
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 4 Issue 9, September - 2017 

www.jmest.org 

JMESTN42352323 8069 

Unsteady Flow Of Chemically Reacting 
Temperature Dependent Fluid Flows Through A 

Porous Vertical Surface 
 

Okedoye A. M. 
Department of Mathematics and Computer Science,  

Federal University of Petroleum Resources,  
Effurun, Nigeria,  

E – mail: okedoye.akindele@fupre.edu.ng, 
  

Onifade Y. S. 
Department of Physics,  

Federal University of Petroleum Resources,  
Effurun, Nigeria,  

E – mail:  onifade.yemi@fupre.edu.ng

Okewale A. O. 
Department of Chemical Engineering, Federal 

University of Petroleum Resources, Effurun, Nigeria,  
E – mail: okewale.akindele@fupre.edu.ng,  

 

Akinrinmade V. A. 
Department of Mathematics and Statistics, osun 

State College of Technology, Esa-Oke, Osun State, 
Nigeria 

 
 

Abstract - The motivation of present research 
paper is to analyze the Steady Flow of Chemically 
Reacting Temperature Dependent Fluid Flows 
through a Porous Vertical Surface analytical 
technique for temperature equation and numerical 
technique for velocity field, under which 
consistency and convergence criterion exist. The 
results show increase velocity with increases as 
thermal Grashof number increases, while velocity 
decreases with increase in viscousity and suction 
parameters. It is also established that there exist a 
linear relationship between the thermal buoyancy 
and the fluid velocity. The temperature on the 
other hand, is a decreasing function of suction 
parameter or the spatial variable. 
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1. Introduction  

A chemically reacting flow is a fluid flow in which a 
chemical reaction is also occurring. Such flows occur 
in a wide range of fields including combustion, 
chemical engineering, biology, and pollution 
abatement. For most liquids, the viscosity decreases 
with temperature and increases with pressure. For 
gases, it increases with both temperature and 
pressure [1]. In general, the higher the viscosity of a 
substance, the more resistance it presents to flow 
(and hence more difficult to pump!). Ever since the 
formulation of the equations of continuity (mass) and 
momentum (Cauchy, Navier-Stokes), the fluid 
dynamics of Newtonian fluids has come a long way 
during the past 300 or so years, albeit significant 
challenges especially in the field of turbulence and 

multi-phase flows still remain [2]. It is appropriate to 
mention here that it has long been a matter of debate 
and discussion in the literature whether a true yield 
stress exists or not, for example, [3] and the review of 
[4] for different viewpoints on this matter. Evidently, 
the answer to the question whether a substance has a 
yield stress or not seems to be closely related to the 
choice of a time scale of observation. In spite of this 
fundamental difficulty, the notion of an apparent yield 
stress is of considerable value in the context of 
engineering applications, especially for product 
development and design in food, pharmaceutical and 
healthcare sectors, [5] and [6]. 

Of the time-independent fluids, this sub-class has 
generated very little interest and hence very few 
reliable data are available. Indeed, until up to about 
early 1980s, this type of flow behavior was considered 
to be rare, but, however, with the recent growing 
interest in the handling and processing of systems 
with high solids loadings, it is no longer so, this is 
explained in [7], [8], [9], for instance. Exothermic and 
endothermic chemical reactions and its application to 
processes of ignition and combustions has been a 
subject of intense study by scientists. In a study 
carried out by [10], a three-component model of a 
system is considered which includes exothermic 
oxidation and endothermic evaporation process. They 
report that, the full system can be approximated and 
the safe and dangerous regions of parameter space 
can be identified by assuming a slow rate of 
consumption of fuel and oxygen.  

Significant research effort has been expended in 
seeking a similar expression for 𝜎for non-Newtonian 
fluids which should be able not only to predict shear-
dependent viscosity, yield stress, visco-elastic effects 
in shear and extensional flows, rheopexy and 
thixotropy but should also satisfy the requirements of 
frame indifference, material objectivity, etc. [11]. [12], 
[13], [14], [15] amongst others gives critical appraisals 
of the current state of the art and useful guidelines for 
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the selection of an appropriate expression for 𝜎 
(constitutive equation) which are available in the 
literature. Therefore, if one were able to develop an 
appropriate constitutive equation and/or to choose 
one from the existing selection, it is possible to set up 
the governing differential equations together with 
suitable boundary conditions, albeit there are 
situations in which the prescription of boundary 
conditions is also far from obvious, particularly in flows 
with a free surface, slip etc. 

Rout [16] investigate the influence of chemical 
reaction and the combined effects of internal heat 
generation and a convective boundary condition on 
the laminar boundary layer MHD heat and mass 
transfer flow over a moving vertical flat plate. The 
effects of physical parameters on the velocity, 
temperature, and concentration profiles are illustrated 
graphically. Other relevant discussion could be found 
in the work of [17]. 

For most elementary reactions, the rearrangement 
of atoms in going from reactants to products via a 
transition state proceeds through the movements of 
atomic nuclei that experience a potential energy field 
that is generated by the rapid motions of the electrons 
in the system. On this potential energy surface there 
will be a path of minimum energy expenditure for the 
reaction to proceed from reactants to products 
(reaction coordinate). The low energy positions of 
reactants and products on the potential energy 
surface will be separated by a higher energy region. 
The highest energy along the minimum energy 
pathway in going from reactants to products defines 
the transition state, [18]. Hence the motivation for this 
work is to unsteady flow of chemically reacting 
temperature dependent fluid flows through a porous 
vertical surface. 

 

2. Physical Processes and Mathematical 
Formulation of Problem 

Three physical processes are involved in a 
reacting flow: (1) the fluid dynamics, (2) the 
thermodynamics, and (3) the chemical reactions. The 
fluid dynamics process is the balance between the 
temporal evolution and the spatial convection of the 
flow properties due to conservation of mass, 
momentum, and energy. The thermodynamics of the 

reactive fluid include microscopic heat transfer 
between gas molecules, work done by pressure, and 
the associated volume change. And, chemical 
reactions determine the generation/destruction of 
chemical species under the constraint of mass 
conservation. 

Each of the above processes could be either 
evolving or in equilibrium. For the evolving condition, 
each above process has its own space and time 
scales, and they are very different from that of other 
processes. Such differences in space and time scales, 
on one hand, could allow simplification in the 
theoretical model. On the other hand, they could be 
the source of numerical difficulties. In this work, we 
assume that the space and time scales of fluid 
dynamics and chemical reactions are much larger 
than that of thermodynamics. Thus, the 
thermodynamic process is always considered to be in 
equilibrium. From the viewpoint of thermodynamics, 
the chemical composition of the reactive gas mixture 
is locally frozen, and the gas mixture is locally 
motionless a condition which is referred to as thermal 
equilibrium.  

Thus, we restrict our discussion to the flow part 
only. In principle, one can always set up the equation 
of continuity and Cauchy’s momentum equations 
(written in their compact form for an incompressible 
fluid) as follows: 

∇ ∙ 𝑉 = 0                                       (1) 

𝜌𝐷𝑉

𝐷𝑡
= −∇𝑝 + 𝜌𝑔 + ∇ ∙ 𝜎              (2) 

For Newtonian fluids, the deviatoric stress tensor 

𝜎is related to the rate of deformation tensor.  

In particular, all three of these quantities are 
coupled. The fluid flow moves around the chemicals 
and the chemicals react, which produces or absorbs 
heat and affects the temperature; and, finally, the 
temperature affects the fluid flow through buoyancy 
effects. 

Considering mass fractions instead of 
concentrations, we then have the properties 

∑ 𝑌𝑖  (𝑥, 𝑡)

𝑁

𝑖=1

= 1      for all 𝑥 ∈ Ω     and 𝑡 ≥ 0, 

 and 

0 ≤ 𝑌𝑖 (𝑥, 𝑡) ≤ 1,      for all        𝑥 ∈ Ω     and 𝑡 ≥ 0 

We assume that the equations hold in a 𝐶2 

bounded domain Ω ⊂ ℛ3. Using the above notation 
our model for incompressible reacting flows takes the 
form 

∇ ∙ 𝑢 = 0,                                                                    (3) 

𝜕𝑡𝑢 − 𝑃𝑟∆𝑢 + (𝑢 ∙ ∇)𝑢 + ∇𝑝 = 𝑓0(𝑇),                (4) 

𝜕𝑡𝑢 − ∆𝑇 + (𝑢 ∙ ∇)𝑇 = ∑ ℎ𝑖𝑊𝑖(𝑌1, ⋯ , 𝑌1, 𝑇)

𝑁

𝑖=1

    (5) 

 

Figure 1. Domain 𝛀 configuration 
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𝜕𝑡𝑌𝑖 −
1

𝐿𝑒
∆𝑌𝑖 + (𝑢 ∙ ∇)𝑌𝑖 = 𝑊𝑖(𝑌1, ⋯ , 𝑌1, 𝑇)       (6) 

𝑊𝑖(𝑌1, ⋯ , 𝑌1, 𝑇) describes the change in mass 
fractions due to the reaction, The first two equations 
are the usual Navier-Stokes equations, and the 
second two are reaction-diffusion equations with a 
transport term added. The central assumption made in 
deriving these equations is that the fluid has constant 
density. Further physical background on these 
equations, are contained in [19] and [20]. 

The most common model of chemical kinetics is 
the so-called Arrhenius model in which the 𝑊𝑖 take the 
form 

𝑊𝑖(𝑌1, ⋯ , 𝑌1, 𝑇), = ∑ 𝐴𝑗𝑒−𝐸𝑗 𝑅0𝑇⁄

𝑚𝑖

𝑗=1

∏ C
𝑘

𝑣𝑗,𝑘

𝑁

𝑘−1

, 

where 𝑣𝑗,𝑘 are nonnegative integers, where at least 

one of 𝑣𝑗,𝑘, for 𝑘 = 1, . . . 𝑁, is nonzero for each 𝑗. 

We consider schematically pictured in Fig. 1. In 
this case one set of reactants enters on one portion of 
the boundary, another set enters on another portion, 
they mix and react in the middle, and then the 
products leave.  

Since we have chemicals and heat flowing into and 
out of the system, an important quantity to consider is 
how much of each flows in and out of the system. We 
can formally derive this quantity from the equations in 
(6) in the following way. We consider first the rate of 
change of the total amount of 𝑌𝑖 in the domain. 

𝜕𝑡 ∫ 𝑌𝑖
Ω

𝑑𝑥 = ∫ 𝜕𝑡𝑌𝑖
Ω

𝑑𝑥 = ∫
1

𝐿𝑒
∆𝑌𝑖 + (𝑢 ∙ ∇)𝑌𝑖 + 𝑊𝑖𝑑𝑥

Ω

 

𝜕𝑡 ∫ 𝑌𝑖
Ω

𝑑𝑥 = ∫
1

𝐿𝑒
∆𝑌𝑖 + (𝑢 ∙ ∇)𝑌𝑖 + 𝑊𝑖𝑑𝑥

Ω

 (7) 

Now using the identity  

∇ ∙ (𝑢𝑌𝑖) = 𝑌𝑖∇ ∙ 𝑢 + (𝑢 ∙ ∇)𝑌𝑖 

the divergence free property of 𝑢, and the 
divergence theorem, we get  

𝜕𝑡 ∫ 𝑌𝑖
Ω

𝑑𝑥 = ∫
1

𝐿𝑒
∇ ∙ ∇ 𝑌𝑖 − ∇ ∙ (𝑢𝑌𝑖) + 𝑊𝑖𝑑𝑥 

Ω

 

 = ∫
1

𝐿𝑒

∂𝑌𝑖

𝜕𝑛
− 𝑌𝑖(𝑢 ∙ 𝑛)𝑑𝑆 + ∫ 𝑊𝑖𝑑𝑥

Ω∂Ω

   (8) 

where 𝑛 is the outward unit normal to ∂Ω. This 
implies that the rate of change of the total amount of 𝑌𝑖 
in the domain is due to three terms which we can 
physically interpret as diffusion across the boundary, 
fluid transport across the boundary, and changes due 
to reactions in the domain.  

Now, for the physical boundary conditions to be 
used, we will assume the existence of a partition 
𝜕Ω = Γ1 ∪ Γ0 ∪ Γ𝑤 corresponding to the portions of the 
boundary where fluid flows into the domain, portions 
where fluid flows out, and the walls of the container, 

respectively. On all of 𝜕Ω, the fluid flow 𝑢 will be 
specified by Neuman boundary data; however, the 
boundary conditions for 𝑇 and 𝑌𝑖will vary across the 
partition. 

Combining equations (3) to (8), velocity and 
Temperature fields could be expressed as 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑣0

𝜕𝑢

𝜕𝑦
) =

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
) + 𝜌𝑔𝛽(𝑇 − 𝑇0)     (9) 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣0

𝜕𝑇

𝜕𝑦
) =

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
)                                (10) 

The appropriate initial and boundary conditions are 

 𝑡 ≤ 0:  𝑢 = 0     𝑇 = 𝑇0         ∀𝑦

 𝑡 > 0: {
𝑢 = 𝑈0  𝑇 = 𝑇1   𝑦 = 0
𝑢 = 0  𝑇 = 𝑇0    𝑦 → ∞

 

}         (11) 

Where all the variables and parameters have their 
usual meaning. 

 

3. Method of Solution 

The viscousity is define as  𝜇 = 𝑒−𝐸
𝑅𝑇⁄  

Using the following dimensionless quantities 

𝐸(𝑇 − 𝑇0)

𝑅𝑇0
2 = 𝜃,

𝑢

𝑈0
= 𝜙, 𝑡 =

𝜌𝑈0
2

𝜇0
𝑡′, 𝑦 =

1

ℎ
𝑦′ 

Equations (9) and (10) becomes 

𝜕

𝜕𝑡
∅(𝑦, 𝑡) − 𝑠

𝜕

𝜕𝑦
∅(𝑦, 𝑡) =                                        

𝜕

𝜕𝑦
(𝑒

𝜆𝜃(𝑦,𝑡)
1+𝜖𝜃(𝑦,𝑡)

𝜕

𝜕𝑦
∅(𝑦, 𝑡)) + 𝐺𝑟𝑡 𝜃(𝑥, 𝑡)  (12)  

𝜕𝜃(𝑦, 𝑡)

𝜕𝑡
− 𝑠

𝜕

𝜕𝑦
∅(𝑦, 𝑡) =

1

𝑃𝑟
 

𝜕2

𝜕𝑦2
𝜃(𝑥, 𝑡)    (13) 

where 

𝑠 =
𝑣0

𝑈0
, 𝑈0 =

𝜇0

𝜌ℎ
 𝐺𝑟𝑡 =

𝑔𝛽𝜇0𝑅𝑇0
2

𝜖𝑇0
, 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
, 

The above system is solved using Maple module 
for solving partial differential equations. The method 
used support pdsolve(PDEsys,conditions, numeric, 
vars, options) command which returns a module that 
can be used to compute numerical solutions for time-
based PDE systems over a fixed finite 1-space 
interval. The pdsolve/numeric routine uses finite 
difference methods to obtain these numerical 
solutions [21]. Time-based Solver mode of operation 
uses the default method, which is a centered implicit 
scheme, the PDE system is sufficiently close to a 
standard form for the method to find the numerical 
solution. The optional equations for the default 
method used is ′𝑡𝑖𝑚𝑒′ = 𝑛𝑎𝑚𝑒, ′𝑟𝑎𝑛𝑔𝑒′ = 𝑙. . 𝑟. The 
values of both options are determined automatically 
since the boundary conditions are specified for both 
end points of the domain. This option related to error 
estimation, and error control. Plot and plot3d are 
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methods used to compute/or view the solution of our 
input PDE returned by pdsolve/numeric module. In 
addition, the settings method is configured to 
query/set certain parameters of the solution process 
[22]. 

 

 

4. Results and Discussion 

For the purpose of discussing the effect of various 
parameters on the reaction behavior, calculations 
have been carried out for different values of  
𝑠, 𝜆 and 𝐺𝑟𝑡 and for fixed values of𝑃𝑟 and ϵ. In order to 
point out the effects of these parameters on flow 
characteristic, to be realistic, the value of Prandtl 

number is chosen to be 𝑃𝑟 =  0.71 which represents 
air at temperature 25𝑜𝐶 and one atmospheric 
pressure. All parameters are primarily chosen as 
follows:  𝑠 = 0.1, 𝐺𝑟𝑡 = 0.5 and 𝜆 = 0.1 for a fixed 

value of 𝑃𝑟 = 0.71 and 𝜖 = 0.05 unless otherwise 
stated. 

Fig. 2 shows the velocity distribution with respect 
to space and time.It could be seen that maximum 
velocity occur close to the surface but not on the 
surface as previously reported in the literature, and 
decreases away fromas the fluid moves along the 
channel. Also, initially the fluid flow velocity increases 
with time until a time when the steady state is reached 
after which the velocity decreases. This in 
corroborated in Fig. 3, where it is seen that velocity 
increases with time. In addition, at the initial stageof 
the flow, the maximum velocity was on the surface but 
drifted afterward to the body of the fluid close to the 

surface. This isconfirmed by profile of ∅(𝑦, 𝑡) at 𝑡 = 2. 

The effecte of suction parameter is shown in Fig. 
4. We observe the occurrence of peak in the profile 
when 𝑠 < 1  but fissuled out when 𝑠 > 1. The 
implication of this is that when there is suction, the 
maximum velocity is on the surface, otherwise in the 
body of the fluid if suction is zero. We also obersve 
that increase in suction reduces the velocity as well as 
the velocity boundary layers. We displayed the effect 
of viscousity parameter on the flow velocity in Fig. 5. It 
is observed that the velocity is maximum when 
viscousity is zero but reduces with an increase in 
viscousity. This confirm the scenario that the higher 
the viscousity the more difficult it is for fluid to flow. 
While in Fig. 6, we show the variation of thermak 
buoyancy effect on the velocity. It is observed that 
increase in the thermal buoyancy brings about 
increase in velocity boundary layer. We also oberve a 

reverse flow withinthe bodu of flow as 𝑦 → 3 unit. 

Fig. 7 to 9 displays the variation of temperature 
distributions. In Fig. 7, we shows the 3d temperature 
distribution with respect to time and  spatial variables. 
From the figure, we observe that the temperature 
decreasesassymptotically along the channel but 
increaseswith respect to spatial variable until a steady 
state is attained when further increase in time is less 

significant as shown in figure 8. While in Fig.9, we 
show the effect of suction parameter on temperature 
distributions. It could be seen from the figure that 
increase in suction reduces temperature as well as 
temperature boundary layer. 

 

Figure 2: 3d velocity profile in (𝑡, 𝑦) Coordinates 

 

 

Figure 3: Velocity distributions at different time 

T 

 

 

Figure 4: Velocity distributions at different suction 
values 
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Figure 5: Velocity distributions at different 
viscousity parameter 

 

 

Figure 6: Velocity distributions at different values of 
thermal buoyancy 

 

 

Figure 7: 3d Temperature distributions 

 

7. Conclusion  

The motivation of present research paper is to 
analyze the Steady Flow of Chemically Reacting 
Temperature Dependent Fluid Flows through a 
Porous Vertical Surface analytical technique for 
temperature equation and numerical technique for  

 

Figure 8: Temperature distributions at different 
time t 

   

Figure 9: Temperature distributions at different 
values of suction parameter 

 

 

velocity field, under which consistency and 
convergence criterion exist. The theoretical non-linear 
model for velocity has been derived by employing the 
Cauchy momentum equation. From our analysis, the 
following deductions were made: 

 that velocity increases as thermal Grashof 
number increases 

 that there is a linear relationship between the 
thermal buoyancy and the fluid velocity 

 that the momentum boundary thickens as 
Grashof number increases  

 that increase in viscousity parameter brings 
about reduction in the fluid flow  

 that increase in suction parameter brings 
about reduction in the fluid flow 

 that temperature is a decreasing function of 
suction parameter or the spatial variable 
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Nomenclature 

𝑢 dimensional velocity field 𝑡 Time 

𝑇1 surface temperature 𝑅 universal gas 

𝑇 dimensional temperature field 𝜃 dimensionless temperature 

𝑦 Spatial coordinate ∅ dimensionless velocity 

𝑘 thermal conductivity 
 

Pr  Prandtl number 

𝑇0 free stream temperature   density 

𝑚𝑖 molecular weight of chemical species 𝑖 𝜖 0 < 𝜖 ≪ 1 

𝑐𝑝 specific heat at constant pressure 𝜇 Dynamic viscousity 

𝐸 the activation energies   
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