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Abstract— A Spectrum decision mechanism for 

Cognitive Radio Network (CRN) should have the 
ability to find the best free channels in the 
spectrum for Secondary Users (SUs), without 
causing serious interference to Primary Users 
(PUs). In such networks, the main objective is to 
reduce the interference while keeping the 
spectrum utilization as high as possible at the 
same time. In this work, we proposed an efficient 
scheme, named as Weight Decision Scheme 
(WDS), which aims to solve the above-mentioned 
issues. The proposed scheme is based on the 
primary user activity which helps to choose the 
best free channel for a SU, and reduces the 
average interference to PUs. The simulation 
results show that WDS improves network 
performance as it increases the channel utilization 
and decreases the interference. The achieved 
improvements in terms of channel utilization were 
72.3%, 34.7% and 53.8% compared with RD, BFC 
and LITC schemes respectively. Whereas, the 
improvements in terms of interference were found 
to be 73.8%, 35.6% and 54.6% compared with the 
above-mentioned schemes respectively. 

Keywords—Radio network, interference ration, 
spectrum utilization, RD, BFC, LITC, WDS 

 

I. INTRODUCTION  

 A Cognitive Radio Network (CRN) is an intelligent 
wireless network which uses Radio Frequency (RF) in its 
communications, and it is adjusted and configured 
dynamically. CRN has the ability to detect the free channels 
in the radio spectrum. In Cognitive Radio (CR) 
environment, there are two types of users: a licensed user 
called Primary User (PU) and an unlicensed user called 
Secondary User (SU) [1]. PUs have the right to use licensed 
spectrum band at any time. However, the SUs may use free 
channels in the same spectrum, provided that these users do 
not cause interference to PUs, which necessitate an efficient 
management of the spectrum. 

 In the literature, many solutions for spectrum selection 
have been proposed which can be classified into two main 
categories. The first category is nonpredictive models 
which work with regardless of the gathered information 
about PU activities, and the second is predictive models as 
explained in the next section. 

 To the best of our knowledge, and based on review of 

the literature, most (if not all) of the proposed schemes did 

not effectively handle the interference ratio. In this work, 

we concentrated on prediction solutions to study the PU 

activity which helps to choose the best available channel for 

the SU, and reduces the average of interference to PUs. Our 

approach aims to improve the network performance that 

suffers from the high average of interference. 

The remaining of this paper is organizations as follows: 

In section 2, an overview of Cognitive Networks (CNs) 

classification and review of selection solutions for 

Cognitive Radio Ad hoc Networks (CRAN) are presented. 

In section 3 we presented our proposed Weight Decision 

Scheme (WDS). Section 4 shows in details the performance 

analysis of the proposed scheme and illustrates the 

comparisons between the proposed scheme and other 

selection schemes proposed in the literature. Finally, 

section 5, presents conclusions and summary of the results. 

II. LITERATURE REVIEW 

 Cognitive radio networks can be classified into two types 
according to the used network typology. The first type, 
infrastructure Cognitive Radio Network (CRN) in which 
efficient solutions of the spectrum can be easily achieved. 
However, the second popular type, which is the focus of our 
research, the Ad hoc Cognitive Radio Networks (CRAN) 
requires more concentration on providing solutions for 
spectrum selection. The spectrum selections can be 
classified into two broad categories. The first category is the 
nonpredictive type, and the second category is based on 
prediction models or primary user’s activity models which 
are named as predictive solutions [2, 3, 4, 5, 6]. 

2.1 Nonpredictive model solutions 

Nonpredictive model solutions is based on the following 
three methods: 

a) Random selection methods [7, 8]. 

b) Optimization methods [9, 10].  

c) Learning methods [11, 12]. 

In random selection methods, the selection of channels 

is done randomly. Regardless of the gathered data about PU 

activities. The selection of channels only depends on results 

of sensing the spectrum, and hence the channels are 

classified as available or unavailable. In [7] the authors 

introduced a scheme which senses the channels randomly 

and stops when there is an idle one. By implementing this 

simple strategy, the authors avoided the necessity of saving 

information like access and sensing history. According to 

this strategy, a lack of the PU traffics increases the 

interference probability. In [8] the authors improved 

random selection by using the mechanism of Round-robin 
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scheduling. For that reason, a random channel is selected as 

a current candidate by the CR for transmission. If the 

channel is not idle, adjacent frequency is adjusted to detect 

another idle one. However, the probability of interference 

between PUs and CRs remains high due to the lack of 

accounting on PU traffics which eventually results in 

weakness of the spectral opportunities and increment of the 

mean throughput. 

On the other hand, the authors of [9, 10] convert the 
channel selection problems into optimization problems in 
order to optimize many performances. The optimized 
problems take the form of minimizing handoff of the 
spectrum without using any prediction model to estimate the 
channel probability at time t in the OFF-state. 

For selection solutions that are based on learning 
techniques, the author of [11] used learning automata (LA), 
which is one of the learning methods that are used to train 
SU nodes and estimate the probability of optimal channel 
selection. A learning automata (LA) approach has been 
proposed to decide about the probabilities of channels 
selection in CRNs which leads to the avoidance of 
additional channel switching. LA is an easy method of a 
decision maker technique and it is done in the random 
environment. However, their solution did not improve the 
system performance as expected since they did not consider 
the interference rate and throughput between PUs and CRs 
and also they neglected the impact of sensing error. 

 On the other hand, authors of [12] have suggested that 
distributed Q-learning depends on a joint power control 
spectrum and a channel selection that is done through 
optimization of energy efficiency. The Q-learning perceives 
the transmitted power and the selected channel as outputs. 
The SUs simultaneously obtain the communication channel 
and the optimally transmitted power to guarantee the 
spectrum and energy efficiency. The same authors, 
suggested an efficient solution to select the best channel 
based on Q-learning with optimal power and succeeded to 
demonstrate to which extent their method improves the 
network performance based on energy efficiency, average 
throughput, successful transmission probability, and channel 
switching time. However, the degree of interference 
between PUs and CRs has been of less importance to the 
authors of [11, 12]. 

2.2 Prediction model solutions 

The prediction model solutions, highlights the 
importance of PU activities. The PU determines the duration 
and the distribution of the spectrum opportunities. However, 
the critical issue that we detected in [13] is the establishment 
of a suitable modeling to the PU traffic in order to design 
schemes for the channel selection. Adjustment of the 
channel selection scheme and prediction of the PU traffic 
improve the scheme selection and the spectrum’s effective 
search [14]. In addition to this, the dynamic range of 
spectrum algorithm should cover information about the PU 
traffic pattern occupying the channel. The traffic pattern 
functions according to two models: the deterministic model 
and the stochastic model. In the first model (deterministic), 
the PU takes an ON-state during the transmission, and an 
OFF-state in terms of time slots. On the other hand, in the 
second model, the traffic is described in statistical terms 
(e.g., broadband cellular networks) [15].  

 All the data collected from [13, 14] demonstrate that 

many solutions (e.g. PU activities modeling) apply to 

predictive channel selection. A study by [16] proposed an 

extended idle time channel selection scheme to distribute 

channel selection in CRNs. Since every CR node aims to 

achieve the highest idle time in the network, the Longest 

Idle Time Channel (LITC) selection becomes a target to 

other nodes. After the achievement of the LITC, another 

idle time becomes a waste resource that other channels can 

benefit from. 

 Based on the previous review of literature we could find 

in the field, we decided to orient our perception to focus on 

prediction solutions and on the interference between the PU 

and CR. We aim to identify the LITC and best fit channel 

selection, depends on predictive model. In addition, 

studying the PU activity helps to choose the best free 

channel for the SU; and reduces the average interference 

between CRs and PUs. Our approach aims to improve the 

network performance that suffers from the high average of 

interference rate. 

III. THE PROPOSED WDS SCHEME 

 The proposed Weight Decision Scheme (WDS) consist 
of two main stages as shown in Figure 1, the channel weight 
computation stage, and the quality of service (QoS) 
parameters optimization stage. 

 

 

 

3.1 Channel weight computation 

The best weight of the channels selected in the proposed 
strategy needs to fulfill some goals as mentioned in stage 
one. The first goal is the estimation of the PU un-occupancy 
(PU(i) Un-occupancy) where each SU node senses the free 
channels and depends on a PU prediction model at specific 
time. The channel weight in this context is increased when 
the PUs are in OFF-state. The second goal is the calculation 
of the SUs’ number that has been exploited by every channel 
(SU(i) occupancy). The last goal is the measurement of 
channel capacity that is estimated by every SU in every 
channel (CC(i)). The ultimate goal at this stage is the 
allocation of a channel weight through estimating the PU 
un-occupancy, calculating the number of SUs who look for 
free channels, and measuring channel capacity. Determining 
the transmission method to achieve the previous goals 
depends on a channel that has a high PU un-occupancy, a 
low number of SU neighbors, and a high channel capacity. 

The goals that were previously mentioned demonstrate 
the first stage of channel weight. A second stage is 

Figure 1. Basic block diagram of the proposed WDS. 
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suggested to assess the Quality of Service (QOS) of the 
highest selected channel weight as shown in Figure 1. The 
details of all are given below. 

a) Estimating the PU un-occupancy 

 Due to the technical nature of Cognitive Network, the SU 
communication period will not always be free. This nature 
makes it crucial to determine the probability of OFF-state 
durations for the PUs on a free channel. Based on Markov 
Renewal Process (MRP) modeling [11], the existence or 
absence of PU’s signal on every channel is modeled by 
different techniques such as the PU Activity. PU modeling is 
based on measured data [13] and statistics [8], which 
function to determine the duration of time in which the 
channel is utilized by the SUs without disruption by the 
PUs. The PU activity pattern in CRAN is fundamentally 
determined by a continuous-time process instead of the 
ON/OFF MRP [16 -18].  

 The main feature of the ON/OFF PU activity model is to 
accurately determine when the PU is in OFF- or ON-state. 

 When the time period in which the channel (i) is in ON-
state, the channel utilization Ui is estimated as shown in 
equation (1) [15]: 

𝑈𝑖 =
𝐸[𝑇𝑂𝑁

𝑖 ]

𝐸[𝑇𝑂𝑁
𝑖 ]+𝐸[𝑇𝑂𝐹𝐹

𝑖 ]
=

𝜆𝑦

𝜆𝑥+𝜆𝑦
   (1) 

 The previous equation can be simplified as:    

 𝐸[𝑇𝑂𝑁
𝑖 ] =

1

𝜆𝑥
 and 𝐸[𝑇𝑂𝐹𝐹

𝑖 ] =
1

𝜆𝑦
   and λx and  λy . 

b) Number of SU occupancy 

 The SU (i) occupancy of channel (i) is estimated as: 

SU(i)occupancy=SUt
(i)    (2) 

c) Channel capacity for each channel (CCi) 

It is possible to determine the capacity of a channel by 
estimating the channel parameters such as: error rate, 
channel interference level, path loss, and delay average. This 
estimation allows the derivation of channel capacity from 
channel parameters. 

In Orthogonal Frequency Divisions Multiplex (OFDM), 
the different bandwidth Bi for each spectrum band i consists 
of multiple subcarriers. Additionally, the normalized CR 
capacity Ci

CR (k) model of spectrum band i for user k is 
proposed in [19] for spectrum characterization in CRN. 

The Ci
CR model also defines the expected normalized 

capacity of the user k in a spectrum band i as: 

( ) E[C ( )] . . ( )
off

CR i
i i i ioff

i

T
C k k c k

T



 


  

 (3) 

The below are the descriptions of the equation (3) 

characters: 

( )iC k represents the spectrum capacity 

( )ic k represents the normalized channel capacity of a 

spectrum band i (with small c) 

i represents the spectrum sensing efficiency 

 represents the spectrum switching delay 

off

iT represents the expected transmission time without 

switching in the spectrum band i. 

 To oversimplify the previous equation (3), the channel 
or spectrum switching delay occurs within the CRN 
whenever the SUs move from one spectrum band to another 
according to the PU activity. Also, the spectrum sensing 
efficiency is conditioned by the fact that the RF front-ends 
cannot perform the sensing and the transmission at the same 
time which eventually results in the decrease of their 
transmission opportunities. Meanwhile, the sensing 
efficiency is influenced by the observation time and 
transmission time when the spectrum sensing is in the 
process of detecting the spectrum holes [20]. 

d) Channel weight calculation (wp
(i)) 

The proposed channel selection scheme arranges free 
bands through allocating weight wp

(i) to each channel (i) in 
all the Free Channels (FCH). Therefore, every CR node 
locally calculates the wp

(i) as depicted in equation 4: 

 

( )

*( )

( )

CR
i

i

Un occupancy CCi

p ii

occupancy

PU
w FCh

SU


        (4) 

wp
(i)

 illustrates the weight of the channel (i) when the it 
exponentially increases with PU un-occupancy (i.e., PU(i) 

Un-occupancy , 𝐶𝐶 𝑖
𝐶𝑅

) and linearly decreases with the 

number of SUs (i.e.  SU (i) occupancy  ) over the channel  (i) 

. After the mentioned process, the channel with higher(wp
(i)

 
) will be elected for transmission. 

3.2 QoS parameters optimization 

The spectrum decision process cannot promise a 

frequency band to the CR that is equipped with all the 

Quality of Service (QoS) requirements due to the probability 

of interference with PUs. The premise of our research is to 

study the ways that lead to reaching better QoS parameters 

for the cognitive nodes with minimum interference. The 

latter is considered as a multi-objective problem since the 

QoS optimizer is formulated in a multi-objective form that is 

based on a genetic algorithm (GA) which obtains the 

required optimal QoS parameters and achieves desired goals 

of CRN applications. The mentioned optimizer has a 

distributed nature, therefore, the spectrum decision’s 

performance has been assumed through non-infrastructure 

solutions. In addition, we perceive that the CRs sense the 

surrounding environment characteristics. The previous 

assumptions have been used to determine the examination 

tools we used in our strategy that are: MATLAB and NS2 

tool. Those tools are respectively selected for optimization 

and assimilation purposes where multiple objectives (fitness 

functions) are introduced to guide the proposed strategy to 

an optimal state. 

 

 We also used mathematical formulation to fitness 
functions in order to represent the nature of relationships 
among QoS parameters. 

a) Prediction model solutions 

In developing a QoS optimizer for CRN, several inputs 

must be taken into consideration because of the accuracy of 

decisions that should be determined through the quality and 
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the quantity of inputs provided for the system. Another 

primary feature of CRs is the adaptability characteristic it 

has in relation to the surrounding environment. After the 

input provision, the system opts for making decisions about 

a certain output whose variables must be modeled internally 

in a wireless environment.    

These variables are then directly used by the fitness 

function as primary parameters. An example of that type of 

parameter is the noise power of channel that is used in 

minimizing BER objective function. The same parameters 

directly impact the fitness score of a specific objective. 

Figure 2 gives a visual representation about the way the 

CRN parameters interact and function. 

 

 

 

 

 

 

 

 

 

Figure 2: Visual representation of CRN Parameters 

     A list of environmental parameters with their labels and 

ranges of value are used in this work as input for fitness 

function as shown in Table 1. Most of the used parameter 

values were selected to be similar to the Kansas University 

Agile Radio (KUAR) hardware platform and systems [21]. 

In this context, the range of spectrum information and 

spatial knowledge cannot be specified because of the 

discrete nature of the values and is to be verified through 

the implementation of a real network using NS2. 

Table 1. Environmental parameter values 

Parameter Min value Max value 

Noise Power (NP) -114 dBm -104 dBm 

Path Loss (PL) 85 dBm 95 dBm 

Battery Life (BL) 0% 100% 

Spectrum Information (SI) N/A N/A 

Spatial Knowledge (SK) N/A N/A 

 

b) Formulation of fitness functins for CRN parameter 

To accomplish the system goals, other five fitness 

functions (shown in: Table. 2) have been formulated in 

order to achieve an optimal state guidance of the system. 

The fitness functions we mention here are the ones 

discussed in [22]. To the best of our knowledge, there is no 

available research that contains all the five objectives in one 

system model. As a consequence, we formulate the 

underlying objective functions in details. 

 

 

 

Table 2. CR Objectives 

Objective name Description 

Minimizing power 

Consumption (fobj, minPT) 

To Decrease power 

consumed by system. 

Minimizing BER   

(fobj, minBER) 

To Improve overall BER of 

transmission environment. 

Maximizing throughput   

(fobj, maxTHROU) 

To increase throughput 

transmitted by radio. 

Minimizing interference   

( fobj, minINFR) 

To reduce radio’s 

interference contributions. 

Maximizing spectral 

efficiency ( fobj, maxSE) 

To maximize efficient use of 

frequency spectrum. 

3.3 The WDS working-steps 

1. Start spectrum sensing technique in order to detect all 

the free channels in the surrounding environment. 

2. Results are sent to upper layer (i.e. MAC layer) by 

using the spectrum sensing technique. 

3. PU activity model has a MAC layer that calculates 

the probability of ON- and OFF-state for all idle 

channels. 

4. The probability of ON- and OFF-state values are sent 

to a channel selection strategy. 

5. The number of secondary users on every idle channel 

and channel capacity is computed through a channel 

selection strategy. 

6. The channel selection calculates the weight function 

through relying on the probability of OFF-state 

channel capacity and the number of secondary users. 

7. The algorithm arranges all channels based on weight 

value. 

8. The algorithm selects the maximum weight value as 

the best one. 

9. Other channels are used as a backup for the best free 

channel. 

10. Other than channel selection, Qos optimizer runs to 

optimize transmission parameters. 

11. The algorithm sends a packet. 

12. The algorithm computes metrics, interference and 

spectrum utilization. 

IV. PERFORMANCE EVALUATION 

We adopted the cooperative routing protocol for the 

underlying simulation as provided in [4]. The concept is 

that it is used to discover an end-to-end robust path between 

the sender and receiver. The same protocol relies on 

sensing the proposed scheme as a non-routing protocol. 

Consequently, the end-to-end paths and the routing tables 

are not taken into account by the SUs. 

4.1 Simulation 

environment 

PUs and CRs use a Carrier Sense Multiple Access 
(CSMA) /Collision Avoidance (CA) based on MAC 
protocol in our research context. Disputations occur 
between CRs in CSMA protocols via carrier sensing and a 
back-off algorithm. 

Each SU has a single radio transceiver that can be 
adjusted to numerous frequencies licensed to the primary 

Cognitive Adaptation Algorithm (GA) 

QoS Objectives 
(Inputs) 

SI BL N PL 

RS TDD BW MI PT 

(Outputs) 

CRN 

Parameters bounds 

LL 
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network. Due to the single radio constraint, sensing and 
transmission are done consecutively. The average idle and 
busy rates ( λi, λb ) for PU activity are exponentially 
distributed.  The ON-OFF values of the PU activity model 
are taken from [23]. The simulation input parameters used 
in our simulation are represented in Table 3. 

In each scenario, the initial position of all nodes 
(including the sender and the receiver pairs), and the 
availability of a channel pool of each node are randomly 
organized inside a square area of (700 x 700). The number 
of CRs is fixed to 150 and the simulations’ run for 600 
seconds. The transmission range of CR is 250 m and packet 
size is 512 byte. The number of Available Channels 
(ACHs) for each SU is 10. 

Table 3. Simulation parameters 

Parameter Value 

Transmission media WirelessChannel 

Propagation model Two-ray ground model 

Network interface WirelessPhy 

Number of interfaces Single transceiver 

MAC 802.11 

Antenna OmniAntenna 

Interface queue type DropTail/Priqueue 

Routing protocol On-demand protocol [4] 

Packet size 512 bytes 

Transmission range 250 meters 

Number of CR users 10, 25, 50, 100, 150     

Simulation time  2 hours 

Number of runs 10  

Sensing time interval 1 sec 

Simulation area 700  700  m2 

 

4.2 Simulation 

resutls 

A performance comparison for WDS, Best-Fit Channel 
selection (BFC) and Longest Idle Time Channel selection 
(LITC) has been evaluated with a different number of SUs 
in the network. 

a) Effect of number of SUs on channel decision 

In this set of simulations, we study the ways that the 
proposed approach and related strategies react to the raising 
SU traffic demand in terms of the above-mentioned metrics. 
The number of free channels for each SU is set to 10 with 
rate parameters(λx, λy ). The SUs number in the network 

starts from 10 to 150. 

Figure 3 shows the results of different simulation 
experiments that are used to evaluate the average of 
interference ratio at diverse numbers of SUs nodes for the 
RD, BFC, LITC, and the proposed scheme. 

The minimum improvement in average interference 

ratio for WDS occurred at 10 SU nodes at which the ratio is 

decreased by around 12% which can be compared to BFC, 

while the maximum average interference ratio occurred at 

150 SU nodes at which the ratio is decreased by 68% 

compared with RD. On the average, we can realize that the 

WDS always outperforms RD, BFC, and LITC in relation 

to minimizing average interference ratio at different 

numbers of SU nodes by 55.2%, 23% and 31% which are 

compared to RD, BFC, and LITC respectively. 

Figure 3. Average interference ratio in various SUs 

 

Figure 4. Spectrum opportunity utilization in various SUs 

 Another result demonstration is illustrated in Figure 4. 

Those results show the different simulation experiments 

that measure the spectrum opportunity utilization at 

different numbers of SUs nodes for the RD, BFC, LITC and 

the proposed scheme. The minimum improvement in 

spectrum opportunity utilization for WDS occurs at 10 SU 

nodes at which the ratio is increased by around 25% 

compared with BFC, while the maximum improvement in 

spectrum opportunity utilization happens at 150 SU nodes 

at which the ratio is increased by 89% compared with RD. 

Averagely, we realize that the WDS also outperforms RD, 

BFC and LITC as related to maximizing spectrum 

opportunity utilization at different network density by 
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73.8%, 35.6% and 54.6% as compared to RD, BFC and 

LITC respectively 

b) Effect of number of free channel on channel 

decision 

In another set of simulations, we examine the ways a 

number of ACHs affects the performance of each scheme in 

terms of the mentioned metrics in Section 4.2. The number 

of SUs in the network is set to 100 nodes and the number of 

free channels for each SU starts from 3 to 15. 

Figure 5. Demonstrates the results of different 

simulation experiments that measure average interference 

ratio at different numbers of free channels for RD, BFC, 

LITC, and the WDS. On average, we can realize that the 

WDS minimizes the interference ratio by 59%, 11%, and 

16.3% compared to RD, BFC and LITC respectively. 

From Figure 6, we can conclude that, the WDS always 
outperforms RD, BFC and LITC related to maximizing 
spectrum utilization at different network densities by 
67.6%, 18.4% and 22.3% compared to RD, BFC and LITC 
respectively. This is mainly because the WDS concentrates 
on selecting the channel in a method that guarantees the 
unexploited channel by the PU through weight function. 
For that reason, the interference ratio decreases which leads 
to higher spectrum utilization. 

 

 

Figure 5. Average interference ratio under different numbers 

of free channels 

 

Figure 6. Spectrum opportunity utilization under different 

number of free channels 

V. CONCLUSION 

 This paper presents the Weight Decision Selection 

(WDS) as an efficient channel selection scheme for 

cognitive radio ad hoc networks. The main aims of the 

proposed scheme is minimizing the interference between 

PUs and CRs through selecting the best channel by a weight 

formula.  

There are many parameters that should be taken into 

account while designing any channel selection strategy. 

These parameters include idle duration for PU connection, 

channel capacity, and a number of CRs in each channel. 

Works like [24, 25] take the idle duration into account in 

connecting PUs while selecting the best channel and 

neglecting other parameters. Therefore, we were able to 

design a new channel selection strategy, known as WDS, 

which includes all the above-mentioned parameters in 

selecting the best channel that guarantees less interference 

for the PU and selects the best channel that provides a QoS 

for CRs. 

 

 

The main design goals of the proposed scheme (WDS) 

are: 

 Improving the accuracy of the channel selection in 

ad hoc CRNs is relative to the existing selection 

strategies.  

 Protecting the primary radio nodes against any 

harmful interference.  

 Maximizing the spectrum utilization and packet 

delivery ratio. 

 Minimizing the average delay in CRNs. 

Simulation results using NS2 have confirmed that WDS 
has better performance relative to RD, BFC, and LITC 
strategies under different network densities and number of 
free channels. The proposed WDS scheme improves (i.e., 
maximizes) the channel utilization by 70.7%, 27% and 
38.45% compared to RD, BFC and LITC respectively and 
minimizes the interference ratio by 57.1%, 17% and 23.65% 
compared to RD, BFC and LITC respectively. In addition to 
that, WDS also outperforms other strategies for packet 
delivery ratio, average throughput, and end-to-end delay. 

In time complexity analysis of WDS, the corresponding 

time cost of weight formula that selects the best channel and 

since the WDS algorithm depends on three main parts: 

represents the idle duration, channel capacity and the 

number of channels. Therefore, the simplicity of our scheme 

can be applied in different applications such as: cognitive 

radio wireless sensor networks, cognitive radio networks, 

and Mobile networks. 
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