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Abstract— In this paper, the problem of two-
dimensional incompressible flow of boundary 
layer for micropolar fluid over an exponentially 
permeable shrinking sheet with heat generation 
and thermal radiation is considered. The 
governing equations are first transformed into a 
system of non-dimensional equations via the non-
dimensional variables, and then into self-similar 
ordinary differential equations before they are 
solved numerically using the shooting method. 
Numerical results are obtained for the skin friction 
coefficient, couple stress coefficient and heat 
transfer coefficient as well as the velocity, micro 
rotation and temperature profiles are presented 
for different values of the governing parameters. It 
is found that the solutions for a shrinking sheet 
are non-unique. The results indicate that the heat 
tranfer coeeficient decreases with heat generation  
parameter. 
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I.  INTRODUCTION  

The study of boundary layer flow and heat transfer 
in the field of fluid dynamics have a huge number of 
applications in industry and engineering. Various 
problems are investigated related to the flow and heat 
transfer of a fluid past a sheet in Newtonian and Non-
Newtonian fluids. 

 Al-Odat et al. (2006) investigated the thermal 
boundary layer on an exponentially stretching 
continuous surface with an exponential temperature 
distribution in the presence of the magnetic field effect. 
Miklavčič and Wang (2006), studied  the properties of 
the flow due to a shrinking sheet with suction. Suction 

occurs when the fluid condenses on the surface, such 
as in chemical vapour deposition. They prove 
existence and discuss (non) uniqueness of exact 
solutions. 

Sajid and Hayat (2008) analyzed the effect of 
radiation on the boundary layer flow and heat transfer 
of a viscous fluid over an exponentially stretching 
sheet. They employed the homotopy analysis method 
(HAM) to determine the convergent series expressions 
of velocity and temperature.  

Ishak and Nazar (2008) discovered the heat 
transfer over a stretching surface with uniform or 
variable heat flux in micropolar fluids. They 
transformed the boundary layer equations into ordinary 
differential equations, and then they are solved 
numerically by a finite-difference method. Bidin and 
Nazar (2009) investigated on steady laminar two-
dimensional boundary layer flow and heat transfer of 
an incompressible viscous fluid with a presence of 
thermal radiation over an exponentially stretching 
sheet 

Ishak et al. (2010) studied the effects of radiation 
on the thermal boundary layer flow induced by a 
linearly stretching sheet immerse in an incompressible 
micropolar fluid with constant surface temperature. An 
analysis is made by Bhattacharyya (2011) continue 
studied in this field by presented the boundary layer 
flow and heat transfer over an exponentially shrinking 
sheet. 

Yacob and Ishak (2012) proposed on steady two-
dimensional flow of a micropolar fluid over a shrinking 
sheet in its own plane. The shrinking velocity is 
assumed to vary linearly with the distance from a fixed 
point on the sheet. They found that the solution exists 
only if adequate suction through the permeable sheet 
is introduced. Moreover, stronger suction is necessary 
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for the solution to exist for a micropolar fluid compared 
to a classical Newtonian fluid.  

The research is then further by Bhattacharyya 
(2012). He studied the steady two-dimensional 
boundary layer flow and reactive mass transfer past an 
exponentially stretching sheet in an exponentially 
moving free stream. 

Bhattacharyya et al. (2012) discovered the effects 
of thermal radiation on the flow of micropolar fluid and 
heat transfer past a porous shrinking sheet. They 
obtained dual solutions of velocity and temperature for 
several values of the each parameter. 

Later micropolar fluid study has been extended by 
Turkyilmazoglu (2014). He investigated the flow of 
micropolar fluid and heat transfer past a porous 
shrinking sheet and determine mathematically the 
bounds of multiple existing solutions of purely 
exponential kind.  

 Recently, Hussanan et al. (2018) analyzed heat 
and mass transfer phenomenon in a micropolar fluid 
and the expressions for velocity, microrotation, 
temperature and concentration. 

The present work has been undertaken in order to 
investigate the boundary layer for micropolar fluid over 
an exponentially permeable shrinking sheet with heat 
generation and thermal radiation. 

The present study extends the idea of 
Bhattacharyya et al. (2012) to include heat generation. 
The reported results are new and original. 

 

II. MATERIAL AND METHODS 

Mathematical Formulation : Consider a steady two-
dimensional incompressible flow and heat transfer on 
a micropolar fluid over an exponentially permeable 
shrinking sheet with the usual boundary 
approximations, the governing equations for the 
micropolar fluid and heat transfer is written in the 
following form : 
 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (𝜐 +

𝜅

𝜌
)

𝜕2𝑢

𝜕𝑦2 +
𝜅

𝜌

𝜕N

𝜕𝑦
                     (2) 

 

𝑢
𝜕𝑁

𝜕𝑥
+ 𝜈

𝜕𝑁

𝜕𝑦
=

𝛾

𝜌𝑗

𝜕2𝑁

𝜕𝑦2 −
𝜅

𝜌𝑗
                                   (3) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜅∗

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2 −
1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦
+

𝑄0

𝜌𝑐𝑝
(𝑇 − 𝑇∞)  (4) 

 
Subject to boundary conditions: 
 

𝑢 = 𝑈𝑤 == −𝑎𝑒
𝑥

𝐿⁄ , 𝑣 = 𝑣𝑤 ,    𝑁 =  −𝑛
𝜕𝑢

𝜕𝑦
 , 

                  𝑇 = 𝑇𝑤 𝑎𝑡 𝑦 = 0, 𝑢 → 0,   𝑁 → 0,                   (5)    
 𝑇 → 𝑇∞   𝑎𝑠 𝑦 → ∞   

 

where 𝑢  and  𝑣  are velocity components in 𝑥  and  𝑦  

directions, 𝜈(= 𝜇 𝜌) −⁄  the kinematic fluid viscosity, 
𝜌 − the fluid density, 𝜇 −  the dynamic viscosity, 𝑁 − 
the microrotation or angular velocity whose direction is 

normal to the 𝑥𝑦 −  plane, 𝑗 −  microinertia per unit 
mass, 𝛾 −  spin gradient viscosity, 𝜅 −  the vortex 

viscosity (gyro-viscosity), 𝑇 −  the temperature, 𝜅∗ − 
the thermal conductivity of the fluid, 𝑐𝑝 − the specific 

heat, 𝑞𝑟 −  the radiative heat flux, 𝑇𝑤 −  the 
temperature at the sheet, 𝑇∞ −  the free stream 
temperature both assumed to be constant, and 𝑄0 − 

the heat generation constant. Here, 𝑣𝑤  is the wall 
mass transfer velocity with 𝑣𝑤 < 0  for mass suction 

and 𝑣𝑤 > 0  for mass injection. We note that 𝑛  is a 
constant such that 0 ≤ 𝑛 ≤ 1 . The case 𝑛 = 0 
indicates 𝑁 = 0  at the surface. It represents flow of 
concentrated particles in which the microelements 
closed to the wall surface are unable to rotate. This 
case is also known as strong concentration of 

microelements. The case 𝑛 = 0.5  indicates the 
vanishing of the anti-symmetric part of the stress 
tensor and denotes weak concentration of 
microelements. Whereas, the case 𝑛 = 1 is used for 
the modeling of turbulent boundary layer flows. We 

assumed that spin gradient viscosity 𝛾 is given by: 
 

𝛾 = (𝜇 + 𝜅 2⁄ )𝑗 = 𝜇(1 + 𝐾 2⁄ )                       (6)    
 

where 𝐾 = 𝜅 2⁄   is the material parameter and  

𝑗 = 2𝐿𝑣𝑒−𝑥 𝐿⁄ /𝑎  is the microinertia per unit mass. 
 
The governing equations (1)-(4) subject to the 
boundary conditions (5)  can be expressed in a 
simpler form by introducing the following 
transformation: 
 

𝑢 = 𝑎𝑒𝑥 𝐿⁄ 𝑓′(𝜂)     𝑣 = −√
𝑎𝑣

2𝐿
𝑒𝑥 2𝐿⁄ [𝑓(𝜂) + 𝜂𝑓′(𝜂)]                                                   

𝑁 = (
𝑎

2𝐿𝑣
) √2𝐿𝑣𝑎𝑒3𝑥 2𝐿⁄ ℎ(𝜂)                          (7) 

𝜃(𝜂) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
         𝜂 = √

𝑎

2𝐿𝑣
𝑒𝑥 2𝐿⁄ 𝑦 

 

where 𝜂  is the similarity variable and 𝜓 is the stream 

function which is defined in usual notation as 𝑢 =
𝜕𝜓

𝜕𝑦
  

and  𝑣 = −
𝜕𝜓

𝜕𝑥
 ,  which identically satisfies equation (1) 

. The ordinary differential equation is obtained by 
applying the introduce similarity transform, equation 
(7). 
 
 Substituting Eq(7) into Eq.1-3, we get the 
following ordinary differential equations: 
 

            (1 + 𝐾)𝑓′′ + 𝑓𝑓′′ − 2𝑓′2 + 𝐾ℎ′ = 0                  (8) 
      

         (1 + 𝐾 2⁄ )ℎ′′ + 𝑓ℎ′ − 3𝑓′ℎ − 𝐾(2ℎ + 𝑓′′) = 0    (9) 
 

           (1 + 𝑅)𝜃′′ + 𝑃𝑟𝑓𝜃′+𝑃𝑟𝑄𝜃′ = 0                       (10) 
 
Subject to the boundary conditions: 
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     𝑓(0) = 𝑆, 𝑓′(0) = −1, ℎ(0) = −𝑛𝑓′′(0), 𝜃(0) = 1                                                                                                     
                                                                                (11) 

                 𝑓′(∞) → 0, ℎ(∞) → 0, 𝜃(∞) → 0 
                    

Quantities for physical interest in this study are the 

local skin friction coefficient 𝐶𝑓 , local couple stress 𝑀𝑥 

, and local Nusselt number 𝑁𝑢𝑥 , which are defined as 
: 
 

 𝐶𝑓 =
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+𝜅𝑁]

𝑦=0

𝜌𝑈2𝑤
,    𝑀𝑥 =
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𝜕𝑁

𝜕𝑦
)

𝑦=0

𝜌𝑥𝑈2𝑤
  ,  

 

   𝑁𝑈𝑥 =  −
𝑥

(𝑇𝑤−𝑇∞)
(

𝜕𝑇

𝜕𝑦
)

𝑦=0
                                       (12)    

 
where  the local Reynolds number is given by 
 

 𝑅𝑒𝑥 =
𝑥𝑈𝑤

𝑣
                              (13) 

 

III. RESULTS AND DISCUSSION 

The ordinary differential equations (8), (9) and (10) 
subjected to the boundary conditions (11) has been 
solved numerically using Maple 2015. It have been 
solved numerically by applying in shooting method 
command in Maple. The purpose of this study is to 
obtain the effect of variation parameter such as 

𝐾, 𝑅 and 𝑄 on the velocity profiles  f'(η), and 
microrotation profiles h(η), and temperature profiles  
θ(η), as well as numerical results on skin friction and 
couple stress and heat transfer coefficient. 

Miklavčič (2006) and Wang (2006) and 
Bhattacharyya (2012) showed that for Newtonian fluids 
(𝐾 = 0) , the steady similarity solution of boundary 
layer flow due to a linearly shrinking sheet with wall 
mass transfer is possible to obtain if the wall mass 
suction parameter 𝑆 is greater than or equal to 2 and 
the flow due to exponentially shrinking sheet is 
possible when 𝑆 ≥ 2.2667 . 

For micropolar fluid, the present study shows that 
for 𝐾 = 0.1 , the similarity solutions exist when 𝑆 ≥
2.3213 and no similarity solution exists for 𝑆 < 2.3213. 
Further, the increment in material parameter 𝐾 causes 
more reduction in the solution suction domain.For 
𝐾 = 0.2, the similarity solution exists when 𝑆 ≥ 2.3754 
and consequently no solution exists for 𝑆 < 2.3754 . 
More numerical results for skin friction, couple stress 
and heat transfer coefficients and dimensionless 
velocity, microrotation and temperature profiles are 
computed for various values of material parameter 
𝐾(0 ≤ 𝐾 ≤ 0.2) , mass suction parameter 𝑆(𝑆 ≤ 2.6) , 
heat generation parameter 𝑄(𝑄 ≤ 1.0) , radiation 
parameter  𝑅(𝑅 ≤ 1.0) and 𝑛(0 ≤ 𝑛 ≤ 0.5). 

The variations of quantities  f''(0) which is related to 
skin friction coefficient with suction S for several values 
of material parameter K is shown in Figure 1. The dual 
similarity solutions for micropolar fluid similar to that of 
Newtonian fluid are obtained. Also, from Figure 1 it is 
observed that the skin friction coefficient decreases 
with increasing values of K for the first solution and for 

the second solution it increases. It is also observed 
from these figures that the values of skin friction 
coefficient,  f''(0) is always positive, which implies that 
the fluid exerts a drag force on the sheet and the heat 
is transferred from the hot sheet to the cold fluid, 
respectively. 
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The variations of quantities ℎ′(0) which is related to 
couple stress coefficient with suction 𝑆  for several 
values of material parameter 𝐾 is shown in Figure 2. 
Also, from Figure 2 it is observed that the couple 
stress coefficient decreases with increasing values of 
𝐾 for the first solution and for the second solution it 
increases. It is also observed from these figures that 
the values of couple stress coefficient, ℎ′(0) is always 
positive, which implies that the fluid exerts a drag force 
on the sheet and the heat is transferred from the hot 
sheet to the cold fluid, respectively. 

The variations of quantities −𝜃′(0) which is related 
to heat transfer coefficient with suction 𝑆  for several 
values of radiation parameter 𝑅 is shown in Figure 3. 
Also, from Figure 3 it is observed the heat transfer 
coefficient decreases with increasing values of 𝑅  for 
the first solution and for the second solution it 
increases. It is also observed from these figures that 
the values of heat transfer coefficient, −𝜃′(0) is always 
positive, which implies that the fluid exerts a drag force 
on the sheet and the heat is transferred from the hot 
sheet to the cold fluid, respectively. 

       

 

 

 

 

 

  The variations of quantities −𝜃′(0) which is related 
to heat transfer coefficient with suction 𝑆  for several 
values of heat generation parameter 𝑄  is shown in 
Figure 4. The dual similarity solutions for micropolar 
fluid similar to that of Newtonian fluid are obtained. 
Also, from Figure 4 it is observed the heat transfer 

coefficient decreases with increasing values of 𝑄  for 
the first solution and for the second solution it 
increases.The velocity profiles for different values of 
material parameter 𝐾 is plotted in Figure 5. For the first 
solution, the velocity and thermal boundary layer 
thicknesses increase, while opposite effect is observed 
in case of second solution as shown in Figure 5. 

The microrotation profiles for different values of 
material parameter 𝐾 is plotted in Figure 6. Figure 6 
shows that for large values of η the microrotation 
decreases for both solutions. It is also seen from these 
figures that far field boundary conditions are 
asymptotically satisfied for both first and second 
solutions, supporting the validity of the obtained 
numerical results. The temperature profiles for different 

values of radiation parameter 𝑅 is plotted in Figure 7. 
The radiation parameter 𝑅  defines the relative 
contribution of conduction heat transfer to thermal 
radiation transfer. It is obvious that an increase in the 
radiation parameter results in decreasing temperature 
within the boundary layer. 

The effect of heat generation parameter Q on the 
temperature is shown in Figure 8. From this figure, we 
observe that when the value of heat generation 
parameter increases, the temperature distribution 
decreases along the boundary layer. Figure 9 exhibit 
the velocity profiles for different. 
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Figure 9 exhibit the velocity profiles for different 

values of mass suction parameter 𝑆  . From the 
figures, it can be seen that for first solution the velocity 
and microrotation boundary layer thicknesses 
decrease with increasing values of suction, while in 
case of second solution, the opposite effect is 
observed. 

 

        Figure 10 exhibit the microrotation profiles for 
different values of mass suction parameter. From the 
figures, it can be seen that for first solution the velocity 
and microrotation boundary layer thicknesses 
decrease with increasing values of suction, while in 
case of second solution, the opposite effect is 
observed. The effect of on the dimensionless velocity 
profiles is demonstrated in Figure 11. For the first 
solution the velocity of fluid increases and 
consequently the velocity boundary layer thickness 
decreases, whereas for second solution the velocity of 
fluid decreases.  
 

 

Q = 0 , 0.5, 1.0 
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      The effect of on the dimensionless velocity profiles 
is demonstrated in Figure 12. For the first solution the 
velocity of fluid decreases and consequently the 
velocity boundary layer thickness decreases, whereas 
for second solution the velocity of fluid decreases. On 
the other hand, the microrotation profiles decreases 
for both solutions as shown in Figure 12. 
 

IV . CONCLUSION 
 

      In this study, we have studied the steady 
boundary layer flow of micropolar fluid and heat 
transfer due to an exponentially permeable shrinking 
sheet in presence of heat generation and thermal 
radiation. The problem was solved using Maple 2015 
and the obtained self-similar ordinary differential 
equations are numerically solved. From the 
investigation, it can be concluded that: 
 
•  Dual solutions for velocity, microrotation and 
temperature were found when the solution exists. 
 
• The velocity decrease for first solution and 
increase for second solution with increasing values of 
the material parameter and opposite effects were 
found for increment of mass suction. 
 
• Microrotation decreases with material 
parameter for both solutions. 
 
• The skin friction coefficient, couple stress 
coefficient and heat transfer coefficient decrease for 
first solution and increase for second solution with 
material parameter. 
 
• The fluid temperature reduces with the 
increase in values of radiation parameter and heat 
generation parameter for both solutions. 
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