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I. INTRODUCTION

LetQ be a bounded regular open set of R"(n>2).

We consider the boundary value problem for the
second order degenerate elliptic equation

{divA(x,Vu) =0, inQ

11
u=u, on 0Q ¢

where A(x,£) :QxR"a R"is a Carathéodory function
satisfying the coercivity and growth conditions: for
almost allxeQ, alléeR",

(H1) |A(x,&)| < Blef,
(H2) (A(x€),&) > ale,

wherel<p<wo 0<a<f<o u eW"(Q)is a boundary
value function.

Definiton 1.1 A function ueu,+W, " (Q) ,

max{p~ <r<p iscalled a very weak solution to
(1.2), if

[(A(x VU), Vgyax =0

holds true for any 4 EWLPZM Q) with compact support
0
inQ.

A crucial fact is thatr can be smaller than the
natural exponent P . For variational extremals the
global higher integrability of the derivative Vu has been
studied by Granlund S™in the case P=N. For this it
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seems necessary to impose a regularity condition for
Q.

We say that 0Q is r -Poincaré thick, if there is
0 < C <oosuch that for all open cube Q; — R" with side
lengthR >0, it holds

1 m %
ulfdx| <cC vu |+ dx 1.2
(IQZR lul j (J.QZR | | \J (1.2

whenever ueW"' (Q,,) , u=0 a.e. on (R"\Q)I Q,,
C
and Q! Q" #9 Lere and in the following, Q(AR)
2

, A>0, means a cube parallel to Q(R) with the same
center as Q(R) and with side length AR . See [2].
The following is the main conclusion of this paper.

Theorem 1.2  Suppose that a bounded regular
domainQ has a r-Poincaré thick boundary and that

r le , operator A satisfy conditions (H1)-(H2). If

U, eW"'(Q) is the
ueW" (Q) is the very weak solution of Dirichlet

boundary value function,

problem (1.1), then there exists Ry>0 andr, , T, ,
satisfying

n= rl(n’ p,K,RO,Ol,ﬂ,Q) <p< = rz(ni vaxRovavﬂ,Q),

such thatVr e[, p),ueW"2(Q), thenUis the weak
solution in the classical meaning.

II. PRELIMINARY LEMMAS
Let Q be a bounded regular domain, X, €Q |

0 <R <dist(x,, Q) , Q. (%) = Q, here Q:(X,) is a cube
with side length of R and a center of X, .

np
n-p

Lemma 2.1 B Let 1<p<n , 0<g< if

ueW? (B, (%)), then
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-l SR Pl @D

LP(Bg (%))

here Uz @-}BR(XO)UdXZ C is a positive

constant only dependingon P, 4, n,

mJ‘BR(XO)UdX ,

Specially, if ueW,"?(By(x,)), then

11
nf=——+1
"u"LGI B (%) <CR (q Dj ” u"u’ Br (%)) " (2-2)
( R ) ( R )

This lemma gives the dependence of embedding
n
theorem on region size. For the case q = ﬁ see [4].

This lemma is a direct corollary of theorem 7.10 and
the Holder inequality in Gilbarg-Trudinger .

This lemma also applies to cubes.

Lemma 2.28 (Hodge decomposition) Let Q< R"
be a regular domain and ueW;"(,R") ,and let
O<e<r-1,r=p—-e>max{l, p—1}.Then there exist

¢(X)ewol'ﬁ(QlRm) and a (divergence free) matrix-

field H (x) e Lﬁ (Q,R™") , such that

“Vu=Vg+H. (2.3)
Moreover

[« <Cafvul* )
where C is a constant that only depends onn,rand
Q.

Remark 2.3 It can be seen from (2.3) and (2.4),
estimates of V¢ are similar to those of (2.4).

Lemma 2.45 Suppose X andY are vectors of an
inner product space, 0<g<1. Then

2° (1+ £)

X5 X=[Y Y[ | X =Y [

Lemma 2.5® (Reverse Holder inequality) LetQ
be ann -cube. Suppose

]LQR% qo|x<¢9]L qu+c(]ﬁQ2R Ogdj ]C f 9dix

QR (%) QR (%)
for each X, €Q and eachR < %dist(xo,aQ) ARy, where

R,, b, #are constants withb>1,R, >0 ,0<6<1.
Theng e L? (Q) for peld,q+¢)and

1 1 1
pdy |° < ay | Pdy |°
Gewo)g dxj _C{(:f—QZR(XO)g dx) +(j:Q2R(XO)f dxj }

for Qr cQ , R<R, , where C and ¢ are positive
constants only depending onb ,4,4,n.

I1l. PROOF OF THEOREM 1.2

Proof. LetX €Q,Q,=Q,(%)is a cube with side

length of £ and a center of X, .¢is a sufficiently small
positive number, ' = P—¢€ . Since Q is bounded, we
can choose a cube Q = Q:; such that < Qg . Next

letQ,, =Q,. There are wo possibilities: (1) %, <
C
2

In the case (1), for Q;R CQ, fix a cutoff function

1€C(Qs.) such thatOSnS1,|V77|s%, and7=1on
2

XxeQ,. LetueW™ (Q) be a very weak solution of

problem(1.1). Consider the following Hodge
decomposition

“V(nu)=Ve+H, (3.1)

1 o
here ¢eW,*“(Q; ), Hel™(Q; ) is a (divergence
2 2
free) matrix-field, satisfying

Vel <
1-¢

(3.2)

PHP, K <CePV(u)P~. (3.3)

1-¢

Let
E@,u) =[V(nu) [* V(u)—|7Vul* nVu, (3.4)

by Lemma 2.4 we have

|E(®, u)|<2£ |uV | (3.5)

A useful technique in the following calculation is to
use ¢ in Hodge decomposition (3.1) as the test
function in Definition 1.1. Then

jQS (A(x,Vu), E(77,u)) dx

+jQ (A(x,Vu),[pVu[* 7Vu)dx (3.6)

= IQS (A(x,Vu),H)dx,

=R
2

that is
-[03 <A( XV u)gv o' pv >u c

2

:IQ3 <A(X,Vu),H>dx—jQa (A(X,Vu), E(7,u))dx
B 2 (3.7)

2 2
=1 +1,.
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Let’s first estimate the left side of formula (3.7). By the
hypothesis condition (H2) and the definition of 7 ,

Jo, {AGvWval * pvu)ex

2
= IQ 7 |[Vu| " (A(x, Vu), Vu) dx

) (3.8)
> azfcgE 7 [vul [Vl dx

R
2

> a-[QR [Vu|" dx.

The estimate of I, is given below. By the hypothesis

(H1), the Holder inequality and (3.3), we can get the
result

=T, (A vu)H)dx < [ |A(, vu)|[H|ox
2" ®
<A, vul"|H|dx 9)

—R
2

<Al R
< pee |Vl Vel

Notice that U plus a constant vector does not affect
Vuand the A -harmonic equation in (1.1) in our case,
so let’'s assume that the average integral of U on QgR

is zero, and then by using Lemma 2.1,
VOl = v+ mvul
< (uval, +[vul. )™

C
< Gl +{vul Y™ (3.10)
C =3
< (G CR[vul, +[vu].Y
<C|Vu 1;" ,
then we have
L= Cpz|vul;. (3.11)

The estimate of |, is given below. By the hypothesis
(H1), (3.5) and the definition of 7, we have

I1,| = an (A(x,Vu), E(n,u))dx

—R
2

S,BIQS [Vul"" [E(7,u)| dx
°R

2

c l+¢ p-1 1-¢
< ﬁZ EIQER |VU| |UV77| dx
2
l-¢

lte dx (3.12)

< B2 ——
P l-¢

leg _[Q3 |Vu|p—1
=R

2

u
R
1-¢

dx,

<pcl vl
<p IQERI u s

2

By Young'’s inequality, for any ¢, >0,

r u '
|1, < BCé, IQ§R|VU| dx+AC anRH dx. (3.13)
2 2

For the second integral formula at the right end of the
upper formula, take t such that max{l,i}st< r,
n+r

then by Lemma 2.1,

t
g
R

rdxsﬂCR” ]CQ Vuldx |,  (3.14)
R
2

pel,

it doesn’t effect Vuand A -harmonic equation whenu
plus a constant, so assuming the integral average of

Uijs zero in Q%R , then we have

r

t
r n t
|I2|S,BC¢9JQS [Vul" dx+ BCR st [Vul dx | . (3.15)
2f 2"
Combining the inequalities (3.7), (3.8), (3.11), (3.15),
we obtain

anR|Vu| dstﬂng§R|Vu| dx
2
+cp’equ |Vu dx (3.16)
3
=R

2
r

t
+CAR" ]‘Qs |Vu [ dx
2

Divide the two sides of the formula above by
|Qx |- @,R" (here @, is the volume of unit cube inR"),
then
r < r r
a-J-QR [Vul dx_Cﬂg-.fQER|Vu| dx +C'391j:Q§R|VU| dx
2

+CB ]Cos [Vul dx (3.17)

2

Since Q is bounded, 2<=Q; , R<R,, the formula
above becomes
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-J:QR [Vu[ dx <C(e+ Hl)fogR Vu[" dx
2
: (3.18)
t
+C fQ§R|Vu| dx
2

Let¢, 6, be small enough such thaté=C(s+6)<L.
Then

t

vu|" dx < vul dx+C vul'dx | , (3.19
f, vl oxsof, [l veec f, [vlex| | @19

—R
2 2

whereC=C(n, p,r,a, 5,R,,Q) . Noticing that the case
we considered is that r is close enough to P, then
r can be removed from the parameter of C . For
1<t<r, then (3.19) is a weak reverse Holder
inequality about Vu.

Choosing g =|Vu[, G=0 in Q%R and 9=G=0in
Qur \Q%R with g ={. Then we arrive at the following
inequality inQ,z = Q, that is

g d T g
](QRg dxsef%g dx+C(]CQ2Rgdx) +c](Q2RG dx. (3.20)

In the case (2), let w=-7"(U-u,)eW," (Qy) ,
where 7eC;(Q,) is a cutoff function, 0<sn<1

|Vr7|s%,and7751inQR.

Extending the function U—U, with zero to R"\Q
continuously. Then by Lemma 2.2, there exist

$ €W, % (Q,) @Nd H (x) € L+ (Q,,) » SUch that

VW[ vw=Vg+H

(3.21)
== |VIn" u=u,)]|” VIn" (u-up)l,
and
IRl <Ce|vin"w ~uI (3.22)
Vol <cvirw-uwil, ", (3.23)

where Cis a constant only depending onN,randQ.
Note that for Hodge decomposition (3.21), (3.22) and
(3.23), we haveu-u, =0, HandV¢ are equal to
zero whenu—u, € R"\Q. By the Minkowski inequality
and the selection of 7, we have

1

[VIn® (u-u,)]

‘<cC [||(u —U,)V||

o (3.24)
V-, ]

Noting that the boundary 0Qisr -Poincaré thick. Since
u-U, is continually zero toR"\ Q3 then by (1.2),

N
fa=v)val, <CR(], - Ju-uf o]

1

CR™ UQZR |u—u| dx)r

CR™* ('[QZR [V (u—up)[rer dxj "

=CR* (IQZRI Q|V(u —Uy)[rer dxj "

(3.25)

IA

here we usedu—U, =0inR"\ Q. Substitute the above
formula into (3.24), we get

[VIn® w-unif

n+r
nr

<C Rl(‘[QZRI JVu=up)r dxj (3.26)

+C UQzR' Q|V(u —up)[' dx]i ]H .

Then (3.22) and (3.23) are

l-¢
Joumlt

1rsdx] '

<Ce¢ R{IQ ﬂQ|V(u—u0)

n+r

de) " (3.27)

1 1-¢
+C (,[QZROQW(“_“o)rdX)r] :
l-¢

UQZR' Q|V¢|§ de

<|R* ( I, V(U dxjm (3.28)

+C (‘[QZRI Jvu- up)|’ dx): ]lg ,

By the conditions (H1), (H2), Lemma 2.4, Hodge
decomposition (3.21), and the Definition1.1, we obtain

aJ'an“‘g) |Vu|" dx
SJQ<A(X,VU),|anu|_S77”VU>dX

= jQ<A(x, Vu), |77”Vu|7£ n"vu

[P vu-u)| 7PV -u,))ox
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+J.Q<A(X,Vu),|77pV(u —u0)|7£ n°V(u-u,)
S CART) PR RN )

(A V)V (0= u)] VI (0 -u)]) o

< Cjﬂn”“‘g’ |A(X, Vu)||Vu, " dx

1-¢ 1-¢

+CIQ|A(X,VU)||V7]p

u—u,

—jﬂ(A(x,Vu),V¢+ H )dx
<CAlf "
+ J‘ 5P
+_[Q|Vu|p_l|H |dx]
@Cp[l;+1, +1g].

VU [V, [ dx

vul" vl Ju -y, dx

The estimate of I;is given below. By Young's
inequality, for any 6, >0,

- p(1-¢)
ch J.Qﬂ '

<6, [ "0 vyl dx+C | 7" [Vu,| dx (3.30)

vu|" [V, dx

r r
< HZJQZRI Q|Vu| dx +C_[QZRI Q|Vu0| dx.

The estimate of I, is given below. By Young’s
inequality, for any 6; >0,

- (p-1)(1-¢)

I, = _[977 ¢
< r(l-¢)
<0, L}n

< 93.[%' Q|Vu|r dX+C'[QzR' Q|v,7|r |u —uolf dx

1-¢

VUl V[ Ju =y, dx

vu|' dx+C_[Q|V77|r lu—u,| dx  (3.31)

For the second integral formula at the right end of the
upper formula, noticing that 6Q is r-Poincaré thick.
By (3.25) we get

ch

<CR™ UQZR' V=g dxj

o Q|V77|r |u—u,|" dx

ner (3.32)

n

Then by Minkowski inequality and the Holder
inequality, we have

n+r

(.[QZRI Q|V(u —u0)|ﬁ dX] ”

B n+r n+r "

. nr nr nr
(J-QZRI Q|VU|n+r dxj +[IQ2RI Q|Vuo|n+r de

IA

n+r

n+r 17"
< [IQ2R|Q|Vu|w dxj +CRUQ2R|Q|VUO| dx) }

dx (3.29)

n+r

<2 [UQZRIQWUW dxj +CRer2RIQ|Vu0|'dx], (3.33)

Then

n+r
n

I, < 93IQ2RI Q|Vu|r dx+CR™ UQzR' Q|Vu|ﬁ dxj

+CJ

QpRrlQ

(3.34)
[Vu, | dx.

The estimate of I; is given below. By Young's
inequality, (3.27) and the Hélder inequality, for any
0, >0, we have

I :'[Q|Vu|pfl|H|dx
<6,[ [Vu[ dx+C [H[F dx

.
< 94J'Q2RIQ|VU| dx

n+r
nr

+C{R1[IQ V) o

1 r
+c( J'QZRHJV(U—UO)rdx)r} (3.35)
< H‘JQZR' |vul dx
+C8’[Q2Rl QJV(u —uy)| dx
< 94J'Q2RI vyl dx+ CgIQzR' Jvul dx
+Cg_[Q2RI ijuor dx

Combining the inequalities (3.29),(3.30), (3.34),
(3.35), we obtain

p(1-¢)
o

<C(6,+6,+6, +5)IQ vl dx
2R

vu|" dx

N n+r (3.36)
+CR" UQ Jvuler dxj '
2R

+C-[QzR' SVl dx,

where C=C(n,p,a, 5, K, Q).

Choosing 6, , 6, , 6, and &, > 0 small enough, there
exist, = p—¢&, < p, suchthat 6=C(6,+6,+06,+¢) <1
when ¢ <¢&,. By (3.36),

r

vul"dx<of |vul dx+C th)?
-J:QRl u| X j.—QZRl u| xr (-J:QZR' u| X (3.37)

+Cf-QZR [Vu,|" dx,
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nr .
wheret=——<r. Letg =|Vu[,G =0.Then we arrive
n+r

at the following inequality when ¢ < &, that is

tdx< 6 {dx +C dx ‘
j.:gRg {—QZRg q:QZRg ) (338)

+c:]tQZR |Gt dx,

where C =C(n, p,a, £,K,Q) .Then by (3.20),(3.38) and
Lemma 2.5, there existsr’, and r'>r , such that
ueW* ' (Q). For r', repeating the above process, the
integrability of Vuis improved over and over again. In
this way, there must be an integrable exponent
and I, , satisfying I, <p<r,, such thatueW"(Q),
Vv e(r,n,). The proof is complete.
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