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Abstract—Bio-fuels have gained much 
attention over the last decade. However, most of 
the research efforts have been focused on 
improving the quality and increasing the 
productivity of bio-fuels, and there have been 
minimal attempts to develop research on the 
supply and delivery issues of these sources. We 
believe that the viability of bio-fuels is strongly 
related to the efficiency of the distribution 
networks. This paper presents an optimization 
model and its application to an infrastructure for 
bio-fuels distribution network. Unlike other 
studies on the topic acknowledging the fact that 
traditional sources of fuel (i.e. petroleum) will not 
readily disappear from the competitive landscape, 
we focus on the dynamic nature of how the "new" 
and "old" energy sources may ultimately co-exist 
by adjusting their geographic product offerings 
based on production and transportation costs. To 
handle the uncertain demands of bio-fuels, we 
adopt the concept of stochastic programming. 
The presented model also considers two different 
modes of transportation with heterogeneous fleet 
size. The applicability of the optimization model is 
demonstrated in the case study of Bio-fuels 
distribution network in the Southwestern United 
States. The results demonstrate that the model is 
a practical and flexible tool in solving realistic 
distribution planning problem of bio-fuels.  

Keywords— Bio-fuel; Distribution network; Mixed-

Integer Linear Program; Stochastic Program 

I.  INTRODUCTION  

Over the last decade, a noticeable increase of interest 
in the area of renewable energy has been observed. 
In general, renewable energies are considered clean 
and limitless alternatives to fossil and nuclear fuels 
[1]. As of 2013, renewable energies are the least 
consumed forms of energies in the US, and among 
these energy sources, biomass and hydropower are 
the main sources utilized [2]. In contrast to 
hydropower, biomass has growth potential since much 
of the waste material that we produce in our daily 
activities can be effectively converted into a usable 
form of energy by utilizing the right conversion 
technology.  

The United States have embraced the use of biofuels 
as a reliable form of transportation fuel and have been 
continuously working toward increasing and 
accelerating the commercialization of this industry [3]-
[4]. Although biofuels have gained much attention 
over the past decade, much of the research efforts 
have been focused on improving the quality and 
increasing the productivity of biomass in more efficient 
ways. Aside from a handful of government reports and 
one practitioner conference, formal investigation of 
supply chain and distribution issues of bio-fuels is 
essentially absent. 

Recently, there have been some attempts at 
optimizing the biofuel supply chains by private 
companies and research institutions (see [5]-[10]). 
However, in order to assure the economic viability of 
biofuels in a commercialized large scale, a lot more 
research needs to be done on the distribution 
infrastructure of the biofuels supply chain. In this short 
paper, we present an optimization model for biomass 
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and biofuels supply chain network in the southwestern 
United States. The proposed model closely follow the 
work by [5] and [10]. Unlike their studies, however, two 
different modes of transportation are considered in the 
proposed model, and traditional sources of fuel does 
not readily disappear from the competitive landscape, 
and thus, we focus on the dynamic nature of how the 
"new" and "old" energy sources may ultimately co-exist 
by adjusting their geographic product offerings based 
on production and transportation costs. 

II. PROBLEM DESCRIPTION 

The generalized but well accepted structure of the 
biofuels supply chain model consists of three main 
layers namely, upstream, midstream, and 
downstream. Figure 1 shows a depiction of the 
biofuels supply chain structure.  

 

Figure. 1. BIOFUELS SUPPLY CHAIN 

The upstream layer begins by having a selection of 
biomass fields of different types and production 
capacities. If driven by demand, biomass should be 
moved by truck or rail tankers to the most appropriate 
bio-refinery. At this point, biomass gets converted into 
a liquid fuel. Each type of biomass has different 
biomass-to-biofuel conversion factor, which means 
that the liquid fuel produced will vary depending upon 
the type of biomass that is being input. After the 
refining process, the biomass gets delivered to a bulk 
storage or blending location via truck or rail tanker, 
which represents the midstream layer of the supply 
chain. After that, the fuels are delivered to the end-
customers. Since this final stage occurs within city 
limits, only a single transportation mode, i.e., truck, is 
considered in our model.  

III. MATHEMATICAL MODELING 

The entire supply chain is broken down into two major 
parts, i.e., one for the upstream and midstream layers 
of the supply chain and another for the downstream 
layer. To handle the uncertainty issue of biofuels 
demand, we adopt the concept of the stochastic 
programming. In the model, the first-stage decision 
variable represents the amount of biomass delivered, 
whereas the second-stage decisions are the amount 
of biofuels transported to end-customers. The random 
events are the amounts of biofuels demand. A pre-
determined number of scenarios were used with a 
relative probability of occurring. 

A. MILP for upstream and midstream 

The first part considers the upstream and midstream 
layers of the supply chain. We include various types of 

biomass for biofuel production in the region, as well as 
a limited number of bio-refineries with specific 
production capacities. The model also includes the 
bulk blending/storage locations that are readily 
available for biofuels. We consider the existing fuel 
stations that report to actually sell ethanol in the 
region. The presented model also considers two 
different modes of transportation with heterogeneous 
fleet size. For convenience, all notations used in the 
model formulation are summarized as below: 

Sets: 
L   Set of biomass types indexed by l 
Il   Set of biomass fields of type l indexed by i 
J  Set of refinery locations indexed by j 
K   Set of storage locations indexed by k 
M   Set of transportation modes indexed by m. 

(i.e. 1-truck, 2-rail tanker) 
Ω   Set of Scenarios indexed by ω 
 
Input Parameters: 

lP    Cost of harvesting biomass of type l 

mv   Average speed (MPH) for transportation 

mode m 
b

m
cap  Capacity of vehicle m for bulk solids 

l

m
cap  Capacity of vehicle m for liquids 

db

m
tran   Distance dependent transportation cost of 

bulk solids by transportation mode m 
tb

m
tran   Time dependent transportation cost of bulk 

solids by transportation mode m 
dlq

m
tran   Distance dependent transportation cost of 

liquids by transportation mode m 
tlq

m
tran   Time dependent transportation cost of 

liquids by transportation mode m 
up

ijd    Distance from biomass location i to refinery 

j for upstream operations 
mid

jkd   Distance from refinery j to blending/storage 

location k for midstream operations 
down

kgd   Distance from blending/storage location k to 

fuel station g for downstream operations 
b

mu    Loading and unloading costs for bulk 

solids by mode m 
lq

mu   Loading and unloading costs for liquids by 

mode m 

l
MC   Moisture content of biomass of type l 

lb    Conversion factor of biomass type l into 

liquid fuel 

( )dem    Biofuel demand in scenario ω 

1
TC   Transportation costs for upstream 

operations 

2
( )TC w   Transportation costs for midstream 

operations in scenario ω 

kS    Blending/Storage cost at location k 
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jR    Fuel production cost at refinery j 

l    Penalty cost for fuel shortage 
Biomass

il
Cap  Produced biomass of type l in field i 

ref

j
Cap   Capacity at refinery j 

Bulk

k
Cap   Storage capacity at location k 

( )wD  Fuel shortage in scenario ω 

Ew    Probability of scenario ω 

 
Decision Variables: 

ilY    Amount of biomass harvested of type l in 

field i during time period 
m

iljx    Amount of biomass of type l collected in 

field i and transported to refinery j by mode 
m 

( )m

jkz w   Amount of biofuel transported from refinery j 

to storage location k in time scenario ω 

ij

mUp   1 if vehicle m is selected to transport 

biomass from field i to refinery j, 0 otherwise 

( )m

jkMid w  1 if vehicle m is selected to transport biofuel 

from refinery j to blending/storage location k 
in scenario ω, 0 otherwise 

 

The objective function (1) minimizes the costs of 
harvesting the biomass, delivering biomass to bio-
refineries, fuel production at refineries, biofuel to bulk 
blending/storage locations, and penalties for fuel 
shortages taking into consideration several different 
scenarios with different probabilities. While 
considering both feedstock delivery and fuel 
distribution, the transportation costs are calculated 
based on [10], i.e., travel distance and time are 
divided by vehicle capacity in order to convert the 
delivery quantity to number of vehicle loads (see (2) 
and (4)). The model also considers the loading / 
unloading costs and allows for the option of selecting 
either trucks or rail tankers as the mode of 
transportation. Equations (3) and (5) keep track of the 
biomass distributed from each field and biofuels 
transported from each bio-refinery, respectively. 

1 2Min  ( ) ( )

             ( ) ( )

l

tot tot

l i j j

l L i I j J

tot

k k

k K

P X TC E R Z TC

S Z

w

w

w w

w l w

Î Î Î W Î

Î

ìïï+ + +í
ïïî

üïï+ + D ý
ïïþ

å å å å

å

 

 (1) 
where  

1

, ,
, 

1

up mtb
ij iljdb b mm

m m ijb
l L i I m lm
j J m M

d xtran
TC tran u Up

v MCcapÎ Î
Î Î

ì üæ öæ öï ï ÷ç÷ï ïç ÷÷ ç= + +çí ý ÷÷ çç ÷÷ï ïç ç ÷-è ø è øï ïî þ
å   

 (2) 

     tot m

il ilj l

l L m M

X x i I
Î Î

= " Îå å  (3) 

( ){ }
2

,  ,

( ) ( )

midtlq

jkdlq lq m mm

m m jk jklq

j J k K m m
m M

dtran
TC tran u z Mid

v cap
w w

Î Î

Î

= + +
ì üæ öï ïï ï÷ç ÷í ýç ÷÷çï ïè øï ïî þ

å

 w" Î W (4) 

( )       ,   
tot m

j jk

k K m M

Z z j Jw w
Î Î

= " Î Î Wå å  (5) 

  
This objective function is subject to various constraints 
as follows: 
  

      
Biomass m

i ilj l

l L m M

Cap x i I
Î Î

³ " Îå å  (6) 

     
ref m

j ilj

i I l L m M

Cap x j J
Î Î Î

³ " Îå å å  (7) 

( )      ,   
Blend m

k jk

j J m M

Cap z k Kw w
Î Î

³ " Î Î Wå å  (8) 

 
Constraint (6) ensures that the amount of biomass 
transported for biofuel conversion does not exceed 
the available capacity from each location. Likewise, 
constraints (7) – (8) impose capacity restrictions for 
the bio-refineries as well as the blending/storage 
locations for each scenario.  
 

( ) 1,       ,   m

jk

k K m M

Mid j Jw w
Î Î

= " Î W Îå å   (9) 

( ) 1,       ,   m

jk

j J m M

Mid k Kw w
Î Î

= " Î W Îå å   (10)  

1,       m

ij

i I m M

Up j J
Î Î

= " Îå å   (11)  

1,        m

ij

j J m M

Up i I
Î Î

= " Îå å  (12) 

 
Constraints (9) – (12) ensures that, for each 
distribution route in upstream and midstream 
operations, only one mode of transportation can be 
selected. 
 

( ) ( )
l

tot tot

il l j

i I l L j J

X Zw b w
Î Î Î

³å å å  (13) 

 
Constraint (13) ensures that the output of the refinery 
should not exceed the amount of biomass that was 
transported times the conversion factor for each 
biomass type.  
 

( ) ( ) ( ),      tot

j

j J

Z demw w w w
Î

- = D " Î Wå  (14) 

 
Constrain (14) ensures that if there is a shortage on 
the demand amount of biofuels, then the objective 
function will be penalized. 

A. MILP for downstream 

The second part of the model covers the downstream 
of the supply chain. While building up the model, it is 
assumed that the capacity of the vehicle is large 
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enough to supply the fuels to multiple locations, which 
enables us to adopt the concepts of the multi-depot 
vehicle routing problem (MDVRP). 

Sets: 
Ω   Set of scenarios indexed by ω 
I   Set of Blending/Storage stations indexed by 

i 
J   Set of fuel stations indexed by j 
K   Set of vehicles indexed by k 
 
Input Parameters: 

Ew    Probability of scenario ω 

a   Variable transportation cost 
b    Fixed Transportation cost 

ijD    Distance between node i and j 

l   Penalty cost for bio-fuel shortage 

demj(ω)  Fuel demand at station j in scenario ω 
Qk   Maximum capacity for vehicle k 

 
Decision Variables: 
Xijk(ω)  1 if customer j is visited right after 

customer i by vehicle k in scenario ω, 0 
otherwise. 

Δ(ω)  Bio-fuel shortage in scenario ω 
fossil(ω) Fossil fuel for replacing biofuel shortage 

 

The downstream operations of the biofuel supply 
chain can be formulated as a mixed integer linear 
programming model whose objective function (15) is 
to minimize the total downstream logistics cost subject 
to various constraints: 

Min  ( ) ( ) ( )
ij ijk ijk

i I J j I J k K k K

E D X X
w

w

a w b w l w
Î W Î È Î È Î Î

+ + D
ì üï ïï ï
í ý
ï ïïþïî

å å å å å  

   (15) 
Subject to 

 

( ) 1,       ,   ijk

i I J k K

X j I Jw w
Î È Î

= " Î È Î Wå å  (16) 

( ) 1,       ,   ijk

j I J k K

X i I Jw w
Î È Î

= " Î È Î Wå å  (17) 

( ) ( ) ,       ,   j ijk k

j J i I J

dem X Q k Kw w w
Î Î È

£ " Î Î Wå å  (18) 

( ) ( ) 0,    ,  ,  ihk hjk

i I J j I J

X X k K h I Jw w w
Î È Î È

- = " Î Î È Î Wå å   

   (19) 

( ) 1,       ,   ijk

i J j J

X J k Kw w
Î Î

£ - " Î Î Wå å  (20) 

( ) 1,       ,   ijk

i I J j I J

X k Kw w
Î È Î È

£ " Î Î Wå å  (21) 

( ) ( ) ,       ,   j ijk i

j J i I

dem X V i Iw w w
Î Î

£ " Î Î Wå å  (22) 

( ) ( ) ( ) ( ),    j j ijk

j J j J i I

dem dem X fossilw w w w w
Î Î Î

= + " Î Wå å å

  (23) 

( ) ( ) ( ) ( ),   ,  j ijk

j J i I

fossil dem X k Kw w w w w
Î Î

D = - " Î Î Wå å

  (24) 

Constraint (16) and (17) ensure that each customer is 
served by only one vehicle. Our model allows for 
heterogeneous fleet and constraint (18) sets the 
capacity of each vehicle. Constraint (19) is the flow 
balance constraint. Constraint (20) ensures the 
elimination of the sub-tours. Constraint (21) ensures 
that each arc in the network is covered by at most 
once by any delivery route. Constraint (22) is the 
capacity constraint for each blending/storage location. 
Constraint (23) ensures that the demand has to be 
met either by biofuels or conventional fuels. Finally, 
constraint (24) ensures that if the fuel demand is not 
completely met by biofuels, then the conventional 
fuels have to fill in the shortage amount.  

IV. RESULTS AND DISCUSSION  

The proposed optimization model was applied to a 
real-world case study of biofuel supply chain in New 
Mexico. Our study includes a total of 33 locations as 
the sources of biomass. The amount of biomass and 
type of biomass that is available at each location 
varies from one to another. In the New Mexico state 
area, the five major sources of biomass are Corn 
Stover, Forest Residues, Primary Mill Residues, 
Urban Wood and Secondary Mill Residues, and 
Wheat Straw, from which it is expected to have a total 
biomass potential of 356,560 dry tonnes per year. 
There is only one biofuel refinery in New Mexico, 
which can process biomass for ethanol conversion 
with a yearly production capacity of 25,000,000. There 
are 14 fuel stations that are readily equipped to sell 
biofuel such as E85. Our study also considers six 
blending/storage stations, which are capable to 
handle biofuels. They can store several types of 
petroleum products such as gasoline and oil. Their 
total combined capacities are 21,733,688,844 gallons 
(i.e., 24,811,982 barrels). We assume that there exists 
a total demand of 6,678,000 gallons of biofuel for 
each fuel stations.  

By applying the proposed mathematical method, we 
are able to identify the best routing decisions for the 
delivery of biofuels. It determines the optimal 
assignments of biomass locations to the bio-refinery 
and allocates the bio-refinery to the bulk 
blending/storage locations, and routes the vehicles for 
the delivery of fuels from the bulk bending/storage 
locations to the fuel stations. Figures 2 and 3 show 
the original and proposed distribution plans of this 
case study, respectively. If we were to simply account 
for a single batch of biomass to be transported from 
each optimal location to the bio-refinery, and then, 
transporting a single batch of fuel to each one of the 
three blending stations, the estimated cost is about 
$5,895. However, if we consider every source location 
and blending station, the estimated cost become 
$17,395. As a result, total annual savings of $115,000 
are achieved. Based on this scenario, it is clearly seen 
that the proposed plan can achieve the total savings 
of $115,000 (i.e., approximately 66% of cost savings). 
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Figure. 2. SCHEMATIC MAP OF ORIGINAL 

DISTRIBUTION PLAN 

 

 

Figure. 3. SCHEMATIC MAP OF PROPOSED 

DISTRIBUTION PLAN 

 

According to the result (see Figure 3), some biomass 
sources were never been used. This is because their 
locations are too far away from the processing plant, 
which makes difficult for these sources to be 
processed for fuel conversion. This indicates that the 
future planning of bio-refineries should be carefully 
planned since they will need to be placed at strategic 
locations in order to maximize the amount of biomass 
which can be utilized, and still make the fuel price 
competitive.  

V. CONCLUSION 

In this research, we presented an optimization model 
for the biofuel supply chain network in the 
southwestern US. The entire supply chain was broken 
down into two major parts, and, to handle the 
uncertainty issue of biofuels demand, we adopted the 
concept of the stochastic programming. Our model 
optimally chooses which biomass sources need to be 
selected for fuel production and it also decides which 
refineries are the most profitable in the biofuels supply 
chain. As a result, it helps reduce transportation cost 
of the biofuels significantly, which makes the biofuels 
more competitive. 
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