of the system K U=Q, we shall 
deal with the governing equation 

K U – L
V
  – L

D
  = [K

V
+K

D
] U – L

V
  – L

D
  = Q   (13) 

where  and  collect the subvectors e and e. The 

same equation can also be written in incremental 
form: 

K ΔU – L
V
 Δ – L

D
 Δ = [K

V
+K

D
] ΔU – L

V
 Δ – L

D
 Δ = 

= ΔQ 

As typical of elastic-plastic problems, the solution 

in terms of incremental quantities can be found at 

each time-step by exploiting a simple iterative 

procedure. First, for a given ΔQ, a vector ΔU=ΔU1 is 

found by setting Δ=Δ=0. Next, the vectors Δ=Δ1 

and Δ=Δ1 are determined, which would satisfy the 

constitutive law at the selected strain points if the real 

incremental displacements were ΔU1. This allows one 

to compute an updated vector ΔU=ΔU2, which 

satisfies (14) for Δ=Δ1 and Δ=Δ1. The process 

shall continue until convenient measures of the 

differences {Δi–Δi-1} and {Δi–Δi-1} are below a 

given threshold. 

Of course, the finite element formulation discussed 

above does have practical relevance, if the 

parameters concerned with the material model can be 

estimated with reasonable accuracy and confidence. 

This issue is the object of the next Section. Here, 
numerical simulations of experimental tests will be 
considered and it will be shown that the required 
parameters can be effectively determined (at the very 
least) by means of quasi-static compression tests. 

III. ESTIMATE OF THE PARAMETERS NEEDED FOR THE 

GENERALIZED VOIGT MODEL 

In order to estimate the parameters required for the 

numerical viscoelastic-plastic analysis discussed in 

the paper, traditional optimization techniques can be 

considered. For instance, we performed some 

preliminary tests by using the Kalman filtering 

technique [6], which was already adopted in the past 

to estimate parameters concerned with time-

dependent problems [7, 8]. 

However, despite initial satisfactory results, we 

eventually preferred to focus on a simple trial and 

error approach, even though it is usually not 

particularly efficient under a computational point of 

view, since it tends to be time-consuming. 

Nonetheless, it seems quite interesting and valuable, 

since it is suitable to exploit typical features of the 

generalized Voigt model that represents the object of 

the present work. 

The first thing that was clear was that, 
unfortunately, the elastic constants, responsible for the 
instantaneous response of the material to external 
actions, could hardly be estimated in a direct way 
because of the dominant effects due to the viscous 
behavior (no matter what algorithm is selected to 
determine optimal values of the unknown parameters). 

 

Fig. 4. Effect of the parameters of E*, ηV, and ηD on the viscoelastic response of a cylindrical specimen 

subjected to a compression test (units: mm, s). 

However, it was also possible to notice some 

peculiarities, which proved to be very useful for the 

estimate of the parameters concerned with the 

viscoelastic, time-dependent response, which was the 

object of some initial simulations. In fact, we started 

with a simplified problem (without including non-

reversible, plastic strains) in order to focus on the 

viscous behavior of the material and check the 

feasibility of a procedure, which was only aimed at 

estimating the parameters concerned with the 
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viscoelastic response. Obviously, the final goal was 

the development of an algorithm that would be able to 

take advantage of the main features of the material 

and guarantee the convergence to the optimal 

solution with a good degree of reliability. 

As we focused on the viscoelastic response of 

specimens subjected to compression loads, we 

noticed that the plots of Figure 4 could be quite 

instructive, since they clearly showed the effect of 

different values of the elastic modulus E* (4a), 

coefficient ηV (4b) and coefficient ηD (4c) of the 

generalized Voigt model when plastic strains are ruled 

out. It was possible to observe that the largest value 

of the displacement is hardly affected by ηV and ηD, 

while it dramatically depends on Young’s modulus E* 

concerned with the time-dependent response. As 

suggested by (2), E* denotes the elastic stiffness 

parameter concerned with the generalized Voigt 

model and related to the stiffness parameters K* and 

G* in (3). Of course, it has nothing to do with the 

elastic modulus E of the material (related to K and G 

in the same equations), responsible for the 

instantaneous, instantaneously reversible response in 

terms of strains induced by given stresses. 

More precisely, the curves in the middle in the 
plots of Fig. 4 refer to the vertical deformation 
computed for a cylindrical specimen (with radius r=50 
mm and thickness w=70 mm) subjected to uniaxial 
compression, assuming E=2000 MPa, E*=320 Mpa, 
η

V
=2000 MPa s, η

D
=50 MPa s. As for Poisson’s ratio, 

we set it equal to 0.35 when we had to determine both 
the instantaneous response and the viscoelastic 
response. In other words, the bulk moduli (K and K*) 
and the shear moduli (G and G*) in (3) were computed 
by assuming the same value for Poisson’s ratio, while 
the elastic moduli were E and E*, respectively. 

The finite element method was applied by using 
the mesh in Figure 2b. As for the loading condition, 
we imposed a uniform, maximum pressure of 0.5 N 
mm

-2
 applied to the upper face, linearly increasing 

during a time interval of 1 s and maintained constant 
for 19 s. The load history was subdivided into 100 
time steps of 0.2 s. In addition, the following 
displacements of the discrete model (cf. Figure 2b) 
were constrained: normal displacements along the 
planes x=0, y=0 and z=0, as well as in-plane 
displacements of the upper face (external surface 
orthogonal to the z-axis), which was subjected to the 
external load. 

The inner curves in Figure 4 show how the 
response is affected by a 20% increment of E*, η

V
 and 

η
D
, while the outer plots are referred to a 20% 

decrement of the same parameters. Besides the 
obvious role played by the elastic modulus E* (Fig. 
4a), the most interesting (and practically useful) 
consequence of lower or higher values of the 
parameters is the influence of η

D
 on the initial slope of 

the curves, as shown by the detailed picture in Fig. 4c. 

Instead, η
V
 appears to have some effects on the 

curvature of the plot in the zone where the viscous 
strains begin to change the shape of the graphs and 
nearly horizontal branches start to develop. 

Therefore, in view of the above properties, it 
seemed reasonable to estimate the three parameters 
by considering a given set of fictitious measured 
displacements ũ and implementing a convenient trial 
and error process. Needless to say, measurements 
are fictitious since all the numerical results presented 
in this paper are referred to simulated tests. 

As already observed, in principle the elastic 
properties of the material E and ν, as well as 
Poisson’s ratio ν*, should also be considered to define 
the generalized Voigt model in a detailed way. 
However, we eventually came to the conclusion that a 
good compromise could be reached by setting 
ν=ν*=0.35 (which is a kind of usual Poisson’s ratio for 
bituminous mixture), by assuming different values of E 
and by determining the best estimates of the unknown 
parameters E*, ηV and ηD for each value of E. After 

that, it is possible to introduce a convenient error 

indicator (say ) and find out which value of E 

corresponds to the least value of . For instance, the 
error indicator can be defined as the square root of 
({uC–ũ}T {uC–ũ}/{ũ

T 
ũ}), if the vector uC denotes 

computed displacements (in this case the 
displacements determined by using ν=ν*=0.35, an 
arbitrary value of E and the parameters E*, ηV and ηD 

estimated for any selected value of E). 

Clearly, the procedure can be enhanced by 
estimating E*, ηV and ηD for different values of ν and ν* 

as well, but we always assumed ν=ν*=0.35 for the 
sample problems discussed here. 

In view of the above comments, we started with an 
iterative scheme (i.e., a possible trial and error 
process which was aimed at estimating E*, ηV and ηD 

after assuming arbitrary, realistic values of E, ν and 
ν*). Its main steps can be summarized as follows: 

1. Set i=1 in order to identify the first iteration 

2. On the basis of arbitrary initial values of η
V
 and η

D
 

(which have limited influence on the largest 

displacement), find an optimal estimate of E* by 

increasing or decreasing this parameter (with 

progressively decreasing increments or 

decrements) until a convenient measure of the 

difference between the last computed and 

measured displacement is below a given tolerance 

(say E) 

3. On the basis of an arbitrary initial value of η
V
 

(which has limited influence on the initial slope of 

the curve) and by using the estimated parameter 

E*, find an optimal value of η
D
 by increasing or 

decreasing this parameter (with progressively 

decreasing increments or decrements)  until a 

convenient measure of the difference between the 

computed and the given slope is below a given 

tolerance (say D) 
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4. On the basis of the previous estimates of E* and 

ηD, find an optimal value (ηV)i, where i denotes the 

current iteration, by increasing or decreasing this 

parameter (with progressively decreasing 

increments or decrements) with the aim of 

reducing the error indicator , until a convenient 

measure of the difference between the last two 

values of ηV is below a given tolerance (say V) 

5. On the basis of the previous estimates of the other 

parameters, find an optimal value of E* by using 

the same tolerance 
E
 and the same criterion 

adopted above (point 2) 

6. On the basis of the previous estimates of the other 

parameters, find an optimal value of η
D
 by using 

the same tolerance 
D
 and the same criterion 

adopted above (point 3) 

7. Set i=i+1 and go back to point 4 until a convenient 

measure of the difference (ηV)i–(ηV)i-1 is below a 

given threshold (say V) 

Note  that  the  steps  4-7  must  be  repeated  a  
few 

times, because the impact of ηV and ηD on the largest 

displacement and/or the initial slope cannot be 
completely ignored, even though their influence is 
actually “limited”. Similarly, E* and ηD somehow do 

affect the initial slope, while the error indicator  
obviously depends on every parameter. 

This procedure appears to be quite effective, since 
it tends to provide reasonable estimates, but poor 
accuracy is inevitable in the presence of 
measuring/modelling errors. Indeed, in the ideal case 
of a numerical simulation (without 
measuring/modelling errors) in which we also assume 
the correct values of E, ν and ν*, the search for a 
parameter E* which tends to give the correct final 
displacement and a parameter η

D
 which tends to give 

the correct initial slope of the displacement vs. time 

plot can only minimize the error indicator . Instead, 
when the selected parameters E, ν and ν* are not 
correct and/or measuring/modelling errors come into 
play (as inevitable in real cases) the proposed 
approach can still provide fairly good estimates, but a 
parameter E* that optimizes the final displacement 
and/or a parameter ηD that optimizes a certain slope 

do not necessarily lead to the minimum value of the 
error indicator, which takes into account the overall 
response of the specimen and (in this context) 
represents the most critical item. 

Therefore, it is definitely necessary to consider a 
second and last phase of the estimation process, in 
order to correct the previous estimates of the 
parameters by adopting a strategy, which aims at 

minimizing the error indicator  at each step, 
whenever a parameter is updated (not only when we 
deal with ηV, but also when positive or negative 

increments are imposed to E* and ηD). 

Again we decided to proceed through an iterative 
scheme by increasing or decreasing the unknown 

parameters with progressively decreasing increments 
or decrements. At the first iteration (or, alternatively, at 
the j-th iteration with j=1), we updated the parameters 
estimated at the end of the previous phase (first E*, 
next ηV, finally ηD) until the absolute values of the 

relevant increments or decrements were within a 

given tolerance (say ). At the end of the first iteration, 

the error indicator (say 1) was obviously less than its 

value at the end of the first phase. 

Then, we computed new values of  (say j, with 
j=2, 3, …) by using the same trial and error algorithm, 
by estimating (in turn) E*, ηV and ηD and by assuming 

(each time, as initial values) the last estimates of the a 
priori unknown parameters. The process continued 

until a convenient measure of the difference Δ=j–j-1 

was less than a given tolerance (say ). 

In order to check whether the proposed 
methodology succeeded in providing reliable 
estimates, we carried out some numerical simulations 
by generating a set of displacements (assumed as 
fictitious measured data) and tried to find optimal 
values of E*, ηV and ηD. 

The fictitious measurements (vertical deformations) 

were determined by considering the same mechanical 

properties, the same mesh, the same loading 

condition and the same time steps that provided the 

curve in the middle of each plot in Fig. 4. Next, for the 

estimate of the parameters, we used exactly the same 

discrete model and same compression load, ruling out 

modelling errors. Consequently, a correct estimate of 

the parameters was expected, provided that 

sufficiently tight tolerances had been selected. 

The trial and error algorithm was applied by 

assuming a set of different values for E (including the 

correct value E=2000 MPa) and by using, for any given 

elastic modulus, the following initial values of the 

parameters, which were assumed to be a priori 

unknown: E*=100 MPa, ηV=1 MPa s and ηD=1 MPa s 

for the estimate of E*, again ηV=1 MPa s and ηD=1 

MPa s for the estimate of ηD and ηD=1 MPa s for the 

estimate of ηD. In addition, adequate termination 

criteria were needed: 

 During the first phase, each estimation process 

aimed at finding an optimal value of the parameter 

E* was stopped when |(u
L
–û

L
)/ûL|<E

=0.01, where u
L
 

and û
L
 are the last computed and measured 

displacement, while |[*]| denotes the absolute 

value of the quantity [*]; similarly, the estimation 

process to find an optimal value of the parameter 

η
D
 was stopped when |(s–ŝ)/ŝ|<D=0.01, where 

s=Δu/ΔT and ŝ=Δû/ΔT, if Δu and Δû denote the 

differences between the increments of the 

computed and measured displacements during a 

time interval concerned with the initial portion of 

the curve (e.g., for the sample problem discussed 

here, we set ΔT=t2–t1 with t1=0.6 s and t2=1 s) 
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 As for ηV, again during the first phase, each 

estimation process was stopped when a parameter 

(ηV)i was obtained, such that ΔηV/ηV
*<V=0.001, 

where ΔηV denotes the absolute value of the last 

increment of ηV and ηV
* its penultimate estimate 

during the i-th iteration; hence, ΔηV=|(ηV)i–ηV
*| 

 During each iteration of the second phase, every 

parameter was updated until the absolute value of 

its last increment divided by the penultimate 

estimate was below the threshold =0.0001 

 The following conditions had to be satisfied in 

order to complete the two phases: |(ηV)i–(ηV)i-1|/(ηV)i-

1<V, with V=0.01, and |j–j-1|/j-1<, with 

=0.01 

By means of the numerical simulations, it was 

possible to check that the algorithm does converge 

towards the correct solution, when Young’s modulus E 

is assumed to be equal to 2000 MPa. As expected, 

the error indicator  tends to increase when an elastic 

modulus E is assumed whose difference with respect 

to the true value (2000 MPa) is larger. Some 

significant results are reported in Table II, which also 

provides the percentage errors of each estimate, 

determined by computing the ratio (Q–Ǭ)/Ǭ multiplied 

by 100, where Q denotes a certain estimate and Ǭ the 

corresponding correct parameter. 

These results seem to prove that the procedure 

envisaged in this paper is actually able to estimate the 

parameters concerned with the generalized Voigt 

model (under the assumption that a viscoelastic 

behavior can be considered). However, a material 

model must take non-reversible strains into account in 

order to properly describe the behavior of bituminous 

mixtures. Thus, we introduced plastic strains with the 

aim of enforcing constant strain rates (at each strain 

point) when the load is maintained constant, as typical 

of the so-called secondary zone [9] (which essentially 

corresponds to the nearly rectilinear branches before 

the peak values in the plots of Fig.5). 

TABLE II. INFLUENCE OF ESTIMATES OF E*, ηV AND ηD FOR ν=ν*=0.35 AND DIFFERENT VALUES OF E, WITH PERCENTAGE ERRORS IN BRACKETS 

(UNITS: MPa FOR YOUNG’S MODULI, MPa s FOR THE VISCOUS PARAMETERS). 

E 
E

*
 

(% error) 

η
V
 

(% error) 

η
D
 

(% error) 
 

1000 
3.804592e+02 

(18.8935) 
2.717463e+03 

(35.87315) 
8.310358e+01 

(66.20716) 
5.522849e-03 

1500 
3.375412e+02 

(5.481625) 
2.239279e+03 

(11.96395) 
5.868962e+01 

(17.37924) 
1.639441e-03 

2000 
3.199581e+02        
(-0.0130937) 

2.003706e+03 
(0.1853) 

4.999979e+01        
(-0.00042) 

5.619753e-05 

2500 
3.103316e+02        

(-3.021375) 
1.872460e+03        

(-6.377) 
4.555551e+01         

(-8.88898) 
9.103492e-04 

3000 
3.040467e+02        
(-4.9854063) 

1.806958e+03        
(-9.6521) 

4.281226e+01         
(-14.37548) 

1.487575e-03 
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Fig. 5. Effect of the parameters E*, ηV, ηD and β on the viscoelastic-plastic response of a cylindrical specimen 

subjected to a compression test (units: mm, s). 

More precisely, for this preliminary study we simply 
considered plastic strain rates given by the equations 

Δεp/Δt= (εm-εp)  and  Δe
p/Δt= (e-ep),  where  the  terms  

in 

brackets represent the current reversible volumetric 
and deviatoric strains, proportional to the 
corresponding stresses in the case of linear elasticity. 

As we did before while dealing with viscoelastic 
materials, we began to check how each parameter 
affects a specimen subjected to a compression test. 
The relevant results are shown in Fig. 5. 

There are clear similarities with the case of 
viscoelastic materials, since E* does affect the largest 
displacements (Fig. 5 a) and ηD the initial slopes (Fig. 

5 b). In fact, higher values of these parameters imply 
lower values of the displacements and slopes, 
respectively. Instead, ηV seems to have minor specific 

effects (cf. Fig. 5c, in which the curve characterized by 
a horizontal line on the right hand side was obtained 

with the extremely low value ηV=1 MPa s). As for , it 

is obviously responsible for the residual 
displacements (cf. Fig. 5d, in which the curve that 
tends to zero was obtained by imposing an extremely 

low value of , namely =0.0001 s
-1

). 

Apart from the curves concerned with ηV=1 MPa s 

and =0.0001 s
-1

, Fig. 5 shows the displacement-time 
plots obtained by assuming the mechanical properties 
E=4000 MPa, ν=ν*=0.35, E*=640 MPa, ηV=2000 MPa 

s, ηD=100 MPa s, =0.01 s
-1

, together with the graphs 

due to a 20% increment or a 20% reduction of E* (Fig. 

5a), ηD (Fig. 5b), ηV (Fig. 5c) and  (Fig. 5d). 

Therefore, the three curves in Figs. 5a-b and the three 
contiguous curves in Figs. 5c-d were obtained by 
considering the mechanical properties defined above 

and a 20% increment of each parameter. 

In view of the specimen response and the 
influence of the four parameters on the displacement 
vs. time plots, we used an algorithm similar to the one 
implemented for the viscoelastic case. Thus, we set 
E*=100 MPa, ηV=1 MPa s, ηD=1 MPa s and 

=0.000001 s
-1

 for the first estimate of E*. Such 
estimate was determined by imposing the condition 
|(u

P
–û

P
)/ûP

|<0.01, where u
P
 and û

P
 denote the peak 

computed and measured displacement. Then, we 
estimated ηD with the aim of optimizing the initial slope 

of the plots: as before, the trial and error process was 
stopped when |(s–ŝ)/ŝ| became less 0.01. Next, the 

error indicator, given by the scalar product ({uC–

ũ}T{uC–ũ}/{ũ
T 
ũ}), was reduced by adjusting ηV until 

ΔηV/ηV
*<0.01. As before, ΔηV denotes the absolute 

value of the last increment of ηV, while ηV
* is the 
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penultimate estimate, so that we can set |(ηV)i–

ηV
*|=ΔηV. Finally, a first estimate of the coefficient  

was found by minimizing the difference between the 
last computed and measured displacement (uL and ûL, 

respectively). In this case, the algorithm was stopped 
when |(uL–ûL)/ûL|<0.01. 

Then, we preferred to go straight to the second 

phase and adjust every parameter with the only 

objective of reducing the error indicator, without further 

attempts to improve the estimates by enforcing given 

values of significant displacements and/or initial 

slopes. Again, this second phase essentially consisted 

of an iterative procedure, whose purpose was to 

update (in turn) the parameters E*, ηV, ηD and . The 

process continued (for each parameter) until the ratio 

|Δp/p| became less than 0.01, where Δp represents the 

last increment or decrement of the parameter to be 

updated, while p denotes its penultimate estimate. 

A few results, quite encouraging, are reported in 
Table 3. They consist of a first set of estimates and 
were determined by assuming ν=ν*=0.35 and E=3000, 
4000, 5000 MPa). The final (optimal) values are 
definitely accurate when E=4000 MPa (i.e., when the 
correct elastic modulus was assumed), even if they 
were obtained by adopting a rather loose tolerance to 
stop the estimation process. In fact, the overall 

procedure was completed when |j–j-1|/j-1<=0.1, 

where j denotes the error indicator at the end of the j-
th iteration (i.e., at the end of the j-th sequence of 
operations needed to improve the estimates of the four 
unknown parameters during the second phase). The 
estimate ηV=1 MPa s, obtained for E=5000 MPa, was 

due to a lower limit imposed by the algorithm. 

TABLE III. ESTIMATES OF E*, ηV, ηD AND β (PERCENTAGE ERRORS IN BRACKETS) OBTAINED WITH THREE VALUES OF E, ν=ν*=0.35 AND =0.1 

(UNITS: MPa FOR YOUNG’S MODULI, MPa s FOR THE VISCOUS PARAMETERS, s-1
 FOR ). 

E 
E

*
 

(% error) 

ηV 

(% error) 

ηD 

(% error) 

β 

(% error) 
 

3000 
6.855077e+02 
(7.1105781) 

1.822693e+03   
(-8.86535) 

1.210076e+02 
(21.0076) 

7.895153e-02   
(-21.04847) 

4.934916e-03 

4000 
6.415035e+02  
(0. 2349219) 

1.951153e+03   
(-2.44235) 

1.004670e+02 
(0.467) 

1.009087e-01 
(0.9087) 

6.479765e-04 

5000 
6.401686e+02 
(0.0263437) 

1.000000e+00   
(-99.95) 

1.825408e+02 
(82.5408) 

1.405851e-01 
(40.5851) 

1.563920e-02 

 

As expected (and as confirmed by Table III), the 

error indicator attains its minimum value when 

Young’s modulus is assumed to be equal to the 

correct value (4000 MPa). Thus, once more the 

proposed strategy appears to be able to provide 

reliable estimates. 

The same trend can be observed if a stricter 

tolerance is imposed, as shown in Table IV, which is 

concerned with the estimates of the same parameters 

determined by setting =0.01 and =0.001. 

Also in the case of Table IV, the final estimates of 

the parameter ηV (1 MPa s), obtained by assuming an 

elastic modulus E=5000 MPa, were enforced by the 

algorithm, which set a lower limit to this parameter. 

Instead, the same results obtained for E=4000 MPa 

depend on the fact that each parameter was updated 

(with the aim of reducing the error indicator ) until the 

ratio |Δp/p| defined above was less than 0.01. Had a 

stricter tolerance been chosen, different estimates 

would have been found. algorithm. 

TABLE IV. ESTIMATES OF E*, ηV, ηD AND β (PERCENTAGE ERRORS IN BRACKETS) OBTAINED WITH THREE VALUES OF E, ν=ν*=0.35 

(UNITS: MPa FOR YOUNG’S MODULI, MPa s FOR THE VISCOUS PARAMETERS, s-1
 FOR ). 

E 
E

*
 

(% error) 

η
V
 

(% error) 

η
D
 

(% error) 

β 

(% error) 
 

() 

3000 
6.783449e+02 
(5.9913906) 

2.058673e+03 
(2.93365) 

1.174217e+02 
(17.4217) 

7.609785e-02   
(-23.90215) 

3.100872e-03 
(0.01) 

4000 
6.403298e+02 
(0.0515312) 

1.989842e+03   
(-0.5079) 

1.000875e+02 
(0.0875) 

1.001966e-01 
(0.1966) 

1.395015e-04 
(0.01) 

5000 
6.400126e+02 
(0.0019688) 

1.000000e+00   
(-99.95) 

1.814044e+02 
(81.4044) 

1.413918e-01 
(41.3918) 

1.558664e-02 
(0.01) 

3000 
6.762776e+02 

(5.668375) 
2.127554e+03 

(6.3777) 
1.166500e+02 

(16.65) 
7.526599e-02   
(-24.73401) 

2.937676e-03 
(0.001) 

4000 
6.403298e+02 
(0.0515312) 

1.989842e+03   
(-0.5079) 

1.000875e+02 
(0.0875) 

1.001966e-01 
(0.1966) 

1.395015e-04 
(0.001) 

5000 
6.407941e+02 
(0.1240781) 

1.000000e+00   
(-99.95) 

1.806522e+02 
(80.6522) 

1.419618e-01 
(41.9618) 

1.555619e-02 
(0.001) 
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Of course, a real case would require several 
estimates of the unknown parameters by assuming (at 
the very least) different values of Young’s moduli. 
However, different values of Poisson’s ratios should 
also be considered in order to obtain more accurate 
results. 

The obvious consequence is that the identification 
procedure is necessarily time-consuming. However, it 
is worth noting that reasonable, initial values of 
Young’s moduli can be determined quite easily by 
means of high-frequency measures of the vertical 
deformation during an unloading phase. Indeed, the 
displacement increments which take place during a 
very short time interval (e.g., 0.001 s) essentially 
depend on the linear elastic response. Thus, the ratio 
of the load increment per unit surface to the strain 
increment will provide a “reasonable” estimate of 
Young’s modulus. 

Obviously, the estimate will be approximate (and, 
hence, just “reasonable”) because a uniform 
stress/strain distribution would be needed in order to 
find an exact value (apart from measurement errors). 
For instance, by performing an elastic analysis with 
the discrete model utilized in this work (for which we 
assumed E=4000 MPa and enforced zero in-plane 
displacements along the loaded face, in order to 
simulate the friction between the specimen and the 
loading plate), the ratio of the load increment per unit 
surface to the strain increment turned out to be about 
3956 MPa, with an error which was slightly greater 
than 1%. 

Finally, it can be stressed that the generalized 
viscoelastic-plastic model discussed here is also 
suitable to compute the displacements of a specimen 
subjected to a static compressive creep test when the 
load is maintained constant for a relatively long time 
and the so-called tertiary deformation occurs, which is 
characterized by a large increase in compliance and 
only implies deviatoric strains [9]. As a matter of fact, 
the material model considered in this paper is based 
on a clear distinction between volumetric and 
deviatoric effects. Therefore, the behavior of a test 
specimen concerned with the tertiary zone can be 
easily described by setting ηV=0 MPa s and properly 

calibrating the viscous coefficient ηD. 

IV CLOSING REMARKSS 

A viscoelastic-plastic material model, which is able 

to deal with three-dimensional stress states and 

distinguishes deviatoric effects from volumetric 

effects, has been considered. Next, it was 

implemented in the framework of a 3D finite element 

package based on 15-node pentahedral and 20-node 

hexahedral elements. Thus, by means of simulated 

compression tests on cylindrical specimens, it was 

possible to show that the relevant parameters can be 

estimated with a satisfactory degree of accuracy. 

As a matter of fact, some preliminary results are 

quite promising and the computer package developed 

so far appears to be suitable to proceed with a further 

phase of this study, which shall certainly consist of the 

estimate of parameters concerned with real 

specimens. Of course, the same procedure shall be 

applied and, hence, the experimental data shall be 

concerned with compression tests characterized by 

single loading/unloading cycles, in full analogy with 

the simulated tests, which have been the main object 

of this paper. 

Next, at the very least, it will be necessary to 

consider specimens made of the same material, apply 

some significant load conditions (e.g., indirect tension, 

pulse loads, sine loads) and compare the experimental 

measurements with the numerical results. In this way, 

it will be possible to check whether the viscoelastic-

plastic material model presented here does succeed in 

describing the actual behavior of bituminous mixtures 

in the presence of different external forces. Clearly, this 

is an essential requirement to establish that the 

generalized Voigt model is really adequate for the 

analysis and design of pavements. 
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