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Abstract—Mobile robot motion accuracy has 
not been yet achieved to full satisfaction using 
classical feedback controllers and may be not 
perform well online because of the variation in 
process dynamics due to changes in 
environmental conditions. To overcome the 
above problems, this paper presents a different 
control methodology for two-wheeled mobile 
robot (TWMR) to achieve higher accuracy for 
balancing and trajectory tracking control 
problems. Firstly, design adaptive PD controller 
based model reference adaptive control, where 
the adaptive adjusting law is derived by using 
lyapunov method. Secondly, coupling a fuzzy 
logic technique and optimal control theory to 
construct Fuzzy optimal controller based Linear 
Quadratic Regulator with Integral Control 
(FLQRIC). For performance analysis, the 
simulation results show that the proposed 
FLQRIC can respond smoothly to the desired 
trajectory and the controller can adapt quickly 
and correctly to the desired performance. In 
addition, FLQRIC has better performance 
compared to the adaptive PD controllers in the 
sense of robustness against disturbances. 
Finally, the fuzzy optimal control yields 
significant improvements in tracking 
performance by interacting with its environment 
and generating the command inputs to the 
nonlinear plant utilizing feedback information 
from the linearized plant. 

Keywords— model reference adaptive control; 
optimal control; integral control; fuzzy logic 
control.  

I. INTRODUCTION  

Control of mechanical systems is a general 
problem in various research areas with many 
applications. Wheeled mobile robots have attracted a 
great deal of attention in research and in industry as 
well due to the simple mechanical construction, and 
the big variety of potential application prospects in 
many areas [1]. Most researchers have shown 
interest in mobile robots and focused on stability and 
exact path following performance to control the robot 
system [2]. Modeling and controllers of the TWMR 
have been widely investigated in both academia and 
industry. The robot may be controlled by system 
decoupling and LQR for each subsystem, where the 
state feedback matrix is chosen by trial and error, and 
this relationship has not been calculated from 

Algebraic Riccati Equation (ARE), which is drawback 
of this method [3],[4].  Proportional-Derivative (PD) 
controller is used to control the robot but the 
disadvantages of this controller it is not working 
properly against the external disturbances [5]. In 
addition, an Adaptive Radial Basis Function Neural 
Network controller used to guarantee the stability of 
the robot in presence of external disturbances, where 
this method has a good performance, but the 
controller design has a lot of complexity [6]. This 
paper deals with the modeling of two-wheeled self-
balancing robot and design of an adaptive controller 
and fuzzy optimal controller for the system based on 
Matlab simulation. This paper is organized as follows: 
in section II, the dynamic model of the mobile robot is 
provided, section III deals with the problem of 
designing controller based on Model Reference 
Adaptive Control (MRAC) and FLQRIC techniques, 
and section IV deals with several results to show that 
the proposed controller is effective. Finally, the 
conclusion is presented in section V. 

II. DYNAMICS OF TWMR 

     TWMR is an important branch of a mobile robot, 
because it is high orders, instability, multi-variables, 
nonlinearity and heavy coupling. Mathematical 
dynamic modelling of TWMR is rather important in 
terms of stability analysis and system simulation, it is 
also very important that control algorithms are created 
according to these model parameters [7]. The 
mechanical structure of the TWMR consists from 
three main parts [8]: 
    • The Wheels: Moves the system backward or 
forward to balance the body of the system. 
    • The Chassis: Holds the motors, circuits and any 
parts required for the system. 
    • The Pendulum: The parts of the system that 
causes the instability and need to be stabilized.  
The dynamic model of the system is derived based on 
the Newton-Euler equations of motion. The pendulum 
and wheel dynamics are initially analyzed separately, 
and this will eventually lead to two non-linear 
equations of motion, which completely describe the 
behavior of the system [9]. The tilt angle acceleration 
and vehicle acceleration, describing the main two 
dynamic behaviors of the TWRM, are obtained as 
[10]. 

     (𝐼𝑝 + 𝑀𝑝𝑙2)𝜃̈ −
2𝑘𝑒𝑘𝑚

𝑅 𝑟 
𝑥̇ +  

2𝑘𝑚

𝑅 
𝑉𝑎 + 𝑀𝑝𝑔𝑙 𝑠𝑖𝑛 𝜃 +

                      𝐹 𝑍𝑐𝑜𝑠 𝜃   = − 𝑀𝑝𝑙 𝑥̈ 𝑐𝑜𝑠 𝜃                        (1) 
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    (2𝑀𝑤 + 𝑀𝑝 +
2𝐼𝑤

𝑟2 )𝑥̈ +
2𝑘𝑒𝑘𝑚

𝑅 𝑟2 𝑥̇ + 𝑀𝑝𝑙𝜃̈ 𝑐𝑜𝑠 𝜃 −

                        𝑀𝑝𝑙 𝜃̇2 𝑠𝑖𝑛 𝜃 + 𝐹 =
2𝑘𝑚

𝑅 𝑟 
𝑉𝑎                      (2) 

The definition parameters of TWMR and the 
simulation of the nonlinear model given by equation of 
motion is carried out using the masking simulink 
model as shown by Fig. 1. 

 
Fig.1.  Masking simulink model of the TWMR 

III. METHODOLOGY OF CONTROLLER DESIGN 

A. Adaptive PD Based MRAC 

     MRAC is used to design the adaptive controller 
that works on the principle of adjusting the controller 
parameters so that the output of the actual plant 
tracks the output of a reference model having the 
same reference input. Mathematical approach like 
Lyapunov theory can be used to develop the adjusting 
mechanism. The basic block diagram of MRAC 
system is shown in the Fig. 2. There are two loops an  
inner loop (regulator loop) that is an ordinary control 
loop consisting of the plant and the controller, and an 
outer (adaptation) loop that adjusts the parameters of 
the controller in such a way as to eliminate the error 
between the model and plant outputs [11],[12]. 
 

 
 

Fig. 2.  Model reference adaptive controller 

The structure depicted in Fig 3 can be used as an 
adaptive PD controlled system. The parameters of 
this controller is Kp and Kd. Variations in the process 
parameters bp and ap  can be compensated for by 
variations in Kp and Kd.  We are going to find the 
form of the adjustment laws for Kp and Kd [13]. 
 

 
 

Fig. 3. Adaptive system designed with liapunov [13] 

 

The following steps are thus necessary to design an 
adaptive controller with the method of Liapunov 
[14],[15].  
Step 1: Determine the differential equation for e. The 
state space of the process is:  

     [
𝑥̇1𝑝

𝑥̇2𝑝
] = [

0 1
−𝑏𝑝. 𝐾𝑝 −(𝑎𝑝 + 𝑏𝑝. 𝐾𝑑)] [

𝑥1𝑝

𝑥2𝑝
] +

                     [
0

𝑏𝑝. 𝐾𝑝
]. [𝑅]                                                           (3) 

The new state variable 𝜀 is introduced as 

 𝜀= 𝑅 − 𝑥1𝑝 → 𝜀̇ = 𝑅̇ − 𝑥̇1𝑝 = −𝑥2𝑝      

The state space model of the process can be 
rewritten as   

      [
𝜀̇

𝑥̇2𝑝
] = [

0 −1
−𝑏𝑝. 𝐾𝑝 −(𝑎𝑝 + 𝑏𝑝. 𝐾𝑑)] [

𝜀
𝑥2𝑝

] + [
0
0

] 𝑢  (4) 

 
The state space of model reference can be rewritten 
as       
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      [
𝑥̇1𝑚

𝑥̇2𝑚
] = [

0 1
−𝜔𝑚

2 −2𝑧𝜔𝑚
] [

𝑥1𝑚

𝑥2𝑚
] + [

0
𝜔𝑚

2 ] 𝑅                (5)                                       

Where 𝜔𝑚  is the natural frequency and z is the 
damping ratio. By the same way, 

𝜀𝑚= 𝑅 − 𝑥1𝑚 → 𝜀𝑚̇ = 𝑅̇ − 𝑥̇1𝑚 = −𝑥2𝑚 
It can be rewritten as 

     [
𝜀𝑚̇

𝑥̇2𝑚
] =  [

0 −1
𝜔𝑚

2 −2𝑧𝜔𝑚
] [

𝜀𝑚

𝑥2𝑝
] + [

0
0

] 𝑅                        (6) 

We can be defined the error vector as 
   𝑒= 𝑥𝑚 − 𝑥𝑝 → 𝑒̇ = 𝑥̇𝑚 − 𝑥̇𝑝  

  𝑒̇ = 𝐴𝑚𝑒 + (𝐴𝑚 − 𝐴𝑝)𝑥𝑝 + (𝐵𝑚 − 𝐵𝑝)𝑢                     (7)                                         

Where  
𝐴 =  𝐴𝑚 − 𝐴𝑝            

 𝐴 = [
0 0

𝜔𝑚
2 − 𝑏𝑝. 𝐾𝑝    −2𝑧𝜔𝑚 + (𝑎𝑝 + 𝑏𝑝. 𝐾𝑑)]  

      = [
0 0

𝑎21 𝑎22
], 

𝐵  =  𝐵𝑚 − 𝐵𝑝 = [
0
0

], 

𝑒𝑇 = [𝑒1 𝑒2] , 𝑒1 = 𝑥1𝑚 − 𝑥1𝑝    , 
 𝑒2 = 𝑥2𝑚 − 𝑥2𝑝 
 
Step 2: Choose a Liapunov function V(e) 

     𝑉(𝑒) = 𝑒𝑇𝑃𝑒 + 𝑎𝑇𝛼 𝑎                                           (8) 
 𝑃 is an ‘arbitrary’ definite positive symmetrical matrix,  
𝑎 is vector which contain the non-zero elements of the 

𝐴. 𝛼 is diagonal matrices with positive elements which 
determine the speed of adaptation. 
 

Step 3: Determine the conditions under which  𝑽̇(𝒆) is 
definite negative, 

    𝑉̇ = 𝑒̇𝑇𝑃𝑒 + 𝑒𝑇𝑃𝑒̇ + 2𝑎̇𝑇𝛼 𝑎 𝑉̇ = 𝑒𝑇(𝐴𝑚
𝑇 𝑃 + 𝑃𝐴𝑚)𝑒 

      + 2𝑒𝑇𝑃(𝐴𝑥𝑃) + 2𝑒𝑇𝑃𝐵𝑢 + 2𝑎̇𝑇𝛼 𝑎                        (9) 

Let: 𝐴𝑚
𝑇 𝑃 + 𝐴𝑚 𝑃 = −𝑄                                                                                        

Because the matrix 𝐴𝑚 belongs to a stable system 
(reference model), it follows from the theorem of 
Malkin that 𝑄 is a definite positive matrix [11]. 

Based on that,  𝑒𝑇(𝐴𝑚
𝑇  𝑃 + 𝑃 𝐴𝑚)𝑒 = −𝑒𝑇𝑄𝑒    

Stability of the system can be guaranteed if the last 

part of 𝑉̇(𝑒) is set equal to zero.  

       𝑒𝑇𝑃(𝐴𝑥𝑃) + 𝑎̇𝑇𝛼 𝑎 + 𝑒𝑇𝑃𝐵𝑢 = 0                        (10) 
Where 

𝑃 = [
𝑃11 𝑃21

𝑃21 𝑃22
] , 

𝛼 = [
𝛼11 0
0 𝛼22

] , 

a = [𝑎21    𝑎22 ] , 

   𝑥𝑝 = [
𝜀

𝑥2𝑝
] 

After some mathematical manipulations, this yields: 

   𝐾𝑝 =
1

𝛼11 𝑏𝑝
∫(𝑃21. 𝑒1 + 𝑃22. 𝑒2)𝜀 𝑑𝑡                               (11) 

   𝐾𝑑 = −
1

𝛼22 𝑏𝑝
∫(𝑃21. 𝑒1 +

𝑃22. 𝑒2)𝑥2𝑝 𝑑𝑡                       (12) 

Step 4: Solve P from  Am
T 𝑃 + 𝐴𝑚 𝑃 = −𝑄 ,  

    

[
0 𝜔2

𝑚

−1 −2𝑧𝜔𝑚
] [

𝑃11 𝑃21

𝑃21 𝑃22
] +

      [
𝑃11 𝑃12

𝑃21 𝑃22
] [

0 −1
𝜔2

𝑚 −2𝑧𝜔𝑚
] = − [

𝑞11 𝑞21

𝑞21 𝑞22
]          

(13) 

 
This yield 

  𝑃21 =
−𝑞11

2𝜔𝑚
2         𝑎𝑛𝑑     𝑃22 =

𝑞11+𝑞22.𝜔𝑚
2

4𝑧𝜔𝑚
3           

 So, 

   𝐾𝑝 =
1

𝛼11 𝑏𝑝
∫ (

−𝑞11

2𝜔𝑚
2 . 𝑒1 + (

𝑞11+𝑞22.𝜔𝑚
2

4𝑧𝜔𝑚
3 ). 𝑒2) 𝜀 𝑑𝑡            

(14) 

   𝐾𝑑 = −
1

𝛼22 𝑏𝑝
∫ (

−𝑞11

2𝜔𝑚
2 . 𝑒1 + (

𝑞11+𝑞22.𝜔𝑚
2

4𝑧𝜔𝑚
3 ). 𝑒2) 𝑥2𝑝 𝑑𝑡   

(15)                   
The above equations and the adaptive control system 
designed in Fig. 3 is redrawn as simulink model as 
shown in Fig. 4.  
 

 

 

 
 
Fig. 4. Simulink model of adaptive controllers with TWMR 
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B. Fuzzy Optimal Controller Based Integral 
Action       

Sometimes it is seen that alone state feedback control 
is not sufficient, it requires additional integral 
controller along with the state-space model. In such 
cases, the combined scheme also uses output 
feedback to regulate the error explicitly and thus 
ensures better control and reference tracking. The 
state space model of linearized  TWMR constructed 
using matlab function called trim  and linmod 
functions for the masking simulink model of nonlinear 
TWMR in Fig. 1. We now combine a Linear Quadratic 
Regulator with Integral Controller to construct new 
controller called LQRIC for linearized model of 
TWMR. So that the error signal will approach to zero 
as t tends to zero. After that we will design fuzzy 
control system using the error signal which 
constructed from the difference between the output of 
linearized which controlled by LQRIC and actual 
nonlinear system as shown in Fig. 5. 

 
Fig. 5. Fuzzy state feedback with integral controller for 

TWMR 

 

The state space model of the system is constructed 
as,    𝑥̇  = 𝐴𝑥 +   𝐵𝑢.  The first step of   LQRIC 

controller design is to define a new augmented state 
vector given by                                                

      𝑥𝑎 =  [
𝑥
𝑥𝑖

] = [
𝑥
𝑒𝑖

]                                                 (16) 

      𝑥𝑖̇ = 𝑒̇𝑖 = 𝑟 – 𝑦 = 𝑟 − 𝐶𝑥                                     (17) 
The new state space form is, 

    [
𝑥
𝑥𝑖̇

̇
] =   [ 

 𝐴              0 

– 𝐶           0
] [

𝑥
𝑥𝑖

] + [
𝐵
0

] 𝑢 +  [
0
1

] 𝑟          (18) 

      𝑦 =  [𝐶        0] [
𝑥
𝑥𝑖

] 

The new matrices are   

𝐴𝑎 = [ 
 𝐴              0 

– 𝐶           0
] , 

𝐵𝑎 = [
𝐵
0

] ,  

 𝐶𝑎   = [𝐶        0] 
Now, the state feedback can be written as:  

   𝑢 =  −[𝐾    − 𝐾𝑖] [
𝑥
𝑥𝑖

] = −𝐾𝑎𝑥𝑎                            (19) 

Where 

𝐾𝑎 = [𝐾    − 𝐾𝑖]    
𝐾𝑎 : Gain of LQRIC   
K: Gain of LQR.     

Ki : Integral gain.  
The closed-loop state equation with the state 
feedback control u is 

[
𝑥
𝑥𝑖̇

̇
] = [ 

 𝐴         0 

– 𝐶       0
] [

𝑥
𝑥𝑖

] − [
𝐵
0

] [𝐾  − 𝐾𝑖] [
𝑥
𝑥𝑖

] + [
0
1

] 𝑟 (20)                         

[
𝑥
𝑥𝑖̇

̇
] = (𝐴𝑎 − 𝐵𝑎𝐾𝑎) [

𝑥
𝑋𝑖

] +   [
0
1

] 𝑟                            (21) 

The goal is to determine the value of the matrixes to 
minimize the performance index which is assumed by 
the following cost function:  

     𝐽 = ∫ (𝑥𝑎
𝑇𝑄 𝑥𝑎 + 𝑢𝑇𝑅 𝑢)

∞

0
𝑑𝑡                              (22) 

Where Q is a positive semi-definite symmetric matrix 
and R is a positive definite symmetric matrix. In which 
the solution of the following ARE  [17]: 

     𝐴𝑎
𝑇P + PA𝑎 − PB𝑎R−1𝐵𝑎

𝑇P + Q = 0                     (23) 
Where P is the solution of ARE and the feedback 

control gains 𝐾𝑎 represented as  

    𝐾𝑎 =  R−1𝐵𝑎
𝑇P                                                     (24) 

After designed LQRIC we can construct the fuzzy 
optimal control for the nonlinear model of TWMR, 
where the linearized model of TWMR with LQRIC 
operate as model reference for the nonlinear system 
which will be controlled using FLQRIC. The fuzzy 

controller has two inputs, the error (𝑒 = 𝑦Linear −
𝑦Nonlinear), the error rate                   (𝑒̇ = 𝑟𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 −

𝑦Linear) and one output which represent the control 
signal.  The fuzzy set of each input variable is 
represented by three linguistic variables which as N 
(Negative), Z (Zero) and P (Positive). In addition, the 
fuzzy set of the output variable is represented by 
three linguistic variables which as S (Small), M 
(Medium) and B (Big). The proposed fuzzy logic 
controller uses conventional triangular membership 
functions for the inputs and Gaussian membership 
functions for the output as shown in Fig. 6. Finally, the 
fuzzy optimal controller with integral control in Fig. 5 is 
redrawn as simulink model as shown in Fig. 7.
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Fig. 6. Input and output membership functions for FLQRIC 

 
Fig. 7. FLQRIC for nonlinear  TWMR 

 

IV. SIMULATION RESULT 

   The MATLAB Simulink environment is used to 
evaluate the influence each control method on 
balancing and trajectory tracking of TWMR. The 
parameters of the model reference for balancing and 
tracking are chosen as, z =1 and 𝜔𝑚 = 𝜔𝜃 = 𝜔𝑥 = 10 
rad/sec. The adaptive PD controller for balancing 
angle is achieved by setting 𝛼11−𝜃 = 700, 𝛼22−𝜃 =
1500 and 𝑄𝜃=[500 300; 300 400] while the adaptive 

PD controller for position with 𝛼11−𝑥 = 1000, 𝛼22−𝑥 =
2000 and 𝑄𝑥=[300 100; 100 400].  
From  the solution of ARE, the optimal control gain, 

𝐾𝑎= [-1008 -2569 1575 1188] and integral gain, 
𝐾𝑎 = 316. Responses of the system for different 
setpoints with FLQRIC have been compared with the 
responses obtained using adaptive PD controllesr as 
shown in Fig. 8 and Fig. 9. The simulation result show 
that the FLQRIC has very good dynamic response, 
faster settling time, good stabilization and accurate 
tracking for the desired trajectory which satisfies the 
design criteria very much. However, as shown in Fig. 
10, due to a large enough disturbance, it is clearly 
that the tracking errors for the both controller are 
reduced to zero, but FLQRIC controller reduces the 
amplitude of oscillation rapidly. Performance of 
adaptive controller show that the robot runs well and 
the presented control technique is useful to realize 
our intention. 

 

Fig. 8. Response of TWMR using an adaptive PD and 
FLQRIC for different level setpoint 
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Fig. 9. Response of TWMR using an adaptive PD and 
FLQRIC  for sine wave setpoint 

Fig. 10. Response of TWMR using an adaptive PD and 
FLQRIC with noise signal 

V. CONCLUSION 

    The paper has presented adaptive controller using 
second order MRAC method  and intelligent controller 
using combining fuzzy logic and optimal control theory 
for tilt angle and trajectory tracking control of the 
TWMR in presence of parameter variations and 
model uncertainties. The performance evaluation is 
carried out by means of simulations on matlab and 
simulink. Different input reference signals have been 
applied to test the effectiveness of the controller 
design and it is demonstrated that an acceptable 
tracking accuracy can be achieved. It is concluded 
that, under the influence of different references the 
FLQRIC is successful to achieve a high tracking 
performance in transient and steady state time. 
Performance of FLQRIC show that the robot runs well 
and the presented control technique is useful to 
realize our intention. 
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