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Abstract—An image segmentation process is 
one of the most important steps in an image 
recognition or analysis application pipeline. It is a 
step that splits each image into disjointed regions 
of interest. It is also a task that is usually 
performed by biological processes, such as 
human visual system. Due to the low processing 
and ease of implementation, one of the most used 
techniques is the thresholding method, which 
consists in finding the best cutting thresholds of a 
probability distribution histogram. However, the 
higher the number of thresholds, the greater the 
computational complexity. And there is no 
consensus on the number of thresholds and the 
partitioning position as well. This paper presents 
a study of the number of thresholds for 
segmenting an image into their regions of interest. 
For this purpose, the proposed method uses a 
bio-inspired algorithm based on meta-heuristics, 
called firefly with a non-extensive Tsallis statistics 
kernel. Also, the images are pre-filtered with a 
low-pass filter based on a q-gaussian function. 
Using a manually segmented database, the results 
show that there is an inverse correlation between 
the Fourier spectrum of an image and the number 
of thresholds which most approximates the image 
from the used ground truth. This suggests an 
automatic method for calculating the required 
number of thresholds. 

Keywords—SIFT, Tsallis Statistics, Non-
Extensive Statistics, Multi-thresholding Image 
Segmentation, Fire-Fly segmentation 

I.  INTRODUCTION AND RELATED WORKS 

 In Computer Science, more specifically in computer 
vision area, image segmentation is the process of 
splitting and image into its regions of interest based on 
a clustering criteria. One  of  the  oldest  methods  that  
has  been  widely applied in that process is the so 
called thresholding by histogram, which considers that 
the optimal separation of a probability distribution of 
intensities is highly correlated with the division of  the  
image  itself  in  regions  of  interest.  This  assumption 
is  accepted  but  has  limitations  since,  although  it  
makes  a thresholding technique somehow simple, it is 

a source of errors, especially because a histogram of 
intensities does not carry spatial information, what we 
known is an essential information given the analysis 
and interpretation of scanned scenes. However, such 
techniques have often been used to be simple to 
implement and easily understandable. In addition, 
many practical applications showed good results in 
using this type of technique, having special attention 
from researchers. The optimal thresholding problem 
(OTP), has been extensively investigated by several 
researchers for decades. Among the techniques 
studied are those based on entropy, an old concept 
proposed by L. Boltzmann under the context of 
thermodynamics to explain the relationship between 
work and energy. Years later, C. Shannon adapted the 
Boltzmann’s ideas to measure the amount of 
information in a communication channel. Since then, 
this concept has been applied with great recognition in 
various areas of science. 

The general idea behind the concept of entropy for 
image segmentation is that under an ideal threshold, 
there is the maximum transference of information 
between the region of interest and its background.  
This idea was used firstly by T. Pun [1] in order to 
achieve two levels of intensity maps, assuming that the 
optimal threshold is that one which maximizes the 
additivity property of Shannon entropy. This property 
states that the entropy of a whole physical system 
(represented by its probability distribution) can be 
computed by the sum of its individual subsystems 
(represented by their individual probability 
distributions). 

Kapur et al. [2] maximized the superior entropy 
threshold value for the optimal threshold, and Abutaleb 
[3] improved this method using two-dimensional 
entropies. In addition, the Work of Li and Lee [4] and 
Pal [5] used the Kullback-Leibler divergence to select 
the optimal threshold, and Sahoo et al. [6] used the 
Reiny entropy aiming the same goal. More details 
about these approaches can be found in [7], a review 
about entropy methods for image segmentation. 

Considering the constraints of the traditional 
Shannon entropy, in [8] M. P. Albuquerque and 
colleagues proposed an image segmentation method 
based on entropy Non-extensive Tsallis statistics [9], a 
new type of entropy that has been considered as a 
generalization of Shannon entropy, which includes a 
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real parameter q, called Non-extensive parameter. 
Since the pioneer work of Albuquerque work, a vast 
literature was presented demonstrating promising 
performance of this method applied to optimal 
thresholding problem. More practical systems have 
been emerged under this theory, and recent works 
such as [10], [11], [12] and [13] has demonstrated the 
efficiency of the non-extensive Tsallis entropy applied 
to image segmentation in Computed Aided Diagnosis 
for medical images, the so called CAD systems. 

However, the main constraint of this approach is 
the calculation of the parameter q, empirically chosen 
for most of the works. In [14] was shown a correlation 
between the gray intensity probability distribution and 
the value of this parameter, suggesting a first proposal 
for its calculation. 

The OTP for two levels of thresholds, the so-called 
image binarization, has been used in applications to 
extract objects (the first layer) from its background (the 
second layer). It can also be observed in tracking 
systems, commonly used in video and images. 
However, even when the task is a simple object 
extraction from its background, one may need to use 
more than one level of segmentation, due to the 
presence of noise and other artifacts. This is the multi-
thresholding task. In [12] and [13] presented a 
methodology combining the Tsallis entropy and 
mathematical morphology to achieve three levels of 
thresholding under low SNR (signal-to-noise ratio). 
Later in [15], it was suggested that two segmentation 
levels may be sufficient for the separation of the main 
regions in natural scenes. The results were compared 
with manually segmented images of a database 
systematically built as a ground-truth. The proposed 
method has the advantage of multi-segmentation, also 
called multi-level thresholding Problem (MLTP) in 
linear time, recursively splitting the regions of interest. 

Recursive segmentation opposes to free splitting, in 
the sense that the latter chooses a partition at the 
highest levels regardless of the amount and the 
localization of regions in the prior lower levels, while in 
the recursive segmentation, each achieved sub-region 
is splitted again to form the next levels. Then, the 
recursive segmentation is dependent on the amount 
and location of regions found in lower levels. However, 
in the recursive strategy there is no guarantee that the 
thresholding in multi-levels leads to a desired division 
because different regions that co-existed at the same 
level r cannot co-exist anymore (or are entirely 
incorporated at different levels) when the same region 
is divided into r+1 levels. Thus, some authors have 
investigated the image segmentation process based 
on free thresholding on multi-levels. The disadvantage 
of this process is the computational time that is not 
linear requiring an  order  of  complexity  of  O(𝐿𝑑+1)  to  
derive  d  thresholds L n intensity levels, which is 
unacceptable, of course, even for d = 2 in the case of 
segmentation in three levels used in applications that 
require real time.  

Thus, some authors have proposed the use of bio-
inspired meta-heuristics to find various thresholds in a 
process of multi-segmentation. See, for example, [16] 
and references therein for a review. 

Therefore, the development of meta-heuristics has 
gained much attention from researchers, particularly in 
the last decade, when a variety of such algorithms has 
been applied to various NP-Complete problems. Some 
of the best known meta-heuristics are genetic 
algorithms [17], simulated annealing [18], Tabu search 
[19], optimization by ant colony [20], and particle 
swarm optimization [17], [22].  

In turn, firefly algorithm is a bio-inspired meta-
heuristic based on the fireflies behavior following their 
luminescence. The work of Lukasik and Zak [23] and 
Yang [24] suggested that the methods based on firefly 
meta-heuristic outperform other major existing meta-
heuristics. Recently, M. Horng [25] proposed the use 
of this algorithm in a thresholding approach using as 
objective function the minimization of cross-Entropy for 
multi-level thresholding. This is the same objective 
function proposed by P. Yin in [22]. The general 
conclusion was that the method based on the cross-
entropy, a linear timing algorithm, reached threshold 
values near to the exhaustive algorithm based on the 
same entropic kernel. 

When it comes to natural image segmentation, the 
optimal number of thresholds for better segmentation 
is still an open issue in the literature; therefore, it is 
considered a subjective choice and very dependent of 
deep cognitive processes still unknown to researchers. 
Moreover, the correlation of the various parameters 
involved in several stages is still a process somewhat 
poor addressed, where the majority of methodologies 
are tested with parameters set previously in an intuitive 
way. 

The optimal number of thresholds for better 
segmentation of a natural image is still an open issue 
in  the  literature  about and is therefore considered a 
subjective choose and very dependent of deep 
cognitive processes still unknown to re- searchers. 
Moreover, the correlation of the various parameters 
involved in the several stages, is still a process 
somewhat poor addressed, where the majority of 
methodologies are tested with parameters set 
previously empirically. 

This paper proposes the study of the 
parameterization of the bio-inspired meta-heuristic 
Firefly for multi-thresholding segmentation of natural 
images, especially regarding the number of thresholds 
that better approximates an automatic segmentation 
from a corresponding manual contour. The kernel of 
the proposed algorithm is based on non-extensive 
Tsallis entropy.  

Finally, due to the large set of parameters, the 
computation of these parameters is achieved in a 
parallel and distributed architecture programming. 
Among the main results obtained, we find that there is 
a strong correlation between the homogeneity of the 
image regions and the number of used thresholds that 
approaches the automatic segmentation from a 
corresponding manual segmentation. 

The remainder of this paper is organized as the 
following. In Section 2 all theoretical foundations are 
described. Then, Section 3 introduces the images 
database. Next, in Section    4, the similarity measure 
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function used in the experiments is presented. Later, 
Section 5 describes the proposed experiments and 
presents the results. Finally, Section 6 reviews the 
main results of the paper and give directions on future 
researches. 

II. THEORETICAL FOUNDATIONS 

A. Non-Extensive Multi-Segmentation 

In this section, we review the concept of non-
extensive Tsallis entropy and show its application as a 
kernel in the Firefly algorithm for image segmentation. 
An extensive analytical, experimental and 
comparative review of this topic can be found in the 
paper of Rodrigues [16], which shows that the firefly 
meta-heuristic has a better performance in multi- 
threading applications under a kernel based on Tsallis 
entropy. The concept of entropy is fundamental in the 
remarkable work of Shannon, which proposes the 
popular equation of 
Shannon’s entropy in the field of information theory: 

𝑆 =  ∑𝑝𝑖 log 𝑝𝑖 (1) 

where pi is a probability of a physical system to occur 
in a state i and ∑ pi = 1.0, 0 ≤ pi ≤ 1.0. 

This entropy definition is more accurately applied 
to traditional physical systems, which are called 
Extensive Physical Systems since their future physical 
properties can be predictably scaled from the state 
and interaction of their current elements. However, for 
over a century, it is well known that this equation 
cannot describe precisely systems whose elements 
have long-range interactions in temporal and space 
terms. Such systems are called Non-Extensive 
Physical Systems [9] and have recently been gaining 
great attention from researchers. For these cases, C. 
Tsallis has proposed a new formalism [9], developed 
through the Tsallis’s entropy, given by the following 
equation: 

𝑆 =
1− ∑𝑝𝑖

𝑞

𝑞−1
  (2) 

where q is the real (entropic) parameter. This idea, 
although relatively new, has been well accepted in the 
scientific community, and has been successfully 
applied to various areas of science such as 
hydrodynamics (turbulent systems), astronomy (speed 
of galaxies), economics, biochemistry, social 
interactions, image processing, and many others. A 
comprehensive reference with applications and more 
details of this formalism can be found in [9]. 
 
It can be proved that Tsallis’ entropy is a 
generalization of the Shannon’s since Equation (2) 
reduces to Equation (1) in the limit when the variable 
q tends to 1 [26]. The work [8] was the first one to 
apply the Tsallis Entropy for segmentation of natural 
scenes. Later generalization of the Shannon’s since 
Equation (2) reduces to Equation (1) in the limit when 
the variable q tends to 1 [26]. The work [8] was the 
first one to apply the Tsallis Entropy for segmentation 
of natural scenes. Later, Rodrigues et al in [15] and 

[27] presented the first methods for automatic 
computation of parameter q for segmentation tasks. 
In [28], [29], [30] it is shown that the Firefly algorithm 
performs better if the objective function is based on 
non-extensive Tsallis entropy. The Firefly algorithm, 
proposed by Xin-She Yang in [24], is a meta-heuristic 
inspired by the behavior of fireflies, which are 
attracted one by another according to their natural 
luminescence. In the end, the convergence is reached 
generating clusters of fireflies, where the brighter ones 
attract  the other fireflies under certain restrictions, 
such as: (1) all fireflies are unisex so that one firefly 
will be attracted to any  other firefly; (2) attractiveness 
is proportional to brightness, thus a less bright firefly 
will move towards a brighter one. If a particular firefly 
is the brighter one, then it will move randomly. 
The general idea is modeling a non-linear optimization 
problem by associating each problem’s variable to a 
firefly and  make the objective evaluation 
depending on these variables, which are associated to 
the fireflies brighten. Then, iteratively, the variables 
are updated (their brightness) under pre-setting rules 
until the convergence to a global minimum. 
Generically, it is accomplished at each generation, 
according to the following main steps: 
 

 Bright evaluation; 

 Compute all distances between each pair 
of fireflies; 

 Move all fireflies one toward all others, 
according to their brightness; 

 Keep the best solution (the brighter firefly); 

 Generate randomly new solutions; 

The kernel of the algorithm is its evaluation 
function, denoted here by Z, which influences the final 
result very much and depends on the current problem. 
Specifically, for multi-level thresholding problem, as 
proposed in [28], [25] and [24], each firefly is 
considered a d-dimensional variable, where each 
dimension is a distinct threshold, partitioning the 
histogram space into d + 1 distinct regions. It was 
shown experimentally in [25] and [24] that the 
achieved results, though not optimal, are consistent 
with the corresponding results of brute-force 
algorithms. However, the objective function used in the 
methods followed an extensive formalism, considering 
the equation for the cross entropy. 

In the specific case found in [28], the goal is to 
minimize an objective function Z that is based on non-
extensive Tsallis entropy and its pseudo-additivity 
property, given by: 

 𝑆𝑞(𝐴 ⨁ 𝐵) = 𝑆𝑞(𝐴)  + 𝑆𝑞(𝐵)  + (1 −  𝑞)𝑆𝑞(𝐴)𝑆𝑞(𝐵) (3) 

where A and B are two statistically independent 
physical systems, 𝑆𝑞(𝐴) and 𝑆𝑞(𝐵)  are computed by 

Equation (2), and 𝑆(𝐴 ⨁ 𝐵) is the total entropy of the 
non-extensive physical system composed by A and B. 

In this work, the Z function is defined according to 
Equation 3. Then, the number of physical states is the 
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number of chosen partitions. Therefore, for two 
partitions (binary segmentation) the evaluation function 
of firefly algorithm for the firefly fi is defined as: 

 

 𝑍(𝑓𝑖) = 𝑆𝑞(𝑃1 ⨁ 𝑃2) 

            =  𝑆𝑞(𝑃1)  + 𝑆𝑞(𝑃2)  + (1 −  𝑞)𝑆𝑞(𝑃1)𝑆𝑞(𝑃2)    (4) 

In the case of d partitions the Z function is defined 
as: 

𝑍(𝑓𝑖) = 𝑆𝑞(𝑃1 ⨁ 𝑃2. . . 𝑃𝑑) =
𝑆𝑞(𝑃1) + 𝑆𝑞(𝑃2) + . . . + 𝑆𝑞(𝑃𝑑)  + (1 −
𝑞) 𝑆𝑞(𝑃1)𝑆𝑞(𝑃2). . . 𝑆𝑞(𝑃𝑑)     (5) 

Thus, the brightness of each firefly 𝑓𝑖  is directly 
proportional to the value of Equation (5). 

The superior result of Tsallis Entropy is only 
possible due to the introduction of the non-extensive 
parameter q, which gives to the optimization method 
more flexibility in finding a better solution. The firefly 
algorithm is described in details in [16], where the 
authors demonstrate the efficiency of this strategy 
applied to generic images. 

B. The q-gaussian Filtering 

As the Expression (2) is presented as one 
generalization of the Expression (1), the Statistical 
Mechanics also states defines, under the same ideas, 
a generalization to the Gaussian function, denoted 
here as q-Gaussian. In [31], for example, a generic q-
gaussian function was defined as: 

𝑔𝑞(𝑥) =
√𝛽

𝐶𝑞
 𝑒𝑞
−𝛽𝑥2

, (6) 

where β = 1/(3 - q), 𝑒𝑞
𝑛 is an exponential function 

and 𝐶𝑞 is a normalization constant. 

As the q-entropy, the q-exponential function uses 
the non-extensive parameter q as a traditional 
deformation as well. 

The function 𝑒𝑞
𝑛  was defined in [31] as an 

analogous expression to 𝑒𝑥 , given by [1 + (1 −

 𝑞)𝑥]
1

1−𝑞, where the limits are: 

𝑒𝑞
𝑥  {

[1 + (1 −  𝑞)𝑥]
1

1−𝑞, 𝑓𝑜𝑟 𝑞 ≠ 1 𝑎𝑛𝑑 1 + (1 − 𝑞)𝑥 >  0
0,              𝑓𝑜𝑟 𝑞 ≠ 1 𝑎𝑛𝑑 1 + (1 − 𝑞)𝑥 ≤  0 

𝑒𝑥, 𝑓𝑜𝑟 𝑞 = 1 
 (7) 

The normalization factor 𝐶𝑞 is also dependent of the 

non-extensive parameter q, as the following: 

𝐶𝑞  

{
 
 

 
 2√𝜋Γ(

1

1 − 𝑞
)

1

(3 − 𝑞) √1 − 𝑞Γ(
3 − 𝑞

2(1 − 𝑞)

, 𝑓𝑜𝑟 −  ∞ <  𝑞 <  1

√𝜋,              𝑓𝑜𝑟 𝑞 = 1 

√𝜋Γ(
(3 − 𝑞)

2(𝑞 − 1)
)

1

 √𝑞 − 1Γ(
1

(𝑞 − 1)

, 𝑓𝑜𝑟 1 <  𝑞 <  3 

 (8) 

The gamma function Γ(n) = (n − 1)! is an extension 
of factorial function in the complex domain. 

Considering the Equation (6), we can define an 
analogous to two-dimensional q-gaussian, defined as: 

𝑔𝑞(𝑦) =
√𝛽

𝐶𝑞
 𝑒𝑞
−𝛽𝑦2

, (9) 

Besides, in the work of Borges [31] it was defined 
the product of two variables in the non-extensive 
domain, called as q-product, given by: 

𝑥 ⨁𝑞 𝑦 ≡ [𝑥
1 − 𝑞  +  𝑦1 − 𝑞 − 1]+

1

1 − 𝑞
 (10) 

In the work of [32], a 2D q-gaussian was defined as a 
product of the two q-exponentials (6) and (9) in the 
domain defined by Expression (10), in the following way: 

𝐺𝑞(𝑥, 𝑦)  = 𝑔𝑞(𝑥) ⨁𝑞 𝑔𝑞(𝑦) (11) 

 𝐺𝑞(𝑥, 𝑦)  = [𝑔𝑞(𝑥)
1 − 𝑞  +  𝑔𝑞(𝑦)

1 − 𝑞 − 1]

1

1 − 𝑞
 (12) 

In [31] and references therein in found the q-product 
theory in a more detailed way. 

Finally, we can define a 2D q-gaussian as: 

𝐺𝑞(𝑥, 𝑦)  = [(
√𝛽

𝐶𝑞
 𝑒𝑞
−𝛽𝑥2

)1 − 𝑞  +  (
√𝛽

𝐶𝑞
 𝑒𝑞
−𝛽𝑦2

)1 − 𝑞 − 1]

1

1 − 𝑞

       (13) 

To get the traditional gaussian function, we can 
compute the limit of Expression (11) when q →1. 

In Fig. 1 six topologies are presented and three 
discretizations of the 2D q-Gaussians built according 
to Equation (11). In this figure, each function presents 
a different q-value. In this paper, we have tested five 
different topologies according to the set q = {0.1, 0.75, 
2.0, 2.5, 2.99} as a pre-processing of the input images 
in order to verify the impact of each topology under six 
different thresholds. Also, we have tested the set q = 
{0.1, 0.5, 0.35, 0.75, 0.99} as entropic kernels of the 
proposed firefly meta-heuristic. 

III. EXPERIMENTAL DATABASE 

In the experiments of this work we have used 300 
images of a database from the Berkeley University. 
These images are natural images from several 
classes, and each image was manually segmented 
given contours of their regions. The task of image 
segmentation is an open problem, and we can 
highlight two reasons: (i) a correct segmentation 
depends on the image context as well as the human 
point of view, and (ii) it is rare to find an image 
database manually segmented to formally compare 
results. The Berkeley database is the most known to 
this purpose. Consequently, the researches show their 
results throughout few images and highlight what they 
believe are the correct under an intuitive way. So, it is 
evident that the same methodology works with other 
image of the same class. However, the remaining 
question is: what is a correct segmentation? 

Under lack of a response, it is needed at least a 
reference point so that the comparison between 
several techniques under the same database or 
parameterization can be plausible. In this sense, the 
image database used in this work can be considered 
an attempt to establish such a reference. 
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Fig. 2 shows twelve examples (first, third and fifth 
columns) of images of this database and their 
corresponding manual segmentations (second, fourth 
and sixth columns, respectively), where it is possible to 
note the high degree of consistence between the 
segmentation accomplished by different peoples. For 
further details on this database, see [33]. 

IV. SIMILARITY MEASURE 

We defined a function to measure the similarity 
between the manual and the automatic segmentation. 
However, this is a difficult task and the problem is still 
unsolved. Sezgin and Sankur [34] proposed 5 
quantitative criterias for measuring the luminance 
region and shaped 20 classical methods to measure 
the similarity between them. But the criteria they 
proposed was not based on a golden standard defined 
set of images, thus the method of comparison 
proposed in [34] can be used only as an intrinsic 
quality evaluation of the segmented areas: i.e, one 
output image segmented into uniformly molded regions 
cannot be considered as close as expected to the 
manual segmentation. 

On the other hand, similarity measures based on 
some ground-truth are not easy to propose when the 
system needs to detect several regions in an image, a 
common task in computational vision. Moreover, the 
comparison of several related regions is a challenging 
process since not only the edge is difficult to measure 
but also its spatial location. Also, in the area of 
computer vision, is an important demand to be able to 
deduct regions that are interrelated. 

Although it is possible to design an algorithm which 
tolerates localization errors, it is likely that detecting 
only the matching pixels and assuming all others are 
flaws or false positive and may provide a poor 
performance. 

One can speculate from Figure 2 that the 
comparison between the edge-maps derived from the 
automatic and manual segmentations must tolerate 
localization errors as long as there are also 
divergences on the edges of the golden standard. 
Thus, the consideration of some differences can be 
useful in the final result as shown in [33]. 

Fig. 1. Graphics of six 2D q-gaussians with the corresponding q-values under three different discretizations. 

Fig. 2. Twelve examples (columns 1, 3 and 5) of the original images and their corresponding manual segmentations (columns 2, 4, and 6). 
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On the other hand, from 2D edge-maps, such as 
the one we used, one can obtain two types of 
information: geometrical dispersion and intensity 
dispersion. The geometric dispersion measures the 
size and the location of the edges; the intensity 
dispersion measures how common is that edge among 
all manual segmentations that were overlapped. Thus, 
the geometric dispersion between two edge-maps has 
its information measured in a quantitative manner, in 
the x and y dimensions, while the luminance 
dispersion can be represented by the z dimension. 

The divergence of information between the two 
edge-maps of an M × N image in the x dimension is 
calculated by the Euclidean distance between the two 
maps (i.e. the 𝑀𝑥  as vertical projection at the edge 
map for automatic segmentation and the 𝐻𝑥  is the 
corresponding vertical projection for the manual one). 
So, in this article, we propose an evaluation function 
between the two edge-vertical-projection 𝑀𝑥 and 𝐻𝑥 of 
the x dimension presented in (14) to measure how far 
the automatically-obtained segmentation is from the 
manual one in this specific direction: 

𝑆𝑖𝑚𝑥(𝑀𝑥|𝐻𝑥) = √∑ (𝑀𝑥(𝑖) − 𝐻𝑥(𝑖))
2

𝑀  (14) 

where 𝑀𝑥 and 𝐻𝑥 are the image edges projections 
in the x direction, manual and automatic respectively. 

Similarly, the corresponding functions are proposed 
respectively for y (15) and z (16) directions: 

𝑆𝑖𝑚𝑦(𝑀𝑦|𝐻𝑦) = √∑ (𝑀𝑦(𝑖) − 𝐻𝑦(𝑖))
2

𝑁  (15) 

𝑆𝑖𝑚𝑧(𝑀𝑧|𝐻𝑧) = √∑ (𝑀𝑧(𝑖) − 𝐻𝑧(𝑖))
2

𝐿  (16) 

 

where N e L are the sizes of y e z distributions (for 
horizontal and luminance distribution, respectively). 
Note that N is the image resolution on the y dimension 
and L is the total of gray levels (i.e. 256). 

Thus, in this study, we propose the following 
evaluation function to measure the similarity between 
two edge-maps: 

𝑆𝑖𝑚(𝑀|𝐻) = 𝑆𝑖𝑚𝑥 + 𝑆𝑖𝑚𝑦 + 𝑆𝑖𝑚𝑧 (17) 

V. EXPERIMENTS AND DISCUSSION 

A. Experimental Methodology 

Clearly, we can note that the size of parameter set 
is considerably large here, as is typical in applications 
of digital signal processing, especially in the case of 
multi-stage architectures as is easily found in mid-level 
machine vision applications. The process of image 
segmentation is a typical example. On the other hand, 
there are rare works in computer science and 
neuroscience literature studying each parameter 
relating them to the subjective interpretation of an 
image. Generally, most works in the area choose to 
set previously the parameter values and empirically 
demonstrate the performance of the methods through 

a final comparison with other methods under these 
fixed values.  

Thus, the work proposed here is intended to be a 
small step toward the study of the relationship of some 
parameters to a process considered purely cognitive, 
as is the interpretation of the main regions of an image 
by a human being, represented here by the manual 
segmentation of Berkeley database. If there is any 
relationship between a parameter and the natural 
image partition, a first step to ravel these relationships 
is obviously the statistical observation of the parameter 
behavior and the given manual segmentation.  Thus, in 
this paper, we chose to automatically vary the set of 
parameters involved in the automatic segmentation 
and observe the results against the corresponding 
manual segmentation.  

An intuitive observation which corroborates this 
strategy is that in case of multi-thresholding, the 
number of considered regions by the most manual 
segmentation should not be an increasing nor 
decreasing function regarding scene complexity. Since 
the number of thresholds is directly proportional to the 
number of found regions, the number of used 
thresholds in a manual segmentation should be low. 
Thus, one of the studied parameters here was the 
number of thresholds. The first experiments indicate 
this direction, as shown in Figs. 4 and 5.  

The results observed in Figs. 4 and 5 intrigue and 
lead directly to the obvious question of what image 
features (cognitive or not), an image must have to be 
better segmented by few (1 or 2, for example) or 
several (more than 2) thresholds. We have not found 
in the related literature any work addressing this issue. 
Thus, in the experiments in this paper we propose the 
Fourier spectrum of an image as that feature which 
most likely has some correlation with the number of 
thresholds. It is known that as greater the amount of 
high frequencies embedded in an image, greater is the 
amount of details and possibly greater will be the 
number of optimal thresholds for segmenting it. 
Intuitively, the contrary can be also true. Thus, one of 
the experiments proposed here is to observe the 
Fourier spectrum in correlation with the number of 
optimal thresholds. The confirmation of this behavior 
may allow further applications that extract from the 
image information to enable the computation of the 
number of optimal thresholds to segment it.  

To compute the large set of parameters of the 
involved algorithms, in the experiments carried out in 
this work we used distributed processing. Then, it was 
tested five values of the non-extensive parameter q = 
{0.1, 0.5, 0.35, 0.75, 0.99} in the kernel of FFA. In 
addition, each input image was pre-filtered with five 
different values of q = {0.1, 0.75, 2.0, 2.5, 2.99} in the 
q-gaussian filter and six different thresholds T = {1, 2, 
3, 4, 5, 6} in FFA. 

Fig. 3 shows the experimental flowchart used in this 
paper to study the parameterization of the proposed 
methodology. Each rectangle is labeled with a specific 
experimental methodology stage and the arrow is the 
data flow. 
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Fig. 3. Flowchart of the proposed experimental method. 

 

The experimental flowchart has two inputs at 
different moments. Initially the entry original input 
image indicates the processing of an image that is 
filtered in q-gaussian filtering stage before moving to 
the FF multi-thresholding stage. 

Note that the FF multi-thresholding stage can be 
accomplished also directly from original input image 
without the q-gaussian filtering. After the FF multi-
thresholding stage, an edge detection based on sobel 
operator is carried out, which output is compared with 
the corresponding manual segmentation image in 
matching stage. The final results stage shows the 
results of comparison accomplished with Equation 
(17). 

In this work, this flowchart has been tested for each 
of 300 images of original Berkeley database (Section 
III). Each input image can pass though the pre-filtering 
stage where a q-gaussian low-pass filter is applied for 
five values for q. This step is accomplished with 
Equation (13). Regarding the five values of q and the 
six different thresholds used in stage FF Multi-
thresholding, each of 300 images pass 150 times 
through this flowchart. The whole process was, as 
already mentioned, automatic. 

B. Results 

As described before, the flowchart shown in Fig. 3 
was used for experimental studies of this work and is 
automatically executed 150 times for each one of the 
300 images of Berkeley database (Section III). For 
each image, it was taken the best parameter set up 
that led to the nearest multi-segmentation of the 
corresponding ground truth image (that manually 
segmented). So, each image has a number of 
thresholds which is considered optimal, minimizing the 
matching between the manual and automatic multi-
thresholding. The histogram distribution of these 
thresholds for all 300 images can be seen in Fig. 4. 

The distribution of Fig. 4 shows that the number of 
images that are better segmented with few thresholds 
(1, 2 and 3) is much higher than those which are 
segmented with higher number of thresholds (4, 5, and 
6). 

In turn, Fig. 5 shows a 10 × 10 matrix where each 
cell (i, j) is the average of all matching using Equation 
(17) for those images that are better segmented with i 
thresholds after a q-gaussian pre-filtering with q = j. 
For  example,  a  cell  (2, 0.5) is the average of all 
matching using Equation (17) for those images that are 
better segmented with 2 thresholds after a q-gaussian 
pre-filtering with q = 0.5, and cell (3, 1.0)  is the 
average of all matching using Equation (17) for those 
images that are better segmented with 3 thresholds 
after a q- gaussian pre-filtering with q = 1.0, in this 
case this is the same as a pre-filtering with a traditional 
gaussian filtering, since q = 1.0. Also, all cells were 
normalized according the scale shown in the left 
vertical bar where the blue value is the best (lower) 
average matching and the red value is the worst 
(higher) average matching.  

According to the color scale shown in Fig. 5, as 
bluer a cell is, lower is the distance matching between 
the manual and automatic image segmentation, and as 
redder a cell is, greater is this distance. Thus, this 
figure complements the results obtained in the 
distribution shown in Fig. 4, suggesting that as smaller 
the number of thresholds greater is the chance of 
achieving a closer matching to a manual 
segmentation. 

The results shown in Figs. Figs. 4 e 5 demonstrate 
that the number of thresholds is low for most images of 
the Berkeley database.  However, these results also 
raise up the question of which depends on the number 
of thresholds? Then we hypothesize that the number 
of thresholds depends on the distribution of the high 
and low frequencies embedded in an image. To 
demonstrate this hypothesis, was carried out 
experiments whose flowchart is shown in Fig. 6. 

The general idea behind the experimental flowchart 
of Fig. 6 is that to measure the information of the 
image’s features and correlate that information with the 
number of thresholds that reaches the best 
segmentation with the FF algorithm. Since the number 
of image details give an idea of how homogeneous   is 
that image, we compute its Fourier transform, measure 
the frequency spectrum and correlate it with the 
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number of thresholds that minimize the distance 
between the automatic and manual segmentation. 

Thus, for each image 𝐼𝑥𝑦  from the Berkeley 

database that has been better segmented with L 
thresholds we compute the Fourier transform ℱ(𝐼𝑥𝑦) for 

𝐼𝑥𝑦 . The output is then converted to the Fourier 

spectrum P (ℱ(𝐼𝑥𝑦)), given by Equation (18). 

𝑃 (ℱ(𝐼𝑥𝑦)), = |ℱ(𝐼𝑥𝑦)| =  𝑅
2(𝑢, 𝑣)  + 𝐽2(𝑢, 𝑣)  (18) 

where R is the real part and J is the imaginary part 
of the Fourier spectrum. 

Finally, consider that 𝑅𝐼
𝐿  is the real term of the 

Fourier spectrum of the image I which was best 
segmented with L thresholds. If the number of images 
with L thresholds is N, we compute the following 
average area S. 

𝑆 =  ∑ |𝑅𝐼
𝐿(𝑢, 𝑣)|𝑁

𝐼 = 1   (19) 

 
Fig. 4. Best threshold distribution for all 300 images from Berkeley database 

 

Fig. 5. Matrix of normalized distances for automatic and manual segmentation as a function of the number of thresholds and the q value of the pre-processing 

step with a q-gaussian filter. 

 

 
 

Fig. 6. Flowchart of experimental method to measure the correlation between an image’s embedded components of frequency and the number of thresholds 

that best segment them. 
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Excluding the higher number of thresholds because 
they have been observed in a few images, one can  
observe that there is a strong correlation between the 
number of optimal thresholds for segmenting an image 
and the number of high frequencies embedded in an 
image. It suggests that the lower the number of high 
frequencies lower the number of thresholds to 
segment them; in other words: the higher the value of 
S smaller the presence of high frequencies in the set 
of images with this number of thresholds. Moreover, 
this behavior has an exponential decreasing as the 
number of thresholds to segment an image increase. 

The result of Fig. 7 induces the observation of 
parameter correlation used in the experiments. 

 

Fig. 7. Average variation for a set of images in the 
Berkeley database of the number of optimal thresholds 
with S. 

 

Thus, the Table 1 shows the correlation between 
the three main parameters studied considering the 
following symbols adopted: qtt is value of the non-
extensive parameter q used in the initial low-pass q-
gaussian filtering; #L is the number of thresholds that 
minimizes the distance between the automatic image 
segmentation and its corresponding manual 
segmentation; and #R is the amount of high/low 
frequencies in a set of images. 

VI. CONCLUSIONS 

This paper presents a study of the number of 
thresholds for segmenting an image with a bio-
inspired algorithm in a distributed process. The 
algorithm used was the Firefly meta-heuristic with a 
non-extensive entropic kernel. Each image was also 
pre-filtered with a spatial low-pass q-gaussian filter 
and the database for testing used 300 manually 
segmented images. The results showed that most of 
the images from the tested database needed fewer 
thresholds (up to 3) to get a multi-thresholding closer 
to the corresponding manually segmented images, 
and a much less amount required more than 3 up to 
10 thresholds for the same purpose. 

From this point, we hypothesize that the images 
with lower levels of embedded details are those that 
need fewer thresholds to meet the corresponding 
manual segmentation; and those with more 
embedded details need a much higher number of 

thresholds. To test this hypothesis, we compared the 
number of thresholds in the first part of the 
experiments with the spectrum of Fourier 
transformation of each image. 

The results suggest that there is an inverse 
correlation between the value of Fourier spectrum and 
the number of thresholds need to approach an 
automatic segmentation to the corresponding ground 
truth; i.e., as greater the spectrum, smaller the 
number of required thresholds for segmenting an 
image, leaving the result closest to the ground truth. 
And when the spectrum has a low value, the number 
of thresholds is high. 

TABLE I.  CORRELATIONS BETWEEN THE PARAMETERS 

(QTT FOR THE GAUSSIAN SMOOTHING) QTT, NUMBER OF 

THRESHOLDS #L AND HIGH/LOW FREQUENCIES IN THE 

IMAGES #R. 

 qtt #L #R 
qtt 1.0 0.2289 -0.1951 

#L 0.2289 1.0 -0.3181 

#R -0.1951 -0.3181 1.0 

 
Since there is also an inverse positive correlation 

between the Fourier spectrum and the level of details 
in an image, the results indicate that there is also a 
correlation between a larger amount of details and the 
number of required thresholds. Thus, the spectrum of 
the Fourier transform may be a feature to be 
calculated in order to estimate the number of needed 
thresholds. However, the precise amount of this 
quantity, analytically computed between the spectrum 
value and the number of thresholds depends on more 
experiments and future studies. 
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