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Abstract—Existence and stability of solitary 

waves in the generalized Camassa-Holm equation is 

considered. The nonlinear intensity has important 

influence on the shape and stability of solitary waves. 

When the power of nonlinear term is odd, the 

equation admits positive solitary waves which are 

also proved to be orbitally stable when the wave 

velocity exceeds a critical value. When the power of 

nonlinear term is even, the equation admits positive 

and negative solitary waves which are proved to 

orbitally stable for any wave velocity. Using the 

Menikov method, all solitary waves turn to chaos 

under the external periodic perturbation with 

arbitrary nonlinear intensity. By applying a feedback 

controller, chaos can be controlled into a stable state. 

Results show that the uncontrollable region becomes 

smaller and the awful frequency appears less with the 

increase of nonlinear intensity. 
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I.  INTRODUCTION  

The generalized Camassa-Holm equation 

2 ,n

t xxt x x xx xxxu u au u u u uu   
                        (1.1) 

is a famous shallow water equation [1]. Here  n

denotes nonlinear intensity and  0a is the 

parameter of nonlinear term. Eq. (1.1) has three 

important models and it has been also widely studied 

by many researchers[2-4]. 

When 1n  and 3a , Eq. (1.1) becomes the 

famous Camassa-Holm equation [5-7], which has a 

nonsmooth solitary wave 
ctx

ce  (where c  is the 

wave speed) which is called a peakon. This special 

solution is proved to be orbitally stable for any wave 

speed [8].  

Eq. (1.1) is reduced to the modified Camassa-Holm 

equation as 2n [9-13], which admits negative and 

positive smooth solitary waves. This negative smooth 

solution is proved to be orbitally stable for any wave 

speed [10]. Eq. (1.1) becomes the Camassa-Holm 

equation with quartic nonlinearity when 3n [14-15], 

which admits a positive smooth solitary wave. This 

positive smooth solution is proved to be orbitally stable 

when the speed exceeds a critical value [15]. More 

property of generalized Camassa-Holm equation has 

been extensively studied [16-17]. 

It is obviously that the nonlinear intensity n  has a 

great influence on the shape and stability of the 

solitary wave as the above facts shown. Hence our 

first objective is to carry out a further study on the 

existence and stability of solitary waves as the 

nonlinear 3n strength . Moreover,  
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the propagation of solitary waves is not in a pure 

environment, and it is easy to be affected by external 

perturbation. It is nature that the second objective of 

this paper is to study evolution progress and control 

problem of solitary wave under the external 

perturbation.  

The rest of the paper is organized as follows. In 

Section 2, existence of solitary wave and homoclinic 

orbits of Eq. (1.1) are given. In Section 3, stability of 

solitary waves is considered. In Section 4, dynamics 

behavior for the perturbed and controlled system are 

studied.  

II.  EXISTENCE OF SOLITARY WAVE 

 

The solitary wave of Eq. (1.1) has the form as 

)(),( ctxtxu c 
                                      (2.1) 

and the profile c  propagating at speed 0.c   

Then Eq. (1.1) becomes 

       cxxxccxxcxcx

n

ccxxxcx acc   2
(2.2) 

Using the decay of c  at infinity, we obtain 

2
1 0

1 2

n cx
c cxx c c cxx

a
c c

n


        

             
(2.3)

 

Multiplying by cx  and integrating Eq. (2.3), we have 
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(2.4)

 

Remark 1. We can deduce that solitary waves from 

Eq. (2.4) exist for 1
2( 2)

.n
n

c
a





 

Theorem 1. For any
Zn , Eq. (1.1) admits 

homoclinic orbits associated with the solitary waves as 

0.a   

Proof.  Letting
'y  ,  Eq. (2.3) becomes 

.
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(2.5)

 

Taking the commutation ( ) ,d c d   
 
Eq. (2.5) is 

rewritten as 

   
2

1

( ) ,

.
1 2

n

d
c y

d

dy a y
c

d n






 





 


    
 

                                
(2.6)

                    

Hence Eq. (2.6) has the Hamiltonian function as 

follows 

2 2 2( , ) ( ) .
2( 2)

na
H y c y c

n
      

            
(2.7)

 

Case I. When n is even number, Eq. (2.6) has three 

equilibrium points: A(0,0), B
( 1)

( ,0)n
n c

a


 , C

( 1)
( ,0).n

n c

a



 

Case II. When n  is odd，Eq.(2.6) has two equilibrium 

points: D(0,0), E
( 1)

( ,0).n
n c

a


      

According to the dynamics theory, we know the system 

(2.6) admits homoclinic orbits (see Fig. 1(a), Fig. 2(c)). 

Furthermore, system  (2.6) also has the solitary waves 

(see Fig. 1(b), Fig. 2(d)).  

We find that Eq. (1.1) only admits positive solitary 

waves when n is odd, while both positive and negative 

solitary waves appear when n  is even. It is noted that 

http://www.jmest.org/
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the height of the solitary wave is smaller and tends to 

 
n

a

cn 1
 with the increasing n .   

 

 
Fig. 1.  (a) phase portrait of Eq. (2.7);  (b)The negative 

and positive solitary wave. 

 

 

 

 
Fig. 2.   (c) phase portrait of Eq. (2.7);  (d)The positive 

solitary wave. 

III.  STABILITY  OF SOLITARY WAVE 

Eq. (1.1) has two invariants as follows 

2 2

2
2

1
( ) ( ) ,

2

1
( ) .

2 2( 2)

x
R

n

x
R

E u u u dx

au
F u uu dx

n




 


   






                        (3.1) 

Eq. (2.3) can be also described as 

'( ) '( ) 0,c cF cE                                              (3.2) 

Where represents the Frechet derivatives of E and F

and the linearized operator is given as  

''( ) ''( ) ( ) .n

c c c x c x c cxxH F cE c a c            

It is noted that the functions c , cx , 0cxx

http://www.jmest.org/
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exponentially fast when x . The Liouville 

transformation admits the following expression  

1

1( ) (2 2 ( )) ( ),n
cy c z x   

 

0

1
.

( )

x

c

y dz
c z





 

Taking advantage of spectral equation vvHc   and 

Liouville transformation, we have 

( ) ( ( ) ) ( ) ( ),n

c y cF y p y c y y      
 

where 

2( '( ))3
( ) ( ) ''

4 8( ( ))

n c
c c c

c

x
p y a x

c x


 


   


. 

The stability depends on the convexity properties of 

the function      cc cEFcd   . We have the 

following lemma. 

Lemma 1. According to the literature, the stability we 

know that the solitary wave c  is unstable if  

  0'' cd and stable if   0'' cd  .  

By differentiating  cd  once, we get 

'( ) '( ) '( ), ( ) ( ).c
c c c cd c F cE E E

c


   


   

    (3.3) 

Case 1. Positive solitary wave 

In this case, the solitary wave 
( 1)

[0, ]n
c

n c

a



  

and c is an even function. So we have 
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We can get a simpler form if letting
 

s
a

cn
y n

22 
   

as follows 
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Case 2. Negative solitary wave  

In this case, the solitary wave 
( 1)

[ ,0]n
c

n c

a



   

and c  is an even function. So we have the following 

fact 
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We can also get a simpler form if letting 
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(3.5) 

It is hard to get the integrable value according to the 

Eq.(3.4) or Eq. (3.5). So we will use MATLAB to 

compute the value of ''( )d c . 

 

 
Fig. 3.   (a) The integration value of Eq.(3.4);   (b) The 

integration value of Eq.(3.5). 

Remark. Fig. 3(a) shows that the positive solitary 

wave is unstable when the speed c  is close to the 

critical value 1
2( 2)

n
n

a



, which connects with the 

bifurcation condition contributes. And the positive 

solitary wave is stable when the speed is 

slightly greater than the critical value. Meanwhile, 

Fig.3(b) shows that the negative solitary wave is stable 

for any wave speed. 

IV.  DYNAMICS BEHAVIOR FOR THE PERTURBED AND 

CONTROLLED SYSTEM 

The perturbed equation (2.7) is given as:

 

2
1

( ) ,

cos ,
1 2

n

d
c y

d

dy a y
c r

d n






  




 

    
                  (4.1) 

where r and   denote the amplitude and the 

frequency of perturbation term respectively. The 

unperturbed system permits a homoclinic orbit given 

by Eq. (4.1). It is noted that the closed homoclinic 

orbits perhaps break under the perturbation. So we 

want to find the criteria of the existence of homoclinic 

bifurcation and chaos by the melnikov method. 

Supposing the unperturbed homoclinic orbits 

written as         yxyx ,, 00  , the Melnikov 

function for system (4.1) can be given by  

 dryM )(cos)()( 000  




 



0

00 sin)(sin2  dyr

 

02 sin ,rI  

 Where    dyI 



0

0 sin  is a function of 

frequency  .
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By using the Melnikov’s theorem [18], the chaos 

occurs if 0( ) 0M    and  
'

0( ) 0M   for some 0 . It 

is easy to find that the Melnikov function has the value 

0 0   such that (0) 0M   and 

0 0

0

2 0.
M

rI





  


 Hence we can deduce that 

chaos would occur under the one external 

perturbations. 

In order to suppressing chaos, the controlled 

system of  Eq. (4.1) is devised as 

 

2
1

( ) ,

cos .
1 2

n

d
c y

d

dy a y
c r ky

d n






  




 

     
         (4.2) 

And the relative Melnikov function is yielded as 

2

0 0 0 0( ) ( ) ( ) cos ( ).M k y d y r      
 

 
    

 

Considering  0y  is odd, we obtain 

2

0 0 0 0
0 0

( ) 2 ( ) 2 sin ( )sinM k y d r y w d      
 

   
0 1 02 2 sin ,hkC rI   

 

where    dyCh 



0

2

00 and 

   dyI 



0

01 sin . 

Based the analysis in Ref. [15], the chaos may be 

controlled as
 

 


R
C

rI
k

h


0

1
. In order to 

investigate the influence of different parameters on 

control ability, some numerical results are given in Fig. 

4 and Fig. 5. The graph of
 

0

1

hC

rI
k


   shows the 

following facts: 

(1)  The uncontrollable region becomes larger 

with the increase of perturbation amplitude r . 

(2)  The awful frequency appears periodicity 

where chaos is extremely difficult to be controlled. 

 
Fig. 4.   Chaos threshold for the perturbed system with 

5.0,4,3  ca . 

 

 
Fig. 5.   Chaos threshold for the perturbed system with 

2.1,4,3  rca . 

(3)  The uncontrollable region becomes smaller 

and the awful frequency appears less with the increase 

of nonlinear intensity n .   

V.  CONCLUSION 

Based on the generalized Camassa-Holm equation, 

we study the existence and stability of solitary waves 

and find the nonlinear intensity has important influence 

on the shape and stability of solitary waves. Following 

conclusions could be obtained, 

(1)  When the power of nonlinear term is odd, the 

equation admits positive solitary waves which are also 
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proved to be orbitally stable when the wave velocity 

exceeds a critical value.  

(2)  When the power of nonlinear term is even, the 

equation admits positive and negative solitary waves 

which are proved to orbitally stable for any wave 

velocity. 

(3)  All solitary waves turn to chaos under the external 

periodic perturbation with arbitrary nonlinear intensity.  
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