
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 6 Issue 7, July - 2019

www.jmest.org

JMESTN42353002 10373

A Survey On Existing Network Simulators

Suleiman Abdullahi
1
, Lawal Idris Bagiwa

2
, Murtada Elmukashfi Eltaher

3
, Abubakar Aliyu

4
,

Abubakar Muhammad
5

1 & 5
Department of Mathematics and Computer Sciences, Faculty of Natural and Applied Science, Al-Qlam

University, Katsina, P.M.B. 2137 Dutsin-ma Road, Katsina State, Nigeria.
2
Department of Computer Studies, College of Science and Technology, Hassan Usman Katsina Polytechnic

P.M.B. 2052 Katsina State, Nigeria.
3
Assistant Professor - Faculty of Science - University of Bakht Alruda - Elduwiam – Sudan

4
Directorate of Information & Technology, National Open University of Nigeria, Jabi Abuja Nigeria.

Abstract—In the network research area, it is very
costly to deploy a complete test bed containing
multiple networked computers, routers and data
links to validate and verify a certain network
protocol or a specific network algorithm. The
network simulators in these circumstances save a
lot of money and time in accomplishing this task.
Network simulators are also particularly useful in
allowing the network designers to test new
networking protocols or to change the existing
protocols in a controlled and reproducible
manner.

Keywords—Network, Simulator, Simulation,
OPNET, Network Protocol

1. Introduction

 There are many things that are very important in
modern technology including the Simulation.
Simulation can be widely applied to many side fields
including in different science, engineering, or other
application fields for different purposes. Hypothetical
and real-life objects or activities on a computer can be
modeled with the help from computer assisted
simulation as a study to see how the system function
can be done. Different variables can be used to
predict the behavior of the system. Modeling and
analysis in many natural systems can be assisted by

the computer simulation. Physics, chemistry, biology,
and human-involved systems in economics, finance or
even social science are those examples of the typical
application. Other important applications are in the
engineering such as civil engineering, structural
engineering, mechanical engineering, and computer
engineering. Application of simulation technology into
networking area such as network traffic simulation,
however, is relatively new.

The network simulation in specific means the
technologies of computer assisted simulation are
being applied in the simulation of networking
algorithms or systems by using software engineering.
Field of network simulator is narrower than general
simulation. It is said to be natural that more specific
requirements will be placed on network simulations.
For instance, the network simulations may put more
emphasis on the performance or validity of a
distributed protocol or algorithm rather than the visual
or real-time visibility features of the simulations.

Moreover, since network technologies is keeping
developing very fast and so many different
organizations participate in the whole process and
they have different technologies or products running
on different software on the Internet. That is the
reasons that the network simulations always require
open platforms which should be scalable enough to
include different efforts and different packages in the
simulations of the whole network. Internet has also a
characteristic that it is structured with a uniformed
network stack (TCP/IP) that all the different layers
technologies can be implemented differently but with a
uniformed interface with their neighbored layers.
Hence, the network simulation tools have to be able to
incorporate this feature and allow different future new
packages to be included and run transparently without
harming existing components or packages. Thus the
negative impact of some packages will have no or
little impact to the other modules or packages (Bilalb
and Othmana, 2013).

There are many users for network simulators that
come from different areas. It is widely used by people
such as academic researchers, industrial developers,
and Quality Assurance (QA). Usually, the QA will use
this network simulator to help them to design,
simulate, verify, and analyze the performance of
different networks protocols. The network simulator
can also be used to evaluate the effect of the different
parameters on the protocols being studied. In brief, a
network simulator will comprise of a wide range of
networking technologies and protocols and help users
to build complex networks from basic building blocks
like clusters of nodes and links. With the help from this
network simulator, different network topologies using
various types of nodes including end-hosts, hubs,
network bridges, routers, optical link-layer devices,
and mobile units can be design.

Basic concepts in network simulation: Network
simulation and simulator

Basically, the network simulators try to model the
real world networks. The principal idea is that if a
system can be modeled, then features of the model
can be changed and the corresponding results can be
analyzed. As the process of model modification is
relatively cheap than the complete real
implementation, a wide variety of scenarios can be
analyzed at low cost (relative to making changes to a

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 6 Issue 7, July - 2019

www.jmest.org

JMESTN42353002 10374

real network). Nevertheless, network simulators are
not perfect. They cannot perfectly model all the details
of the networks. However, if well modeled, they will be
close enough so as to give the researcher a
meaningful insight into the network under test, and
how changes will affect its operation(Font et al.,
2011).

Simulation and emulation

In the research area of computer and
communications networks, simulation is a useful
technique since the behavior of a network can be
modeled by calculating the interaction between the
different network components (they can be end-host
or network entities such as routers, physical links or
packets) using mathematical formulas. They can also
be modeled by actually or virtually capturing and
playing back experimental observations from a real
production networks. After we get the observation
data from simulation experiments, the behavior of the
network and protocols supported can then be
observed and analyzed in a series of offline test
experiments. All kinds of environmental attributes can
also be modified in a controlled manner to assess how
the network can behave under different parameters
combinations or different configuration conditions.
Another characteristic of network simulation that worth
noticing is that the simulation program can be used
together with different applications and services in
order to observe end-to-end or other point-to-point
performance in the networks(Kumar et al., 2012).

Network emulation, however, means that network
under planning is simulated in order to assess its
performance or to predict the impact of possible
changes, or optimizations. The major difference lying
between them is that a network emulator means that
end-systems such as computers can be attached to
the emulator and will act exactly as they are attached
to a real network. The major point is that the network
emulator's job is to emulate the network which
connects end-hosts, but not the end-hosts
themselves. Typical network emulation tools include
NS2 which is a popular network simulator that can
also be used as a limited-functionality emulator. In
contrast, a typical network emulator such as WANsim
is a simple bridged WAN emulator that utilizes some
Linux functionality(Kumar et al., 2012).

Type of network simulators

There are different types of network simulators that
can be categorized and explained based on some
criteria such as if they are commercial or free, or if
they are simple ones or complex ones.

Commercial and open source simulators

Some of the network simulators are commercial
which means that they would not provide the source
code of its software or the affiliated packages to the
general users for free. All the users have to pay to get
the license to use their software or pay to order
specific packages for their own specific usage

requirements. One typical example is the OPNET .
Commercial simulator has its advantage and
disadvantage. The advantage is that it generally has
complete and up-to-date documentations and they
can be consistently maintained by some specialized
staff in that company. However, the open source
network simulator is disadvantageous in this aspect,
and generally there are not enough specialized people
working on the documentation. This problem can be
serious when the different versions come with many
new things and it will become difficult to trace or
understand the previous codes without appropriate
documentations(Martinez et al., 2011).

On the contrary, the open source network
simulator has the advantage that everything is very
open and everyone or organization can contribute to it
and find bugs in it. The interface is also open for
future improvement. It can also be very flexible and
reflect the most new recent developments of new
technologies in a faster way than commercial network
simulators. We can see that some advantages of
commercial network simulators, however, are the
disadvantage for the open source network simulators.
Lack of enough systematic and complete
documentations and lack of version control supports
can lead to some serious problems and can limit the
applicability and life-time of the open source network
simulators. Typical open source network simulators
include NS2. We will introduce and analyze it in great
detail in the following sections(Issariyakul and
Hossain, 2012).

Table 1 Example of Network simulators

 Network simulators name

Commercial OPNET, QualNet

Open source NS2, NS3, OMNeT++, SSFNet, J-Sim

Simple vs. complex

Currently there are a great variety of network
simulators, ranging from the simple ones to the
complex ones. Minimally, a network simulator should
enable users to represent a network topology, defining
the scenarios, specifying the nodes on the network,
the links between those nodes and the traffic between
the nodes. More complicated systems may allow the
user to specify everything about the protocols used to
process network traffic. Graphical applications also
allow users to easily visualize the workings of their
simulated environment. Some of them may be text-
based and can provide a less visual or intuitive
interface, but may allow more advanced forms of
customization. Others may be programming-oriented
and can provide a programming framework that allows
the users to customize to create an application that
simulates the networking environment for testing(Pan
and Jain, 2008).

Overview of current developments

Currently there are many network simulators that
have different features in different aspects. A short list
of the current network simulators includes OPNET,

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 6 Issue 7, July - 2019

www.jmest.org

JMESTN42353002 10375

NS-2, NS-3, OMNeT++, REAL, SSFNet, J-Sim, and
QualNet. From the example list of those network
simulators, only certain from it will be analyzed and
compare in more detail including the NS-2, OMNet++,
OPNET and J-Sim(Pan and Jain, 2008).

From the list selected, the OPNET is commercial
software and is a little different from others and we will
introduce in the first place. NS2 are the most popular
one in academia because of its open-source and
plenty of components library. A lot of non-benefit
organizations contribute a lot in the components
library and it has been proved that the development
mode of NS2 is very successful. OMNet++ is another
important network simulator which has very powerful
graphical interface and modular core design.
OMNet++ is also open sourced and widely
acknowledged in academia(Pan and Jain, 2008).

OPNET

OPNET is the registered commercial trademark
and the name of product presented by OPNET
Technologies incorporation. It is one of the most
famous and popular commercial network simulators
by the end of 2008. Because of it has been used for a
long time in the industry, it become mature and has
occupied a big market share (Sarkar and Halim,
2011).

Overview of OPNET

OPNET is specially used in network research and
development. By using OPNET, user will be able to
study the communication of network, the devices,
protocols or even the application flexibly. It can be
flexibly used to study communication networks,
devices, protocols, and applications. OPNET offers
relatively much powerful visual or graphical support
for the users as it has a fact of being a flexible and
commercial software provider. In order to build
network topology and entities from the application
layer to the physical layer user may used the
graphical editor interface and for process of mapping
from graphical design to the implementation of the
real systems can be done by using the object-oriented
programming technique . It can be seen from the
figure 1 that shows the example of the graphical GUI
of OPNET. The configuration and simulation results of
all topology can be presents intuitively and visually.
Easy operation through the GUI causes the
parameters to be adjusted and also the experiments
can be repeated easily.

Figure 1. OPNET GUI [OPNET]

OPNET is based on a mechanism called discrete
event system which means that the system behavior
can simulate by modeling the events in the system in
the order of the scenarios the user has set up.
Organization of networks is done by hierarchical
structure. OPNET also provide programming tools to
allow users to define the protocol’s packet format as
like what the other network simulators provides.
Besides to define the protocol’s packet format, the
programming tools provides by the OPNET are also
required in order to help in accomplish several tasks
as such of defining the state transition machine,
defining network model and also the process module
(Sarkar and Halim, 2011).

All in all, OPNET is a popular simulator used in
industry for network research and development. The
GUI interface and the programming tools helps a lot
user to build the system that they want.

Main features of OPNET

Three main functions of OPNET are such as:
modeling, simulating, and analysis. In modeling, the
intuitive graphical environment is provides in order to
create all kinds of models of protocols. There are 3
different advanced simulations technologies used in
simulating as it can be used to address a wide range
of studies and for analysis, the simulation results and
data can be analyzed and displayed very easily.
Graphs, charts, statistics, and even animation are
very user friendly and can be generated by OPNET
for users ' convenience (Sundani et al., 2011).

According to the OPNET whitepaper, OPNET’s
detailed features include those that listed below:

1. Fast discrete event simulation engine

2. Lot of component library with source code

3. Object-oriented modeling

4. Hierarchical modeling environment

5. Scalable wireless simulations support

6. 32-bit and 64-bit graphical user interface

7. Customizable wireless modeling

http://www.jmest.org/
http://www.cs.wustl.edu/~jain/cse567-08/ftp/simtools/index.html#OPNET

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 6 Issue 7, July - 2019

www.jmest.org

JMESTN42353002 10376

8. Discrete Event, Hybrid, and Analytical simulation

9. 32-bit and 64-bit parallel simulation kernel

10. Grid computing support

11. Integrated, GUI-based debugging and analysis

12. Open interface for integrating external
component libraries.

Recent development of OPNET and its future

On August 7, 2008, OPNET Technologies
announced the addition of two major application
performance management capabilities. It includes
end-to-end visibility into application performance for
organizations using WAN optimization solutions and
the ability to capture and analyze NetFlow data
(Martinez et al., 2011).

ACE Analyst software has been upgraded by
OPNET recently including its functionality and it is
announced to allow end-user organizations using
Riverbed, Cisco, or Juniper WAN optimization
appliances to maintain end-to-end visibility into
application performance while deploying WAN
acceleration solutions. OPNET also provides a
module to collect and analyze NetFlow data (Martinez
et al., 2011).

Because of the consistent endeavor and operation
of OPNET Inc., OPNET is becoming mature and its
product maintain a high acknowledge in the industry.
Moreover, OPNET always keeps an eye on the most
recent users's requirements and keeps improving their
product which make it very competitive compared with
other commercial network simulators in the near
expectable future (Martinez et al., 2011).

Network Simulator 2 (NS-2)

NS2 is one of the most popular open source
network simulators. The original NS is a discrete
event simulator targeted at networking research. In
this section, we will give a brief introduction to the
NS2 system (Font et al., 2011).

Overview of NS-2

NS2 is the second version of NS (Network
Simulator). NS is originally based on REAL network
simulator. The first version of NS was developed in
1989 and evolved a lot over the past few years. The
current NS project is supported through DARPA. The
current second version NS2 is widely used in
academic research and it has a lot of packages
contributed by different non-benefit groups. For NS2
documentation on recent changes, refer to the NS-2
official webpage (Font et al., 2011).

Main features of NS-2

First and foremost, NS2 is an object-oriented,
discrete event driven network simulator which was
originally developed at University of California-
Berkely. The programming it uses is C++ and OTcl
(Tcl script language with Object-oriented extensions
developed at MIT). There are some reasons on the

usage of these two programming language. The main
reason is due to the internal characteristics of these
two languages. C++ is efficient to implement a design
but it has minor problem as it is difficult to be shown
visual and graphically. Without a very visual and easy-
to-use descriptive language, it's not easy to modify
and assembly different components and to change
different parameters without a very visual and easy-to-
use descriptive language. Moreover, NS2 separates
control path implementations from the data path
implementation as for efficiency reason. In order to
reduce packet and event processing time, the event
scheduler and the basic network component objects in
the data path are written and compiled using C++.
The feature that C++ lacks seems that had and
happen by the OTcl . Hence, it is prove that the
combination of these two languages will be very
effective. The implementation of the detailed protocol
by using the C++ and users used to control the
simulation scenario and schedule the events by using
the OTcl. Figure 2 shows a simplified user's view of
NS2. In order to initiate the event scheduler, the OTcl
script is used and the network topology isset up. It
then will tell traffic source when to start and stop
sending packets through event scheduler. The OTcl
script will be programmed to allow the scenes to be
changing easily. User can make a new network object
by write the new object or assemble a compound
object from the existing object library. Later, user can
plumb the data path through the object. This plumbing
makes NS2 very powerful (Issariyakul and Hossain,
2012).

Figure 2. Simplified User's View o f NS2

Event scheduler is another feature of NS2. The
event scheduler keeps track of simulation time and
releases all the events in the event queue In NS2.
This is done by invoking appropriate network
components. All the network components use the
event scheduler by issuing an event for the packet
and waiting for the event to be released before doing
further action on the packet.

Recent developments of NS-2 and its future

NS 2.33 is the most recent version of NS2. It was
released on Mar 31, 2008. Compared with the
previous version, this newest version [NS2] has
integrated the most recent extension on new 802.11
models which include the Ilango Purushothaman's
infrastructure mode extensions, the 802.11Ext models
from a Mercedes-Benz R&D, NA and University of

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 6 Issue 7, July - 2019

www.jmest.org

JMESTN42353002 10377

Karlsruhe team, and the dynamic libraries patch and
multirate 802.11 library from Nicola Baldo and
Federico Maguolo of the SIGNET group, University of
Padova. NS is now developed in collaboration
between some different researchers and institutions,
including SAMAN (supported by DARPA), CONSER
(through the NSF), and ICIR (formerly ACIRI).
Contributions have also come from Sun Microsystems
and the UCB and Carnegie Mellon Monarch projects.
Generation 3 of NS (NS3) has begun development as
of July 1 , 2006 and is projected to take four years
(Issariyakul and Hossain, 2012).

OMNeT++

Similar with NS-2, OMNeT++ is also a public-
source, component-based network simulator with GUI
support. Its primary application area is communication
networks. OMNeT++ has generic and flexible
architecture which makes it successful also in other
areas like the IT systems, queuing networks,
hardware architectures, or even business processes
as well.

Overview of OMNeT++

Like NS-2, OMNeT++ is also a discrete event
simulator. It is a component-based architecture.
Components are also called modules and are
programmed in C++. The components are then
assembled into larger components and models by
using a high-level language. Its function is similar to
that of OTcl in NS-2 and Python in NS3. OMNeT++
also provides GUI support, and due to its modular
architecture, the simulation kernel can be embedded
into all kinds of different user s' applications. Figure 5
is an OMNeT++ GUI screenshot (Pan and Jain,
2008).

Figure 5. OMNeT++ GUI

Main features of OMNeT++

Since OMNeT++ is designed to provide a
component-based architecture, the models or
modules of OMNeT++ are assembled from reusable
components. Modules are reusable and can be

combined in various ways which is one of the main
features of OMNeT++. The OMNeT++
components include (Pan and Jain, 2008):

1. Simulation kernel library

2. Compiler for the NED topology description
language (nedc)

3. Graphical network editor for NED files (GNED)

4. GUI for simulation execution, links into
simulation executable (Tkenv)

5. Command-line user interface for simulation
execution (Cmdenv)

6. Graphical output vector plotting tool (Plove)

7. Graphical output scalars visualization tool (
Scalars)

8. Model documentation tool (opp_neddoc)

9. Utilities (random number seed generation tool,
makefile creation tool, etc.)

10. Documentation, sample simulations, etc.

As the key feature of OMNeT++, the simulation
kernel C++ class library consists of the simulation
kernel and utility classes which will be used to create
simulation components. The library also includes the
infrastructure to assemble simulations from different
components. Besides these, there are also runtime
user interfaces or environments for simulations, and
tools to facilitate and manage simulations. OMNeT++
can run on Linux, other Unix-like systems and on
Windows (XP, Win2K).

OMNeT++ represents a framework approach. It
provides an infrastructure for writing different
simulations. Specific application areas' requirements
are met by different simulation models and
frameworks, most of which are open sourced. More
important, these models are developed completely
independently of OMNeT++, and follow their own
release cycles. This is another important feature of
OMNeT++ (Pan and Jain, 2008).

Recent developments of OMNeT++ and its
future

Currently, OMNeT++ is popular in academia for its
extensibility since it is also open sourced and there
are plentiful online documentations. There is also a
mailing list for the general discussion (Kumar et al.,
2012).

OMNeT++ is being used in the academia as well
as in industry. Several open source simulation models
have been published in the field of network
simulations such as IP, IPv6, MPLS, mobility and ad-
hoc simulations (Kumar et al., 2012).

For the future of OMNeT++, we need to note that
OMNeT++ is not a network simulator itself. Actually it
is currently popular as a network simulation platform
in the academia as well as in industry, and build up a
large user community. So we have the reason to

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 6 Issue 7, July - 2019

www.jmest.org

JMESTN42353002 10378

believe that using OMNeT++ as a basic platform but
not an overall single solution. OMNeT++ can have
greater development if it could persuade more
organizations to participate in and to contribute
(Rachedi et al., 2012).

J-Sim

J-Sim (formerly called JavaSim, the former name
conflicted with Sun’s Java trademark) has been
developed by a team at the Distributed Realtime
Computing Laboratory (DRCL) of the Ohio State
University. Additional third-party packages are also
available. The project has been sponsored by the
National Science Foundation (NSF), DARPA’s
Information Technology Office (DARPA/ITO, through
the Quorum global distributed computing program and
the Network Modeling and Simulation program), Air
Force Office of Scientific Research’s Multidisciplinary
University Research Initiative (AFORS MURI), the
Ohio State University and the University of Illinois at
Urbana-Champaign (Sundani et al., 2011).

Overview of J-Sim

J-Sim is free and available with source code,
examples, tutorials and white papers. Additionally,
there is a publicly available mailing list for J-Sim
users.

 J-Sim is implemented in Java and uses Tcl
binding in the form of Jacl. Java is used to create
simulator’s objects, called components, while Tcl
enables topology setup and provides a limited means
of simulation control. Similarly to NS-2, J-Sim offers
higher-level Tcl-based programming interface
(Sundani et al., 2011).

Main features of J-Sim

J-Sim is based on a so-called Autonomous
Component Architecture (ACA). The components are
written in Java and expose some well-defined
interfaces. The components communicate with each
other through ports, and are bound to contracts.
Contracts define component interactions at layer
boundaries (e.g., how an FTP application creates TCP
sockets); they allow to make use of lower layer’s
services but at the same time introduce tight coupling
between layers (e.g., an FTP socket application must
use TCP socket transport component).

Components are assembled at runtime by “wiring”
their ports. The components are organized in a tree-
like structure (i.e., a parent component is a directory
for its children). The Runtime Virtual System (RUV) is
a set of Tcl commands, built atop Tcl/Jacl, which
resembles file system commands in UNIX, used to
manipulate the component tree (e.g., mkdir, cp, mv,
rm, cd, pwd, ls). Also, hierarchical components’
names look similarly to file paths in UNIX (e.g.,
/net/router/port0@group0) (Sundani et al., 2011).

Recent developments of J-Sim and its future

Two simulation models are available for J-Sim
which is the multithreaded, “real-time process-based,”

and the “classical” discrete event based. The
simulation within J-Sim is by definition multithreaded.
The runtime manages a pool of worker threads to
provide a new execution context for a component to
handle and process incoming data. Because of this
mode, and unlike in ns-2 and earlier OPNET releases,
developers should pay special attention to proper
synchronization of critical regions in a component’s
code. Note that due to possible various thread
scheduling in different Java Virtual Machines,
subsequent runs of the same simulation scenario
(with no randomness) may yield different results
(Sarkar and Halim, 2011).

The simulation time is advanced proportionally to
the wall time when at least one thread is active,
otherwise it is advanced to the moment at which at
least one thread may be woken (a “jump in time” is
made). Thus, while the simulation is based on events
(usually, data reception on a port), time management
is completely opposite to discrete event simulation in
ns-2 or OPNET, where events are scheduled at fixed
time points (and the simulation time is frozen between
two events). However, the larger value of a time scale,
the closer the time management in J-Sim to discrete
event simulation is (event processing times become
negligible). Note that this so-called “real-time process-
based” approach has some severe consequences:
Helper actions, not directly related to simulation (e.g.,
log file formatting, component state validation, etc.)
may affect the still elapsing simulation time.
Additionally, if a component code needs to add some
artificial delay (e.g., a slow router is simulated), then
the delay cannot be guaranteed, due to thread
scheduling within a JVM (and due to process
scheduling within an operating system). For example,
a component developer needs to use J-Sim-specific
thread synchronization and delay primitives, to enable
the kernel to make a “jump in time” when all threads
are suspended for some timeout; otherwise the
simulation may be frozen when a thread sleeps
(Sarkar and Halim, 2011).

COMPARISON

The aim of this comparatively study is to find
wirelessvnetwork simulator that establish a good
balancing scenario between the features, efficiency,
accuracy, and easy to use. Such a simulator will allow
bresearchers to take the steps to describe above
without much difficulty (Sarkar and Halim, 2011).

The GloMosim simulator has the lack of various
TCP implementations. It does not support GUI for
large number of nodes.Quelnet is a commercial
simulator that grew out of Glomosim while the
weakness of the Qualnet it is not the OPEN source
like GloMosim. OMnet++ includes the lot of
functionality so it is the complete Tool for generic
simulation. It also support the GUI which receives in
the Praise form and weakness of this simulator the
GUI is not detailed enough to be useful. OpNet
Modeler is very powerful and user friendly simulator
and it proves also the easy modeling with good

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 6 Issue 7, July - 2019

www.jmest.org

JMESTN42353002 10379

documentation with its large library for simulation
models. It also has the mobility models like ns-2 and
J-Sim simulators. External tools are not supported
since kernel is not open source. NS-2 is the most
used simulator by the research community besides
this it has the large numbers of available models like
realistic mobility models, powerful and flexible
scripting and simulation setup, large user community.
The main weakness in ns-2 is OTCL language and
overall architecture of the simulator and patching of
extension is not easy. It also did not differentiate the
working between OTCL and C++. J-Sim is the Java
based simulator. It has the facility of component
based architecture with realistic mobility models. It is
also called the autonomous component architecture
(ACA). On the other hand it has the drawback of
inadequate documentation. Abbreviation used in table
detailed is given below (Martinez et al., 2011):-

 GloMosim: Global Mobile Information System.

 Quelnet: Commercial Version of GloMosim
Simulator.

 OMNett++: Objective Modeler Network
Testbed in C++.

 NS-2: Network Simulator-2.

 Opnet Modeler: Optimized Network
Engineering Tools Modeler.

 J-Sim: Java –Simulator.

 OS: Operating System.

 GUI: Graphical User Interface.

 T/W/A: Time warp.

CONCLUSION

The comparison with respect to installation
implementation issues, visualize action capabilities
and scalabilities of different network simulator have
been discussed for researchers to find a simulator
having efficient and easy development environment
during research. Each has some advantages and
disadvantages and each can be appropriate in
different situation. The choice of a simulator from the
discussed available simulators should be driven by
the research requirements it is the motive of this
study. Researchers must consider the pros and cons
of different programming language, which simulation
is driven like event vs. time, component based or
object-oriented architecture, the level of complexity of
the simulator, features to include and not include and
other design choices. The ns-2 and OMNeT++ must
be the best choices in most of situation for research.
Ns-2 is most popular simulator for academic research
but it is normally criticized by its complicated
architecture. Nevertheless, it is using largely by the
research communities. OMNeT++ is getting popularity
in educational and industrial area. Instead of that the
ns-2, OMNeT++ has a welldesigned simulation engine
and powerful GUI, so these are better for simulation
environment development.

Reference

Bilalb and Othmana (2013). A Performance
Comparison of Network Simulators for Wireless
Networks. arXiv preprint arXiv:1307.4129.

Font et al. (2011). Analysis of source code metrics
from ns-2 and ns-3 network simulators. Simulation
Modelling Practice and Theory. 19 (5.), 1330-1346.

Issariyakul and Hossain (2012).An introduction to
network simulator NS2, Springer.

Kumar et al. (2012). Simulators for Wireless
Networks: A Comparative Study. Computing Sciences
(ICCS), 2012 International Conference on. 338-342.

Martinez et al. (2011). A survey and comparative
study of simulators for vehicular ad hoc networks
(VANETs). Wireless Communications and Mobile
Computing. 11 (7.), 813-828.

Pan and Jain (2008). A survey of network
simulation tools: Current status and future
developments. Email: jp10@ cse. wustl. edu.

Rachedi et al. (2012). Wireless network simulators
relevance compared to a real testbed in outdoor and
indoor environments. International Journal of
Autonomous and Adaptive Communications Systems.
5 (1.), 88-101.

Sarkar and Halim (2011). A review of simulation of
telecommunication networks: simulators,
classification, comparison, methodologies, and
recommendations. Cyber Journals: Multidisciplinary
Journals in Science and Technology-Journal of
Selected Areas in Telecommunications (JSAT). 2
(03.), 10-17.

Sundani et al. (2011). Wireless Sensor Network
Simulators A Survey and Comparisons. International
Journal of Computer Networks (IJCN). 2 (6.), 249-265.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 6 Issue 7, July - 2019

www.jmest.org

JMESTN42353002 10380

Appendix

http://www.jmest.org/

