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integral transform ,its inverse , some of its 
properties and transformation for some fractional 
functions. In this paper are considered the Initial 
value problems with local fractional derivative. 
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I.  INTRODUCTION  

Calculus transform has played an important role in 
areas randing from fundamental scieces to 
engineering in the past years and has been applied to 
a wide class of  functions[1,2]. This new α-transform is 
focused firstly on some previous knowledge of known 
integral transformations which mention Fourier 

transform Laplace Sumudu [3], Elzaki [4,5] Yang-
Laplace[1]  and a new transform integral [6]. The 
ordinary and partial differential equations have found 
applications in many problems in mathematical 

physics.[7,8] Initial value problems  for ordinary and 
partial differential equations have been developed by 

some authors [9,10,11]. There are analytical methods 
and numerical methods for solving the differential 
equations, 

such as the finite element method[12] , the Adomian 
decomposition method[13,14] ,the variational 

itheration method[15] ,and other methods . In this 
paper, our aim is to use the new α – integral transform 
to solve initial value problems  with local fractional 
derivative 

The paper is organized as follows : 

In Section 2 , we introduce the notions of local 
fractional calculus theory used in this paper. 
In Section 3, we give the definition of the  α – integral 
transform  some  properties 
Section 4, is devoted to the solutions for the 
homogeneous and nonhomogeneous Initial value 
problems  with local fractional derivative. 

In Section 5 ,  are gived our conclusions.  

II. MATEMATICAL FUNDAMENTALS 

 

   Local Fractional Calculus 
 
Definition 1  : The function f(x) is called local fractional 

continuous at  x = x0 if there is the relation |𝑓(𝑥) −
𝑓(𝑥0)|  < ε∝     ,0 < α ≤ 1.  with|𝑥 − 𝑥0|  < 𝛿  for ε > 0 , 
δ > 0 and ε,δ ϵ R . 
It is denoted by  lim𝑥→𝑥0

𝑓(𝑥)  = 𝑓(𝑥0). 

 
Definition 2 :  The function f(x) is called local fractional 
continuous on the interval (a,b) if for ε, δ > 0 and  ε,δ ϵ 

R satisfies the relation |𝑓(𝑥) − 𝑓(𝑥0)|  < ε∝  , 0<α≤1.                                          
It is denoted by 𝑓(𝑥)𝜖𝐶∝(𝑎, 𝑏). 
 

Definition 3 :   In Fractal space let  f(x)ϵ𝐶∝(𝑎, 𝑏)   ; 
Local fractional derivative of f(x) of order α at the point 

x=x0 is given by [1,2,16 − 21] 
 

𝐷𝑥
(∝)

𝑓(𝑥0) =  
𝑑∝

𝑑𝑥∝  𝑓(𝑥)|𝑥=𝑥0 =  𝑓(∝)(𝑥0)  =

 lim𝑥→𝑥0

∆𝛼 ( 𝑓(𝑥)−𝑓(𝑥0 ))

(𝑥− 𝑥0)∝  ,   

                                                                                                                       
(6) 

Were  ∆𝛼 ( 𝑓(𝑥) − 𝑓(𝑥0 )) ≅  Γ(∝ +1)(𝑓(𝑥) − 𝑓(𝑥0) . 
The formulas of local Fractional derivatives of special 
functions used in the paper are as follows  

𝐷𝑥
(∝)

 𝑎 𝑔(𝑥) =  𝑎 𝐷𝑥
(∝)

 𝑔(𝑥)          

                                                         (7) 
𝑑∝

𝑑𝑥∝  (
𝑥𝑛∝

Γ(1+𝑛∝)
) =

𝑥(𝑛−1)∝

Γ(1+(𝑛−1)∝)
   nϵ N .   

                                                             (8) 
 

Definition 4 : A partition of the interval [𝑎, 𝑏] is denoted 
by  (tj , tj+1) për j= 0,1,…,N-1  , t0=a   and tN=b  with  

∆𝑡𝑗 =  𝑡𝑗+1 − 𝑡𝑗  and   ∆𝑡 = 𝑚𝑎𝑥{∆𝑡0 , 𝑡1 , … }. 

 
 
Definition 5 :  Local fractional integral of f(x) in the 

interval  [𝑎, 𝑏]  is given by [1,2,21] 

𝐼𝑎 𝑏
(∝)

 𝑓(𝑥) =  
1

Γ(∝+1)
∫ 𝑓(𝑡)(𝑑𝑡)∝𝑏

𝑎
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=  lim∆𝑡→0 ∑ 𝑓(𝑡𝑗)(∆𝑡𝑗)∝𝑁−1
𝑗=0  

                                                                  (9) 
 
The formulas of local fractional integrals of some 
special functions used in this work are as follows : 

𝐼0 𝑥
(∝)

 𝑎 𝑔(𝑥) = 𝑎 𝐼0 𝑥
(∝)

 𝑔(𝑥)  

                                                   (10) 
      

𝐼0 𝑡
(∝)

(
𝑥𝑛∝

Γ(1+𝑛∝)
) =

𝑥(𝑛+1)∝

Γ(1+(𝑛+1)∝)
  nϵ N   . 

                                                                   (11) 

 III . A NEW LOCAL FRACTIONAL INTEGRAL TRANSFORM 

AND ITS INVERSE FORMULA 

A new Local Fractional  α- integral transform and its 
inverse formula . 
 

Definition 6 : Let  
1

Γ(∝+1) 
∫ |𝑓(𝑡)|(𝑑𝑡)∝+∞

0
 < K < ∞ .   The 

α- integral transform f(x) is given by    

𝐾∝  {𝑓(𝑡)} =  𝐴∝,𝑓(𝑣) =

  
1

Γ(∝+1)

1

𝑣∝ ∫ 𝐸∝(−(
𝑡

𝑣2)∝)𝑓(𝑡)(𝑑𝑡)∝+∞

0
          0<α≤1   

                                                                             (12)                                         
were the integral converges and  v

α
 ϵ R

α 
 

 

Definition 7 : The inverse formula of the  α- integral 
transform is given by 

𝐾∝
−1 {𝐴∝,𝑓(𝑣)} =  

1

(2𝜋𝑖)∝  ∫ 𝐸𝛼((𝑣𝑡)∝)
𝛽+𝑖𝜔

𝛽−𝑖𝜔
𝐴𝛼(

1

√𝑣
𝛼)

(𝑑𝑣)∝

√𝑣
∝    

(13) 
Where v

α
 = β

α
 + i

α
 ω

α
 ; here i

α
 is fractal imaginary unit 

of v and Re(v) = β ˃ 0 . 
 
Some properties  the α – integral transform are 
presented as follows 
 

  𝐾𝛼{𝐸𝛼(𝑥𝛼)} =  
𝑣𝛼

1−𝑣2𝛼               (14) 

 

 𝐾𝛼{𝑠𝑖𝑛𝛼(𝑐𝛼𝑥𝛼)} =  
𝑐𝛼𝑣3𝛼

1+𝑐2𝛼𝑣4𝛼    (15) 

 

𝐾𝛼{𝑐𝑜𝑠𝛼(𝑐𝛼𝑥𝛼)} =  
𝑣𝛼

1+𝑐2𝛼𝑣4𝛼       (16) 

 

𝐾𝛼{𝑥𝑘𝛼} =  𝑣𝛼(2𝑘+1)Γ(𝛼𝑘 + 1)     (17) 
 

𝐾𝛼{𝑥𝑘𝛼 𝐸𝛼(𝑐𝛼𝑘𝛼)} =  
𝑣𝛼(2𝑘+1)Γ(𝛼𝑘+1)

(1−𝑐2𝑣2)(2𝑘+1)𝛼   (18) 

 

𝐾∝{𝐸∝(𝑐∝𝑡∝)𝑓(𝑡)} =  𝐴∝,𝑓(1 − 𝑣2 𝑐)   (19) 

 
𝐾∝{(𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)} = 𝑎𝐾∝{𝑓(𝑡)} + 𝑏𝐾∝{𝑔(𝑡)}  (20) 
 

𝐾𝛼{𝑓(𝑛𝛼)(𝑡)} =  
𝐴𝛼,𝑓(𝑣) 

𝑣2𝛼𝑛 − ∑
𝑓(𝑘𝛼)(0)

𝑣(2(𝑛−𝑘)−1)𝛼
𝑛−1
𝑘=0        (21) 

 

III INITIAL  VALUE PROBLEMS WHITH LOCAL FRACTIONAL 

DERIVATES 

 

In this section we handle the homogeneous and 
nonhomogeneous initial value problems  with local 
fractional derivative. 
 
 
Examle 1:    
 
Let us consider the homogeneous Initial value 
1problems  with local fractional derivative in the form 
 
𝑑4𝛼𝑦

𝑑4𝛼𝑥
− 𝑦 = 0  (22)    

 
With initial boundary conditions 
 

𝑦(0) = 0   ,                           𝑦(𝛼)(0) = 0 
                                                                 (23) 

𝑦(2𝛼)(0) = 0  ,                           𝑦(3𝛼)(0) = 1 . 
 
From (21)  we have  
 

𝐾𝛼{𝑦(4𝛼)(𝑥)} =  
𝐾𝛼{𝑦(𝑥)}

𝑣8𝛼 + 
𝑦(0)

𝑣7𝛼 + 
𝑦(𝛼)(0)

𝑣5𝛼 + 
𝑦(2𝛼)(0)

𝑣3𝛼 +

𝑦(3𝛼)(0) 

𝑣𝛼 =  
𝐾𝛼{𝑦(𝑥)}

𝑣8𝛼 + 
1

𝑣𝛼                           (24) 

 
Hence (22) can be writen 
 
𝐾𝛼{𝑦(𝑥)}

𝑣8𝛼 + 
1

𝑣𝛼 − 𝐾𝛼{𝑦(𝑥)} = 0                  (25) 

 
Which leads to 
 

𝐾𝛼{𝑦(𝑥)} [ 
1

𝑣8𝛼 − 1] =   
1

𝑣𝛼                         (26) 

 
So that 
 

𝐾𝛼{𝑦(𝑥)} =  
𝑣7𝛼

1−𝑣8𝛼  .                                   (27) 

 
Therefore , we get 
 

𝑦(𝑥) =  𝐾𝛼
−1 {

1

4
 

𝑣𝛼

1−𝑣2𝛼 − 
1

4
 

𝑣𝛼

1+𝑣2𝛼  −
1

2
 

𝑣3𝛼

1−𝑣4𝛼   }  

                                                                        (28) 

         =  
1

4
 𝐸𝛼(−𝑥𝛼) − 

1

4
 𝐸𝛼(𝑥𝛼) −  

1

2
 𝑠𝑖𝑛𝛼(𝑥𝛼) . 

 
Examle 2:    
 
Let us consider the homogeneous Initial value 
problems  with local fractional derivative in the form 
 
𝑑2𝛼𝑦

𝑑2𝛼𝑥
−

𝑑𝛼𝑦

𝑑𝛼𝑥
+ 2𝑦 = 0                       (29) 

 
With initial boundary conditions 
 

𝑦(0) = 1   ,                  𝑦(𝛼)(0) =   0   .(30) 
  
 
From (21)  we have  

𝐾𝛼{𝑦(2𝛼)(𝑥)} =  
𝐾𝛼{𝑦(𝑥)}

𝑣4𝛼 + 
𝑦(0)

𝑣3𝛼 + 
𝑦(𝛼)(0)

𝑣𝛼       

                                                              (31) 
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𝐾𝛼{𝑦(𝛼)(𝑥)} =  
𝐾𝛼{𝑦(𝑥)}

𝑣2𝛼 + 
𝑦(0)

𝑣2𝛼   

         
 
Hence (29) can be written 
 
𝐾𝛼{𝑦(𝑥)}

𝑣4𝛼 + 
𝑦(0)

𝑣3𝛼 + 
𝑦(𝛼)(0)

𝑣𝛼 − 
𝐾𝛼{𝑦(𝑥)}

𝑣2𝛼 − 
𝑦(0)

𝑣2𝛼 − 2𝐾𝛼{𝑦(𝑥)} =

0  
                                                                  (32) 
Hence , making use of initial boundary conditions we 
obtain  
 

𝐾𝛼{𝑦(𝑥)} [ 
1

𝑣4𝛼 −
1

𝑣2𝛼 + 2] =   
1

𝑣3𝛼 −
1

𝑣𝛼   (33) 

 
So that 
 

𝐾𝛼{𝑦(𝑥)} =  
𝑣𝛼

1−𝑣2𝛼  .                                   (34) 

 
Therefore , we get 
 

𝑦(𝑥) =  𝐾𝛼
−1 { 

𝑣𝛼

1−𝑣2𝛼 }  

                                                                        (35) 
         =   𝐸𝛼(−𝑥𝛼) 
 
Examle 3:    
 
Let us consider  the non - homogeneous Initial value 
problems  with local fractional derivative  
 
𝑑2𝛼𝑦

𝑑2𝛼𝑥
− 𝑦 = 𝑠𝑖𝑛𝛼(𝑥𝛼)                       (36) 

 
With initial boundary conditions 
 

𝑦(0) = 0   ,                  𝑦(𝛼)(0) =   1   . (37) 
  
From (21)  we have  
 

𝐾𝛼{𝑦(2𝛼)(𝑥)} =  
𝐾𝛼{𝑦(𝑥)}

𝑣4𝛼 + 
𝑦(0)

𝑣3𝛼 + 
𝑦(𝛼)(0)

𝑣𝛼       

                                                              (38) 
 
         
By using(15) and (38)  , (36) can be written 
 
𝐾𝛼{𝑦(𝑥)}

𝑣4𝛼 + −2𝐾𝛼{𝑦(𝑥)} = 
𝑣3𝛼

1+𝑣4𝛼 

                                                                  (39) 
Hence , making use of initial boundary conditions we 
obtain  
 

𝐾𝛼{𝑦(𝑥)} [ 
1

𝑣4𝛼 − 1] =   
𝑣3𝛼

1+𝑣4𝛼 −
1

𝑣𝛼    (40) 

 
So that 

𝐾𝛼{𝑦(𝑥)} =  
3

4
 

𝑣𝛼

1−𝑣2𝛼 − 
3

4

𝑣𝛼

1+𝑣2𝛼 −
1

2
 

𝑣3𝛼

1+𝑣4𝛼    (41) 

 
Therefore we get  
 

𝑦(𝑥) =  𝐾𝛼
−1 { 

3

4
 

𝑣𝛼

1−𝑣2𝛼 − 
3

4

𝑣𝛼

1+𝑣2𝛼 −
1

2
 

𝑣3𝛼

1+𝑣4𝛼}    

                                                                  (42) 

          
3

4
 𝐸𝛼(−𝑥𝛼) −  

3

4
 𝐸𝛼(𝑥𝛼) −  

1

2
 𝑠𝑖𝑛𝛼(𝑥𝛼)  . 

 
 
Examle 4:    
 
Let us consider  the non - homogeneous Initial value 
problems  with local fractional derivative  
 
𝑑2𝛼𝑦

𝑑2𝛼𝑥
+ 𝑦 = 𝐸𝛼(𝑥𝛼)                       (43) 

 
With initial boundary conditions 
 

𝑦(0) = 0   ,                  𝑦(𝛼)(0) =   1   . (44) 
  
From (20)  we have  
 

𝐾𝛼{𝑦(2𝛼)(𝑥)} =  
𝐾𝛼{𝑦(𝑥)}

𝑣4𝛼 + 
𝑦(0)

𝑣3𝛼 + 
𝑦(𝛼)(0)

𝑣𝛼       

                                                              (45) 
 
By using(14) and (45)  , (43) can be written 
 
𝐾𝛼{𝑦(𝑥)}

𝑣4𝛼 −
1

𝑣𝛼 + 𝐾𝛼{𝑦(𝑥)} = 
𝑣𝛼

1−𝑣2𝛼 

                                                                  (46) 
 
Hence , making use of initial boundary conditions we 
obtain  
 

𝐾𝛼{𝑦(𝑥)} [ 
1

𝑣4𝛼 + 1] =   
𝑣𝛼

1−𝑣2𝛼 +
1

𝑣𝛼    (47) 

 
So that 

𝐾𝛼{𝑦(𝑥)} =  
1

2
 

𝑣3𝛼

1+𝑣4𝛼 − 
1

2

𝑣𝛼

1+𝑣4𝛼 +
1

2
 

𝑣𝛼

1−𝑣2𝛼    (48) 

 
Therefore we get  
 

𝑦(𝑥) =  𝐾𝛼
−1 { 

1

2
 

𝑣3𝛼

1+𝑣4𝛼 − 
1

2

𝑣𝛼

1+𝑣4𝛼 +
1

2
 

𝑣𝛼

1−𝑣2𝛼}    

                                                                  (49) 
      

       =  
1

2
 𝑠𝑖𝑛𝛼(𝑥𝛼) − 

1

2
 𝑐𝑜𝑠𝛼(𝑥𝛼) +  

1

2
 𝐸𝛼(𝑥𝛼)  . 

 

IV . CONCLUSIONS  

In this work we have used the local fractional  α-
integral transform to handle the homogeneous and 
non-homogeneous  initial value problems  with local 
fractional derivative. Some illustrative examples of 
approximate solutions for local fractional initial value 
problems s are discussed. The obtained results 
illustrate that the local fractional α- integral  transform 
is an efficient mathematical tool to solve the 
homogeneous and non-homogeneous initial value 
problems with local fractional derivative. 
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