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Abstract—Fuzzy systems have an essential 

role in the modeling of many real-world 

systems and problems, which can formulate 

uncertainty in actual environment. The purpose 

of this article is to present a new view of the ST 

decomposition, which is applicable for solving 

fuzzy linear regression and its realization 

through a direct application of LU 

decomposition without any iterative 

techniques. MATLAB implementation of the ST 

decomposition is given and some numerical 

examples clarify the ability of our method. 
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I.  INTRODUCTION 
 
 Several methods for solving fuzzy linear 
regression systems have been suggested. In the 
paper of Abbasbandy et al. [1] LU decomposition 
method, for solving fuzzy system of linear equations is 
considered. They consider the method in a spatial 
case when the coefficient matrix is symmetric positive 
definite. In the work of Matinfar et al. [9], Householder 
decomposition method for solving fuzzy system of 
linear equations is suggested. If A is an m x k matrix 
with full column rank, QR decomposition is applied by 
Nasseri et al. [14]. 
 A new decomposition of a nonsingular matrix, 
the Symmetric times Triangular (ST) decomposition, is 
proposed by Golub and Yuan [5]. By this 
decomposition, every nonsingular matrix can be 
represented as a product of a symmetric matrix S and 
a triangular matrix T. Furthermore, S can be made 
positive definite. Two numerical algorithms for 
computing the ST decomposition with positive definite 
S are presented. 
 In this section, some primary definitions and 
notes, which are required in this work, are given. 
 Definition 1. Following Zimmermann [20], a 
fuzzy number may be defined as F = (b, g, h); where b 
denotes the center (or mode), g and h are the left 
spread (L) and right spread (R), respectively, L and R 
denote the left and right shape functions. A popular 
fuzzy number is the triangular fuzzy number (see 
Figure 1). 

 
 Fig. 1. Triangular fuzzy number. 
 The membership function of a triangular fuzzy 
number is defined by: 
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 Definition 2. A matrix  is 
called a fuzzy matrix, if each its 
element is a fuzzy number. We may represent m×n 
fuzzy matrix, such that

( ) ( ; ; )ij ij ij ija b g h , 

with the new notation, where A = (bij), M = (gij) and N 
= (hij) are three m×n crisp matrices. Crisp means - 
something clearly defined, deterministic in character. 
 The purpose of this article is to present a new 
view of the ST decomposition and its realization 
through a direct application of LU decomposition 
without any iterative techniques. 
 

II.  FUZZY LINEAR MODELS AND METHOD 
 
 The different types of fuzzy linear regressions 
(FLR) have been classified by Maturo [11] in: 
1. Partially fuzzy linear regression (PFLR), that can be 
further divided into: 
- PFLR with fuzzy parameters and crisp data; 
- PFLR with fuzzy data and crisp parameters. 
2. Totally fuzzy linear regression (TFLR) where data 
and parameters are both fuzzy. 
 A numerical method for finding minimal 
solution of a m×n fully fuzzy linear system (TFLR) 
based on pseudo inverse calculation, is given in [12], 
when the central matrix of coefficients is row full rank 
or column full rank, and where is a non-negative fuzzy 
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m×n matrix, the unknown vector x is a vector 
consisting of n non-negative fuzzy numbers and the 
constant b is a vector consisting of m non-negative 
fuzzy numbers. 
 For calculation of  we use 
Definition 2, therefore 
 Ax = b,      (2) 
 Ay +Mx = g,     (3) 
 Az + Nx = h.     (4) 
 The singular value decomposition 

 
TA U V      (5) 

has the unique pseudo inverse matrix 

    (6) 
 Thus we easily have by equations       (2) - (4) 
 x = A

+
b,     (7) 

 y = A
+
(g - MA

+
b),    (8) 

 z = A
+
(h - NA

+
b).    (9) 

 It should be noted here that, if y  0, z  0 and x - 

y  0  

   
is a nonnegative fuzzy solution of nonnegative full 
fuzzy linear system. 
 The comparison made by Mosleh et al. in [12] 
shows that the presented here method solve the fully 
fuzzy linear system where A is a nonnegative fuzzy 
matrix, while other authors considered only the case 
of symmetric and positive fuzzy matrices. 
 Proposition: If A, M and N are n×n 
nonsingular crisp matrices of rank = n, and the 
systems Ax = b, My = g, Nz = h are consistent, then 
the solution of the totally fuzzy linear regression (A, M, 
N) = (b, g, h) according Definition 2 is given by 
 x = A

-1
b;     (10) 

 y = M
-1

g;     (11) 
 z = N

-1
h.     (12) 

 Proof. If there is at least one solution, the 
linear system is consistent. The linear system Ax = b 
is consistent if and only if rank [A b] = rank A. The 
matrix [A b] is the augmented matrix. The augmented 
matrix and the coefficient matrix A of a linear system 
have the same rank. In this case, appending b to the 
columns of A does not increase the rank. If matrix A is 
not singular, then the inverse matrix A

-1
 exists. A 

solution of the linear system Ax = b is a vector x 
whose entries are the coefficients in a representation 
of b as a linear combination of the columns of A. And 
the solution is x = A

-1
b. 

 
III.  ST DECOMPOSITION 

 
 The parameters of fuzzy linear regression 
based on the least squares approach is computed by 
ST-decomposition method. This method is not an 
iterative technique; however, it is a powerful method 
for nonsingular coefficient matrices [19].  
 In his book Strang [17, Exercise 36, p. 108] 
suggests a new decomposition, which results in a 
triangular matrix multiplied by symmetrical. He puts 
the following questions: 

 If the matrix A is represented as A = LDU, 
why the matrix L(U

T
)
-1

 is triangular with all 1's on the 
main diagonal and why U

T
DU is symmetric? The 

answers to these questions are positive when the 
matrix has the same number of rows and columns, but 
in the case of a rectangular matrix this is not true in 
the presence of the matrix D. The important 
conclusion of this suggestion is that the LU 
decomposition can be used to obtain ST 
decomposition. 
 For every nonsingular matrix A with 
nonsingular leading principal submatrices, there exist 
a triangular matrix T and a symmetric and positive 
definite matrix S such that A = TS. Since the 
decomposition is not unique, we can make correct 
choices such that the decomposition is stable. Some 
numerical algorithms were given in [6]. An algorithm is 
introduced to solve triangular fuzzy matrices by SST 
decomposition method [7]. The paper of Mosleh et al. 
[13] mainly discusses the new ST decomposition. By 
this decomposition, every nonsingular fuzzy matrix 
can be represented as a product of a fuzzy symmetric 
matrix S and a fuzzy triangular matrix T. 
 Cordeiro and Yuan [2] suggested new row-
wise algorithms for the ST decomposition. The new 
algorithms require just a row of A and two triangular 
solvers at each step instead of three triangular solvers 
in Golub–Yuan algorithms [5, 6]. Cases with a 
symmetrical matrix of 4th order for trapezoidal fuzzy 
matrices are considered [18]. Recently, some 
modifications of the ST algorithms have been made 
by Santiago and Yuan [16]. They present preliminary 
investigations on the numerical behavior of the ST 
decomposition. They also propose modifications 
(modified algorithm) to improve the algorithm’s 
numerical stability. Numerical tests of the Golub–Yuan 
algorithm and their modified algorithm are given for 
some famous test matrices. All tests include 
comparisons with the LU (or Cholesky) decomposition 
without pivoting. These numerical tests indicate that 
the Golub–Yuan algorithm and its modified version 
possess reasonable numerical stability. 
 Let's look at the properties of the LU 
decomposition. 
 It is applicable to every positive semi definite 
matrix A, A = LU, where L is lower triangular invertible 
matrix and U is upper triangular matrix. For matrices 
that are not square, LU decomposition still makes 
sense. Given an m×n matrix A, we could write A = LU 
with L a square lower unit triangular matrix, and U a 
rectangular matrix. Then L will be an m×m matrix, and 
U will be an m×n matrix (of the same shape as A) and 
LL

-1
 = I. From here, the process is exactly the same 

as for a square matrix. 
 It is now clear that an LU factorization of a 
given matrix may or may not exist, and if it exists, it 
need not be unique. Much of the trouble arises from 
singularity, either of A or of its leading principal sub 
matrices. 
 For a given matrix A is known that: 
 (a) A has an LU factorization in which L is 
nonsingular if and only if A has the row inclusion 

.TA V U  

( , , )x x y z

Ax b
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property: For each i = 1, ..., n−1, A[{i+1; 1, ..., i}] is a 
linear combination of the rows of A[{1, ..., i}]; 
 (b) A has an LU factorization in which U is 
nonsingular if and only if A has the column inclusion 
property: For each j = 1, ..., n−1, A[{1, ..., j; j+1}] is a 
linear combination of the columns of A[{1, ..., j}]. 
 Using this theorem [7], we can give a full 
description in the nonsingular case, and we can 
impose a normalization that makes the factorization 
unique. 
 The ST decomposition could also be obtained 
using singular value decomposition, which is 
applicable to m×n matrix A. The decomposition is A = 
UDV

T
, where D is a nonnegative diagonal matrix, and 

U and V are unitary matrices, and V
T
 denotes the 

conjugate transpose of V (or simply the transpose, if V 
contains real numbers only). From here you can find 
the pseudo-inverse matrix A

+
 = VD

+
U

T
 to be used in 

the equations (7) - (9). 
 MATLAB implementation [10] of the ST 
decomposition to solve totally fuzzy linear regression 
problems: 
 Input A, M, N; 
 Input b, g, h; 
  [L, U] = lu(A); 
  T = L*(U')^(-1)  
 or (T = L/U'; if U' is not square matrix); 
  S = U'*U; 
 Check A = T*S; 
  AI = pinv(A); 
  x = AI*b; 
  y = AI*(g - M*AI*b); 
  z = AI*(h - N*AI*b); 
 Output x, y, z. 
 

IV.  EXAMPLES 
 
 To illustrate the technique proposed in this 
paper, consider the following examples. 
 
 Example 1: Consider the 3 x 3 fully fuzzy 
linear system [8, Example 4.1]: 

 

 

and 

19 68 115

30 , 77 261

61 167 253

b g h

     
     

       
     
     

 

 Let apply ST decomposition in the following 
order: 
1. Performing LU decomposition of A. 
We have matrices 

 
2. The matrix T and symmetric positive matrix S are 

 
So we found the ST decomposition. It is easy to check 
that T.S = A. 
3. We find the pseudo inverse matrix A

+
 

  
4. With its help the unknown x is calculated by 
equation (7) 

  
 To find y and z we have to use the secondary 
symmetric matrix SS, as shown in [8]. A simple way is 
to apply equations (10), (11) and (12). So we receive 

   

  

   
 
 Example 2: Consider the 2 x 3 fully fuzzy 
linear system [12, Example 1]: 

 
where 

 
 
and  
 
 We apply ST decomposition to matrix A and 
consequently receive 

  
 The operation T = L(U')

-1
 cannot be 

performed, as only square matrix arguments are 
permitted in rising to power. So we shall use T = L/U' 
and find 

 
 The pseudo inverse matrix A

+
 is 

  
 Using Equations (7), (8) and (9) from above 
we receive 

1 2 3

1 2 3

1 2 3

(1,2,5) (3,4,4) (0,1,2) (19,68,115)

(2,3,5) (0,1,11) (4,5,6) (30,77,261)

(2,5,7) (4,6,6) (5,7,10) (61,167,253

x x x

x x x

x x x

      
 

      
       

1 3 0 2 41 5 4 2

2 0 4 , 3 1 5 , 511 6

2 4 5 5 6 7 7 6 10

A M N

     
     

       
     
     

0.50 0.75 1.00 2.00 0.00 4.00

1.00 0.00 0.00 0.00 4.00 1.00 .

1.00 1.00 0.00 0.00 0.00 2.75

L U

   
   

    
      

0.9773 0.2784 0.3636 4.0000 0.0000 8.0000

0.5000 0.0000 0.0000 0.000016.0000 4.0000 .

0.5000 0.2500 0.0000 8.0000 4.0000 24.5625

T S

   
   

    
   
   

0.7273 0.6818 0.5454

0.0909 0.2273 0.1818

0.3636 0.0909 0.2727

A

 
 

  
   

(1, 6, 7).x 

1 (1, 6, 7)x A b 
1 (5, 12,10)y M g 

1 (7, 14,12)z N h 

1 2 3

1 2 3

(0.3,0.1,0.2) (0.2,0.1,0.3) (0.1,0.05,0.2) (2,1,3)

(0.3,0.2,0.1) (0.2,0.1,0.1) (0.1,0.03,0.3) (3,2,1.5)

x x x

x x x

     


     

0.3 0.2 0.1 0.10.10.05 0.2 0.3 0.2
, ,

0.3 0.2 0.1 0.2 0.10.03 0.10.10.3
A M N

     
       
     

1 0 0.3 0.2 0.1
.

1 1 0.0 0.0 0.0
L U

   
    
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0.09 0.06 0.03
2.14286 1.42857 0.71429

, 0.06 0.04 0.02 .
2.14286 1.42857 0.71429

0.03 0.02 0.01

T S

 
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    
   

 

1.07143 1.07143

0.71429 0.71429 .

0.35714 0.35714

A

 
 

  
 
 

2 1 3
, , .

3 2 1.5
b g h

     
       
     
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 It is the minimal solution of fully fuzzy linear 
system. The calculations are done with free software 
package GNU Octave, version 4.4.1. 
 

V.  CONCLUSION 
 
 In this paper we present a new view of the ST 
decomposition and its realization through a direct 
application of LU decomposition without any iterative 
techniques. By ST decomposition, every nonsingular 
matrix can be represented as a product of a 
symmetric matrix S and a triangular matrix T. 
Analytical model is used for solving a system of m×n 
totally fuzzy linear regression (TFLR), where A is a 
nonnegative fuzzy matrix. In particular case when the 
three matrices A, M and N are n×n nonsingular crisp 
matrices of rank = n, then a simple solution was given. 
Two numerical examples clarify the ability of our 
method. The proposed method is easily applicable 
with MATLAB or GNU Octave software. 
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