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Abstract—Simultaneous Localization and 
Mapping (SLAM) is well-known problematics and 
there are plenty of suitable or less suitable 
approaches for various sensors and robots. This 
article is focused on comparing some 
approaches, which are available as the packages 
in Robot Operating System (ROS). In the 
beginning of this article, we introduce the SLAM 
problematics in general. In the next section, 
available SLAMs in ROS are compared: 
Gmapping, Hector SLAM, Karto SLAM, Lago 
SLAM, Core SLAM, and Critical Rays Scan Match 
(CRSM) SLAM. In the main body, three selected 
SLAM techniques (Gmapping, Hector SLAM and 
Karto SLAM) are compared. The results showed 
that Gmapping had the best results. Therefore, 
more complex solution was developed by the 
probabilistic model of used laser rangefinder 
(Hokuyo URG-04) implemented into Gmapping 
package. Finally, the results of Gmapping with 
and without this model are compared. Results 
showed that with well-identified measurement 
model of laser rangefinder, the quality of mapping 
was also improved.  

Keywords—SLAM, ROS, Gmapping, Hector 
SLAM, Karto SLAM, Hokuyo URG-04 

I.  INTRODUCTION  

Algorithms solving the problem of robotic 
orientation in an environment are collectively called 
SLAM - Simultaneous Localization and Mapping. In 
simple terms, it is possible to find a functional 
relationship between the robot environment mapping 
and localization tools. These two processes, i.e. 
mapping and localization have to run in parallel 
because the robot creates an environment map based 
on the knowledge of its current location. 

Historically, several approaches have been 
developed to address SLAM problematics. The main 
ones are Particle Filter SLAM, Extended Kalman Filter 
(EKF) SLAM and Graph SLAM. They all have one 
common attribute; the given task is solved by a 
statistical approach. 

The Kalman filter (KF) [1] is one of the most 
popular implementations of Bayes’ theorem. The KF 
has two distinct phases: predict and update. In the 
prediction phase, it estimates the status based on the 
previous state and control. In the update phase, the 
estimated state is combined with data from the 
sensors. Therefore, the resulting estimation is as close 

as possible to the measurement. The measured data 
are evaluated by the least square’s method, meaning 
that the resulting estimation is determined from the 
multiple values of the measured parameter based on 
the smallest measurement difference and the resulting 
value. Thereby the measurement noise is very well 
eliminated. The Kalman filter has one problem indeed - 
solving the nonlinear tasks is quite problematic. 
However, this problem is solved by EKF using the 
Jacobi matrix for the system linearization. 

The Particle filter Method [2], also known as the 
sequencing Monte Carlo or FastSLAM, uses a 
representation of probable positions of the robot, each 
representing a hypothesis. Probable estimation of 
robot position is determined based on the motion and 
environmental sensing. Algorithm initially assumes that 
the robot is likely to be located anywhere. Once the 
robot scans an environment, probable positions are 
recalculated by Bayes theorem. Based on this 
calculation, positions with the smallest match are 
eliminated, and afterwards new probable positions, 
closer to the most likely ones, are generated. 
Consequently, the positions are converging, and the 
resulting estimation of position is evaluated. 

Graph SLAM [3] is the most advanced and 
innovative SLAM approach that addresses 
weaknesses in the Particle filter (FastSLAM) and EKF 
SLAM. The solution involves creating a diagram whose 
nodes represent robot positions or reference points. 
The edges between the nodes represent encoded 
measurement information. It represents a restriction 
between the nodes. After creating this diagram, it is 
necessary to find the node configuration that will have 
the smallest error with respect to the measured data. 
This approach as particular allows the supplementary 
map modification after creating the individual parts. 
However, this can cause higher computational 
demands. It is also possible to use this type of 
algorithms for SLAM in three-dimensional space. 
Diagram-based SLAM algorithms are typically more 
effective than other approaches during the long-term 
map maintenance and as well as during the large-
scale surroundings mapping. 

II. SLAM MODULES IN ROS 

Gmapping [4] [15] is the most widely used SLAM 
package available in ROS. Implementing SLAM is 
based on Rao-Blackwellized particle filters that 
represents Particle filter with optimization adjustments. 
The input data are odometry and data from the laser 
rangefinder. The output of the described node is a map 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 6 Issue 9, September - 2019 

www.jmest.org 

JMESTN42353033 10580 

in the raster grid displaying the scanned obstacles and 
the free space. Furthermore, it displays also identified 
position and robot’s orientation in the given map [7]. 

The advantage of this package is sufficient 
documentation on developer’s websites. The package 
is easy to configure and use. With enough accurate 
odometry, it may be an advantage to use it by an 
algorithm.  This fact also helps the algorithm to work 
with the lower category of lidar. Odometry is for the 
operation of this algorithm inevitable. Therefore, the 
use of this package is limited only to cases where the 
robot has data from odometry. 

Hector SLAM [5] [16] is also one of the well-known 
and frequently used packages in ROS. It is based on 
the comparison of the scanned data, called scan 
matching with already created map or other scanned 
data. This data comparison is solved by the Gauss-
Newton Algorithm. It attempts to find optimal alignment 
of laser scan endpoints with created map. During the 
comparison of scans, the algorithm takes into account 
solely significant points. The great advantage of this 
implementation is that robot odometry is not 
necessary. Accordingly, this enables easy application 
of package into flying robots or field robots, as well. On 
the other hand, the disadvantage of this 
implementation is that in the case of a combination of 
the slow rangefinder, the absence of odometry and the 
rapid movement, a high inaccuracy occurs during the 
data comparison. This inaccuracy is also reflected in 
the resulting map. 

Karto SLAM [6] [17] is an algorithm based on the 
Graph-SLAM method developed by Karto Robotics 
with ROS extension. They achieved successful 
algorithm optimization to such an extent that the 
computational complexity is comparable to other 
SLAM algorithms. In this case, each node represents 
the position of the robot with respect to its trajectory 
and the set of sensory data. Nodal links represent a 
movement between positions immediately following 
each other. For each new node, the map is calculated 
by finding a spatial optimal node configuration. In 
some cases, there can be problem during the 
implementation caused by the insufficient package 
documentation, the small number of adjustable 
parameters and the necessity of odometry application. 

Less known modules can be found, as well. They 
are not much popular because of their out of date 
algorithms, demanding deployment, or any other 
reason that contributes to their low popularity. 

Lago SLAM [8] is based on Graph SLAM. Its 
distinction from other diagram-based SLAMs is that the 
optimization process for finding the right graph 
configuration does not require any initial estimation. 
This fact, however, causes an increase in the 
computational complexity of the algorithm. The module 
unfortunately has no information posted on the official 
ROS web site. Consequently, it is relatively difficult to 
find it. 

Core SLAM [9] uses a simple Particle filter to match 
the scanned data. Another problem is that the module 
has almost no documentation. Therefore, its 
deployment is extremely problematic. 

CRSM SLAM [10] is built on so-called scan 
matching process that is performed through a 
randomly updated climbing algorithm. Map updating is 
performed with additional dynamic intensity 
information. This information includes the relevance of 
the searched area. However, the module is used not 
often and therefore it loses support in the newer ROS 
versions [11]. 

III. TESTING THE MAIN SLAM PACKAGES IN ROS 

A space with rectangular wall structure was created 
for testing the implemented methods in ROS (Fig. 1). 
All sensor data from the laser rangefinder and 
odometry were uploaded and afterwards executed for 
each SLAM algorithm. Accordingly, maps were created 
under the same conditions [14]. Hector SLAM requires 
a laser rangefinder with an extremely short 
measurement cycle. However, the Hokuyo URG-04LX-
UG01 rangefinder does not meet this condition. In 
order to suppress this restriction, the speed of the 
robot’s movement was limited. 

 

Fig. 1. Space for testing SLAM modules; in the forefront is the KUKA 

YouBot robot that was tested. 

The map created by the gmapping package best 
describes the real environment (Fig. 2). The rendered 
environment walls have the least noise and the map 
surface is not in any way deformed. This kind of a map 
is fully sufficient for the accurate localization and 
navigation. 

 

Fig. 2. Environment map created by the gmapping package. 
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The map created by the hector_slam package 
contains an area that could not be mapped (Fig. 3). 
The reason is the lack of significant points on a long 
straight wall. The walls of the environment obviously 
contain noise and the areas are slightly deformed. 
Measured data has a relatively low repeatability and 
the algorithm has a clear problem with is. Therefore, 
Hector SLAM is only suitable for use with a higher 
class of laser rangefinder with high repeatability and 
short measurement cycle. 

 

Fig. 3. Created environment map using the hector_slam package. 

Abnormal deformation and noise of walls is visible 
in the case of a map created by the karto_slam 
package (Fig. 4). Thanks to the diagram-based 
algorithm, particularly this package is able to solve 
inaccuracies in mapping a closed space, called loop 
closing. 

 

Fig. 4. Environment map created using the karto_slam package. 

The gmapping package achieved the best match 
with the real environment. Therefore, it was selected to 
implement KUKA YouBot mobile handler control. 
Gmapping uses the Particle filter method. This method 
requires stochastic sensor and odometry models. The 
preset values of these models do not accurately 
describe the sensor's behavior on the robot. Therefore, 

it was necessary to create a model of used sensors to 
better the results of the mapping process. 

IV. SCANNING LASER RANGEFINDER HOKUYO URG-
04 STOCHASTIC MODEL 

During more complex development of solutions, 
especially in the area of mobile robotics, where the 
robot acquires data from multiple sensors, it is 
advisable to have knowledge of the data relevance 
from individual sensors [12]. Theoretically, if such 
knowledge exists, weights can be assigned to sensors, 
what makes it possible to obtain much more accurate 
results. Creating a stochastic sensor model is one of 
the ways how to determine the relevance of the sensor 
data. The model can only be created based on 
predefined parameters. Only one parameter – 
measurement repeatability - will be listed in the 
stochastic model [13]. 

50 measurements were made to evaluate the 
measurement repeatability of laser rangefinder. Each 
measurement was 500 times repeated in a short 
sequence consecutively and under the same 
conditions. Measurements were made on various 
types of materials: varnished wood, cardboard, office 
paper, black metal plate, white fabric. These objects 
were placed in front of the laser rangefinder up to 1 m, 
2 m, 3 m, 3.5 m, 4 m distances at a 90° and 45 ° 
angle. Each of these objects has specific features. The 
bright, glossy and smooth surfaces reflect the light 
very well. The dark, matte, and rough surfaces, on the 
other hand, do not reflect it, but rather absorb or 
disperse it. This stands for as well as for the 
conventional light and as for the laser rangefinder. 
From the measured data, the standard deviation was 
presented. It represents the sought repeatability of the 
measurement. The Gaussian function was used to 
graphically represent the probability. 

The highest repeatability rate was achieved in the 
repeatability measurement of the vertical 
measurement at 3 m distance. The wooden surface 
shows the best results, the white paper with fabric 
shows identical results and the black metal plate 
shows the worst results (Fig. 5). 

 

Fig. 5. Distribution of probability for laser rangefinder at 3 m distance. 
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The measurement results for determining the 
standard deviation for individual surfaces are shown in 
Tab. 1. The resulting sigma is expressed as the mean 
standard deviation of the measurements at the given 
distances. 

TABLE I.  MEASURED STANDARD DEVIATION FOR INDIVIDUAL 

MATERIALS AND TYPES OF MEASUREMENTS. 

Surface Type 
σ [mm] - 90° 

Measurement 
σ [mm] - 45° 

Measurement 

Varnished wood 4.3872 5.5417 

White textile 4.5669 5.7235 

White paper 5.3563 7.4447 

Cardboard 6.0059 8.5790 

Measurements, depending on the object’s distance, 
can be seen in the figures (Fig. 6, Fig. 7). The 
approximate 3rd order functions were defined for the 
measured points. These functions represent the 
dependence of the standard deviation from the 
measured distance. 

 

Fig. 6. Figure 6. Standard deviation approximation of the measurement 

repeatability of the laser rangefinder at the 90 ° angle with the 3rd order 

multi-nominal: 𝜎(𝑥) = 0.000037032𝑥3 + 0.000037966𝑥2 −
0.001034868𝑥 + 0.00479271

 

Fig. 7. Figure 7. Standard deviation approximation of the measurement 

repeatability of the laser rangefinder at the 45 ° angle with the 3rd order 

multi-nominal: 𝜎(𝑥) = 0.000424014𝑥3 − 0.002317497𝑥2 +
0.004646225𝑥 + 0.001744066 

The repeatability of the measurement at 45 ° angle 
is significantly worse. One reason is that the 
transmitted beam is not reflected directly to the laser 

rangefinder. This problem arises primarily for lighter 
objects that reflect the light better and behave in a 
similar way as a mirror at this time. Another reason for 
the repeatability deterioration is that the uncertainty of 
the beam routing enters the measurement. Therefore, 
the beam slightly deviates to the sides, whether to the 
right or to the left. Accordingly, the illuminated point on 
the sloping surface appears either closer or further. 
Further 3rd order approximation function of the 3rd 
order was expressed in order for the measurement 
repeatability changes with respect to the distance and 
slope of the measured object to be expressed also 
analytically. This function represents the average of 
the two previous functions: 

𝜎(𝑥) =
0.0002500𝑥3 − 0.0012220𝑥2 + 0.0018264𝑥 +
0.0032760 (1) 

For the gmapping application in ROS, one specific 
value is required to define. This value will represent 
the stochastic model and it will be represented the 
input argument. This value was determined for a 
distance of 2.5 m, because in terms of multiplicity, this 
value was the highest in the given environment. The 
reference deviation for this distance is 0.0041 m.  

V. STOCHASTIC MODEL VERIFICATION 

The SLAM gmapping module with and without the 
application of the stochastic model was used to verify 
and evaluate the created sensor model. The gmapping 
module enters not only laser rangefinder data, but also 
odometry. This fact does not allow the stochastic 
model to be fully expressed, but only partially. 
Experiments have also been adapted to this. 

In the first experiment, the mapping quality was 
evaluated assuming that the robot was static. In this 
way, the impact of odometry on the resulting map was 
limited. The map shows a wall in front of which is a 
beverage can of circular shape. The arched shape of 
the can is somewhat more evident on the map with the 
used model (Fig. 8 on the left) than in the case of a 
map without using the model (Fig. 8 on the right). 

 

Fig. 8. Figure 8. Static robot mapping: left - without the use of created 

model, on the right - with the use of created model. 

Further experiments have already been performed 
with mobile robot application, with obstacles taken 
from different positions. It is clear from the Fig. 9 that 
the use of the model eliminates noise, which ultimately 
results in a smoother and narrower display of 
obstacles. 
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Fig. 9. Figure 9. Mapping a broken wall with a mobile robot: on the left - 

without the use of model, on the right – with the use of model. 

Another experiment (Fig. 10) consisted of mapping 
the wall with a rectangular rebound. The rectangularity 
of the rebound from the wall is better captured in the 
map with the application of model. Noise has similar 
characteristics in the case of application of the 
stochastic model compared to the application without 
the stochastic model. 

 

Fig. 10. Figure 10. Mapping a broken wall with rectangular rebound: on 

the left - without the use of model, on the right – with the use of model. 

One of the gmapping output variable nodes is 
entropy. This value is an indicator of the uncertainty of 
the robot position estimate in the generating map. This 
means that the lower the value, the robot is surer in its 
position. This value changes and converges to a lower 
value each time the map is reset. After multiple 
mapping tests, it has been shown that during the 
mapping with the use of stochastic sensor model, the 
entropy rate is always lower. In this experiment the 
robot was static in order to suppress the effects of 
odometry. Such a measurement was performed ten 
times with and ten times without using a stochastic 
model. Without the model, the average entropy was 
3.40119738166, with the model 3.40119717885. The 
difference is therefore equal to only 0.00000020300. 
Although there is only minimal improvement in the 
result, the main reason is the static state of the robot. 

Another way to verify a stochastic model is to 
measure the measurement repeatability under the 
different conditions where the stochastic model was 
created, meaning different measured distance, light 
conditions, scanned material, and inclination of the 
scanned material. The laser rangefinder placed on the 
robot was placed against the artificial wall at random 
distances from 0 ° to 30 ° angle. Measurements were 
performed at a different time comparing to the 
measurements for the model creation. Consequently, 
the light conditions have changed as well. The 

robustness of the stochastic model has been verified 
using this technique. 

 

Fig. 11. Comparison of approximate repeatability with actual repeatability 

of the measurement. 

It is clear from the figure that the measured points 
lie below or in the vicinity of the approximate function. 
The stochastic model and the 0.0041 mm selected 
repeatability value are robust enough to achieve better 
mapping over the entire range of measured distances 
in SLAM algorithms. 

VI. CONCLUSION 

Based on the achieved results it can be said that 
the gmapping package has achieved the best results. 
Therefore, it has been applied for further control needs 
and improved by creating a stochastic module for the 
Hokuyo URG-04LX-UG01 Scanning Laser 
Rangefinder. Stochastic model was created based on 
one parameter, specifically the measurement 
repeatability. One specific value representing the 
stochastic model was used - σ = 0.0041 mm. This 
value has proven to be both sufficient and robust 
based on measurements and verification. However, 
there exist still occasional mistakes in mapping and 
localization. These errors were originated due to the 
inaccuracies of odometry. Odometry moreover enters 
the SLAM algorithms and greatly affects the resulting 
map or localization. Therefore, our next work will focus 
on creating a stochastic model for the chassis’ 
behavior, accordingly the KUKA YouBot robot 
odometry. 

ACKNOWLEDGMENT 

This work was supported by VEGA 1/0752/17, 
APVV-16-0006 and VEGA VEGA 1/0754/19. 

REFERENCES 

[1] F. Duchoň a A. Babinec. Localization of 
Mobile Robots. Bratislava, 2015. ISBN: 978-80-227-
4461-4. 

[2] S. Thrun, W. Burgard, and D. Fox. 
Probabilistic Robotics (Intelligent Robotics and 
Autonomous Agents). The MIT Press, 2005. ISBN: 
0262201623. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 6 Issue 9, September - 2019 

www.jmest.org 

JMESTN42353033 10584 

[3] J.L. Fernández-Madrigal, J.A. a Blanco. 
Simultaneous Localization and Mapping for Mobile 
Robots: Introduction and Methods. IGI Global, 2012. 
ISBN: 978-1466621046. 

[4] W. Burgard G. Grisetti, C. Stachniss. 
Documentation ROS package gmapping [online]. 
Avaliable online: http://openslam.org/gmapping.html. 
Cited 22.11.2017. 

[5] Documentation ROS package Hector_SLAM 
[online]. Available online: 
http://wiki.ros.org/hector_slam. Cited 25.4.2018. 

[6] Documentation ROS package Karto_SLAM 
[online]. Available online: 
http://wiki.ros.org/slam_karto. Cited 25.4.2018. 

[7] Ď. František, Ü. Róbert. SEF roboter and 
ROS: From 3D model to real-time robot control. 
Novus Scientia 2017. ISBN: 978-80-553-3080-8. 

[8] Documentation ROS package LagoSLAM 
[online]. Available online: https://github.com/rrg-
polito/rrg-polito-ros-pkg. Cited 25.4.2018. 

[9] Documentation ROS package CoreSLAM 
[online]. Available online: http://wiki.ros.org/coreslam. 
Cited 25.4.2018. 

[10] Documenatation ROS package CRSM SLAM 
[online]. Available online: 
http://wiki.ros.org/crsm_slam. Cited 25.4.2018. 

[11] J. M. Santos, D. Portugal, and R. P. Rocha. 
An evaluation of 2d slam techniques available in robot 
operating system. In 2013 IEEE International 
Symposium on Safety, Security, and Rescue Robotics 
(SSRR), pp. 1-6, Oct 2013. ISSN: 2374-3247. 

[12] P. Kocmanova, L. Zalud & A. Chromy (2013, 
August). 3D proximity laser scanner calibration. 2013 

18th International Conference on Methods & Models 
in Automation & Robotics (MMAR). 

[13] G. C. Anousaki, & K. J. Kyriakopoulos (2007). 
Simultaneous localization and map building of skid-
steered robots. IEEE Robotics & Automation 
Magazine, 14(1), pp. 79-89. 

[14] A. Filatov, K. Krinkin, B. Chen, & D.  Molodan 
(2017, November). 2d slam quality evaluation 
methods. IEEE 2017 21st Conference of Open 
Innovations Association (FRUCT), pp. 120-126. 

[15] B. M. da Silva, R. S. Xavier, T. P. do 
Nascimento, & L. M. Gonsalves (2017, November). 
Experimental evaluation of ROS compatible SLAM 
algorithms for RGB-D sensors. IEEE 2017 Latin 
American Robotics Symposium (LARS) and 2017 
Brazilian Symposium on Robotics (SBR), pp. 1-6. 

[16] Y. Abdelrasoul, A. B. S. H. Saman, & P. 
Sebastian (2016, September). A quantitative study of 
tuning ROS gmapping parameters and their effect on 
performing indoor 2D SLAM. IEEE 2016 2nd IEEE 
International Symposium on Robotics and 
Manufacturing Automation (ROMA), pp. 1-6. 

[17] L. Fang, A. Fisher, S. Kiss, J. Kennedy, C. 
Nagahawatte, R. Clothier, & J. Palmer, (2016). 
Comparative evaluation of time-of-flight depth-imaging 
sensors for mapping and slam applications. 
Proceedings of the Australian Robotics and 
Automation Association, Brisbane, Australia, pp. 5-7. 

 

 

 

 

http://www.jmest.org/

