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Abstract— Decreasing product life cycles and 
increasing product variety force manufacturing 
companies to improve the flexibility and efficiency 
of their production systems.   Although the 
flexibility of production systems is more likely to 
be an investment issue, the efficiency side is 
closely related to production planning. In this 
study, we focus on the integrated problem of 
product routing (A.K.A process planning) and 
machine scheduling that is a well-known problem 
of flexible manufacturing.   Studies have shown 
that analyzing process planning and machine 
scheduling separately may result in solutions that 
are not efficient for the integrated system. We 
propose a genetic algorithm based solution 
methodology for the integrated problem that 
reduces the complexity of the solution space by 
eliminating non-promising solutions at the 
beginning. Also we test our algorithm on a 
benchmark data with modified problem 
characteristics and get promising results. 

Keywords— Process Planning; scheduling; 
genetic algorithms; optimization 

I. INTRODUCTION  

Process planning (PP) and machine scheduling are 
critical operations that determine how and when to 
produce with respect to available resources and 
constraints. Generally these two activities are 
considered separately and done by different 
departments in factory settings in expense of delay 
and extra used machine hours during production. This 
results in a strong motivation to decrease the 
inefficiency of the overall production system by 
integrating scheduling and process planning 
operations. In this study, we propose an integrated 
system that does process planning and scheduling 
simultaneously. 

The integrated problem is a more complex version 
of classical jobshop scheduling and it is an NP-
Complete problem. This problem can be described as 
follows: 

 There is a set of jobs N and each job i∈ N has a 
set of operations Oi to be completed, 

 Any operation j (j∈Oi) of job i (i∈ N) can be 
processed by a machine k of machine set Mij 
with process time tijk, 

  One machine can only process one operation 
of a job at a time and no preemption is allowed, 

 The precedence relationship between the 
operations of a job should be satisfied. 

 The objective is minimizing the completion time 
of the last operation (makespan) of the 
schedule. 

By introducing the following additional variables 
and parameters, this problem can be modeled as 
below: 

   𝑄 ∶ 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 

𝑃𝑖𝑗: 𝑆𝑒𝑡 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑝𝑟𝑒𝑐𝑒𝑒𝑑𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑗 𝑜𝑓 

     𝑗𝑜𝑏 𝑖 (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑂_𝑖, 𝑃_𝑖𝑗 ⊂ 𝑂_𝑖 )  

𝑥𝑖𝑗𝑘

= {
1,          if operation j of job i is processed by machine k

                                   i ∈ N, j ∈ Oi, k ∈ Mij, Mij ∈ Q 

0                   otherwise.

 

      

𝑦𝑖𝑗𝑙𝑚

= {
1, if operation j of job i starts before operation 𝑚 of job 𝑙  

 𝑖, 𝑙 ∈ N, j ∈ Oi, m ∈ 𝑂𝑙 )
0                       otherwise.

 

𝑆𝑖𝑗` ∶ 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑗 𝑜𝑓 𝑗𝑜𝑏 𝑖 (𝑖 ∈ 𝑁, 𝑗 ∈

                       𝑂𝑖 , 𝑆𝑖𝑗 ≥ 0)  

𝐶𝑖𝑗 ∶ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑗 𝑜𝑓 𝑗𝑜𝑏 𝑖 (𝑖 ∈ 𝑁, 𝑗

∈ 𝑂𝑖 , 𝐶𝑖𝑗 > 0)                    

𝐶𝑚𝑎𝑥: 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝐶𝑚𝑎𝑥 > 0) 

𝑀 ∶ 𝐴 𝑣𝑒𝑟𝑦 𝑏𝑖𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 

Objective function: Minimize   𝐶𝑚𝑎𝑥  (1) 

Subject to: 

 ∑ 𝑥𝑖𝑗𝑘 = 1    𝑘∈𝑀𝑖𝑗
       ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑂𝑖  (2) 

𝐶𝑖𝑗 = 𝑆𝑖𝑗 + ∑ 𝑥𝑖𝑗𝑘𝑡𝑖𝑗𝑘𝑘∈𝑀𝑖𝑗
      ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑂𝑖    (3) 
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𝑆𝑖𝑗 ≥ 𝐶𝑖𝑚         ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑂𝑖 , ∀𝑚 ∈ 𝑃𝑖𝑗  (4) 

𝑆𝑙𝑚 − 𝐶𝑖𝑗  ≥ (𝑦𝑖𝑗𝑙𝑚 − 1) × 𝑀       ∀𝑘 ∈ 𝑄, 𝑖, 𝑙 ∈ N, j ∈

Oi, m ∈ 𝑂𝑙: 𝑘 ∈ 𝑀𝑖𝑗 ∩ 𝑀𝑙𝑚    (5) 

𝑦𝑖𝑗𝑙𝑚 + 𝑦𝑙𝑚𝑖𝑗 = 1            ∀𝑘 ∈ 𝑄, 𝑖, 𝑙 ∈ N, j ∈ Oi, m ∈

𝑂𝑙: 𝑘 ∈ 𝑀𝑖𝑗 ∩ 𝑀𝑙𝑚    (6) 

𝑥𝑖𝑗𝑘 + 𝑥𝑙𝑚𝑘 − 𝑦𝑖𝑗𝑙𝑚 − 𝑦𝑙𝑚𝑖𝑗 ≤ 1      ∀𝑘 ∈ 𝑄, 𝑖, 𝑙 ∈ N, j ∈

Oi, m ∈ 𝑂𝑙: 𝑘 ∈ 𝑀𝑖𝑗 ∩ 𝑀𝑙𝑚    (7) 

𝐶𝑚𝑎𝑥  ≥ 𝐶𝑖𝑗              ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑂𝑖    (8) 

In the above model, the objective is minimizing the 
makespan that equals to the finish time of the 
operation completed latest as stated by constraint set 
(8). Constraint set (2) ensures that each operation is 
assigned to a machine. Constraint set (3) defines that 
the completion time of an operation is equal to the sum 
of its start time and processing time. Constraint set (4) 
states the precedence relationships.  Finally constraint 
sets (5), (6), and (7) guarantee that operations 
processed by the same machine cannot be processed 
simultaneously. Clearly, it is not feasible to solve this 
model in a dynamic floor shop environment under time 
pressure. For this reason, we propose a genetic 
algorithm that operates on a limited search space. The 
organization of the paper is as follows: In the next 
section, we briefly go over the related literature. In the 
third section we introduce our genetic algorithm model. 
In section 4, we present our computational results 
along with our discussion. Finally, in section 5, we 
conclude our paper with future research directions. 

II. RELATED WORK 

Due to the complexity of the integrated process 
planning problem, the literature mostly focus on 
heuristic techniques. ([1], [2], [3], [4], [5]).  

 [6] proposed an integrated process planning and 
scheduling (IPPS) approach in a batch manufacturing 
environment.  A heuristic approach is created for 
minimizing time delay and  cost of process plan 
involved in adjustment of process plan. [7] proposed 
an IPPS approach using ant colony optimization (ACO) 
algorithm to minimize makespan for fluctuating job 
shop environment. In that study Processing flexibility of 
alternative routes and machines is considered. 
Shrestha et al. [8] developed an IPPS system for HMS 
(Holonoic Manufacturing Systems) using Dynamic 
Programming. A GA-based method is used for picking 
a combination of process plans. [9] proposed a multi-
machine setup planning approach using GA to solve 
IPPS problem. A tool accessibility examination 
approach was used for adaptive setup planning (ASP), 
and it was extended to solve multi machines setups 
planning problem. Authors decided that GA-based 
ASP is capable to quickly respond in changing shop 
floor situations. In [10], an IPPS approach is proposed 
for job shop machining operations via a two-step ASP 
using GAs. It consists of generic setup planning (step 
one) and adaptive setup merging (step two) in order to 
optimize cost, quality, makespan and machines 
utilization. Authors concluded that proposed approach 
can generate setup plans adaptively based on 

machines availability and capability. [11] proposed a 
GA-based IPPS system in which process route was 
selected on the basis of balanced level of machines 
utilization, minimum processing cost and shortest 
processing time (SPT) dispatching rules.  [12] 
proposed a framework and a combined dynamic 
rescheduling model for IPPS with three typical types of 
situations normally encountered in a production 
system which are new jobs, breakdown of machine, 
and cancellation of order. Meanwhile, an improved 
evolutionary algorithm for the IPPS problem to 
generate an optimal initial scheduling plan is created.. 
To improve the performance of the algorithm for IPPS 
new genetic representation for the scheduling plan is 
developed. 

In [13], for each job two alternative process plans 
were used and in the same direction for each 
production stage these process plans were used with 
alternative operations.  As a result of this study, they 
showed that using alternative process plans, 
operations, and machines had an important positive 
effect on meeting delivery deadlines in a dynamic 
production environment.  In this study, we also use two 
alternative process plans for each job to take 
advantage of this fact. 

[14] showed that using genetic algorithms in 
process planning stage instead of random planning 
has an effect of 20% decrease in production time.  
Similarly, [15] showed that in terms of computational 
time, using genetic algorithm instead of tabu search 
during scheduling has better results as the problem 
size gets larger.  They find that population size and 
number of operations were two factors that affect the 
performance of genetic algorithm. 

[16] developed an integrated  methodology that 
uses multiple process plans to overcome the 
disturbances in production.  In their study, using 
multiple process plans allows the scheduling process 
to be predictive and reactive to the changes. The study 
concludes that using more than one process plan on 
hand increases the flexibility and makes the 
rescheduling more efficient.   

As a result of the literature analysis, we see that 
previous studies mostly try the integration of process 
planning and scheduling within the framework of an 
optimization algorithm.  Yet, it is observed that as the 
solution space and search space expand, the 
computational time also increases. Considering this, in 
this study, we propose a hybrid optimization algorithm 
that is time efficient and also generates effective 
solutions.  Our hybrid algorithm consists of a genetic 
algorithm module and a simulated annealing algorithm 
based rescheduling module. Certain studies in the 
literature oversee the fluctuations in the production 
environment during manufacturing stage and they 
neglect the situation where feasible schedules may 
become infeasible in a dynamic production 
environment. In our study, we allow two way 
information flow between scheduling and process 
planning stages. We use a rescheduling algorithm to 
response changes in the production environment. This 
rescheduling algorithm gives us feasible modified 
schedules ensuring that the original schedule is used 
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for the operations until the time of change in the 
production environment. By this way, our solution 
procedure handles abrupt changes in the production 
environment on a real time basis. 

Another point we consider in this study is the 
assembly production nature of the integrated process 
planning and scheduling problem.  Most studies 
analyzes this integrated problem in terms of a classical 
job scheduling perspective. In this study, we assume 
that as long as there is no precedence relationship 
between the production operations, these operations 
can be processed simultaneously on different 
workstations. 

III. ALGORITHM DESIGN  

We used a modified version of the genetic 
algorithm (GA) given in [17].  A feasible schedule is 
represented by a chromosome as shown in Fig. 1. 
Each chromosome contains a number of genes that is 
equal to the number of operations in the respective 
schedule. Each gene has nine fields and each field 
carries a predetermined type of information as shown 
in Fig. 2. 

 

Fig. 1. A chromosome representing a schedule with m    
operations 

 

 

Fig. 2. A gene with its respective fields 

 

For each job, the operations are put in a order 
depending on the remaining minimum possible 
process time. For two operations i and j belonging to 
the same job, operation i  comes before operation j if 
the sum of the minimum possible process times of 
operation i’s successor operations are larger than the 
sum of the minimum possible process times of 
operation j’s successors. Since an operation is more 
likely to be processed by the machine that has the 
minimum process time – assuming that the machine is 
available – minimum possible process times of 
operations are used in this ordering. By this way, 
operations of a job are represented by a one 
dimensional ordered set. In Fig. 2, Field 3 in a gene 

shows the order number of the operation (Field 4) 
belonging to the corresponding job (Field 2) in the 
ordered set. 

The start and finish times of operations are stored 
in Field 8 and Field 9, respectively. Initially all start and 
finish times are assigned to -1.  Starting from the first 
gene in the chromosome structure, start time and 
finish time of each operation is calculated using 
Equations 9 and 10. It should be noted that the 
selected machine information for each operation is 
stored in Field 5. 

Start Time = Max{0, Finish Time of the Preeceding 
Operation, Finish Time of the Last Operation 
Processed by the Selected Machine}   
 (9) 

Finish Time = Start Time + Processing Time of the 
Selected Machine    (10) 

The fitness value of a feasible schedule is its 
makespan that is equal to the maximum finish time of 
its operations.   

In GA, the crossover operation between two 
individual schedules is done on the basis of jobs that 
have the same route/operation assignment in both 
schedules.  The positions of the genes belonging to 
such jobs are kept constant in the children, and the 
remaining genes are swapped between two 
chromosomes preserving the order they have in the 
parent chromosomes. Fig. 3 summarizes the 
crossover operation.  Although it is unlikely, if the 
parents do not have common jobs with same route 
assignment, then the children are same as parents 
after crossover operation. 

 

Fig. 3. Crossover operation between two individuals 

In production environment, it is likely to have 
machine breakdowns. These unexpected events 
require sudden and efficient modifications in 
production schedule. For example if a machine breaks 
down at time t, then the operation that is processed by 
this machine at time t and also the other operations 
that are planned to be processed by the broken 
machine after time t should be rescheduled. 
Considering this, we also developed a simulated 
annealing algorithm (SA) that modifies the existing 
production schedule for a given machine breakdown 
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and respective time. This algorithm uses the same 
chromosome structure used in GA.  In fact, the 
process of SA is very similar to the mutation 
operations of GA with the following exceptions. 

 Any gene representing an operation whose finish 
time is less than the break down time t cannot be 
modified. 

 The broken machine cannot be assigned to 
operations whose finish time is greater than the 
break down time t.  

 During iterations, any new solution with a shorter 
makespan is accepted. However, a new solution 
with a longer makespan is accepted with 

probability 𝑒(𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑜𝑙𝑑−𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑛𝑒𝑤)/𝑇 , where 
makespan old and new are the makespan values 
of old and new solutions, respectively. T shows 
the temperature parameter of SA and it gets 
smaller as more iterations are done. 

IV. COMPUTATIONAL RESULTS AND DISCUSSION 

We test our algorithm using the instance set 
provided by [18]. The genetic algorithm population size 
and number of iterations is set to 100 and 150, 
respectively. In order to eliminate non-promising 
solutions in the search space, we test our algorithm by 
allowing each job to have only two possible routes 
available.  The available two routes are selected 
among available routes for each job using two different 
scenarios. In the first scenario, the two routes that 
allow the job to be completed at the earliest time are 
selected assuming that each process of any route is 
completed by the fastest machine alternative for that 
process. This scenario is denoted by “Min. Two 
Routes”. In the second scenario, again two routes 
among all available route alternatives are selected for 
each job. However during route selection process, the 
completion time of the route is calculated by using the 
average processing time of available machines for 
each process. This assumption takes into 
consideration the fact that the fastest machine for a 
process may not be available at all times. The best two 
routes that are completed in the shortest time using 
average processing times are taken for the solution 
algorithm. This scenario is denoted by “Avg. Two. 
Routes”. Other than these two scenarios for route 
selection process, another alternative is allowing all 
possible routes in the solution algorithm. This 
alternative is denoted by “All Routes”. As we compare 
the scenarios that define available routes, we did not 
notice a significant superiority of one strategy over 
other in terms of makespan values as shown in Fig. 4. 
However, in terms of CPU time, including all available 
routes in the solution process requires more computing 
time as seen in Fig. 5. For this reason, we decided to 
continue our analysis with “Avg. Two. Routes” 
strategy. 

 

 [18] suggest a Symbiotic Evolutionary algorithm  
(SEA) and compare the performance of their algorithm 
with two other approaches which are a hierarchical 
approach and a cooperative  coevolutionary genetic 

algorithm (CCGA). They show that SEA outperforms 
the other two approaches and obtain an improvement 
rate between 5% and 17% in terms of minimum 
makespan and mean flow time at the end of 10 
different computer runs for each problem instance. 
Similar to  [18], in our algorithm, we consider the 
precedence constraints and does not  allow starting a 
job’s operation before its predecessor operations are 
completed. However, we assume that two operations 
of a same job can be processed at the same time if 
there is no precedence relationship between them. this 
assumption  allows the genetic algorithm proposed in 
our study to further improve the results found by SEA 
and provides an improvement rate between 14% and 
51% for the same test instances and same number of 
computer runs in terms of minimum makespan time as 
shown in Table 1.  In Table 2, the comparison of SEA 
and our genetic algorithm is provided in terms of mean 
flow times.  Again our algorithm provides shorter mean 
flow times than SEA. However, the improvement rates 
of the solutions get lower as the instance number 
(complexity) of the problem increases.  This can be 
explained as follows: The mean flow times provided by 
our algorithm are the same solutions found by our 
algorithm with the objective of makespan minimization. 
On the other hand mean flow time solutions provided 
by SEA are found with the objective of minimizing 
mean flow time.  For small sized problems there is not 
much difference in the solutions for minimum 
makespan and minimum mean flow time.  But, as the 
problem size gets larger, the optimal solutions for 
minimum makespan and minimum mean flow time 
may quite differ from each other.  CPU time is another 
dimension for the comparison of algorithms.  As given 
by [18] SEA is run on a IBM Pentium PC (CPU 700 
MHz). Our algorithm is run on a computer with Intel 
Core i3-2100CPU@3.10 Ghz with  2GB Memory.  
Although, SEA is run on a less powerful computer, its 
CPU time requirement is less than our algorithm for 
small sized problems. On the other hand, as problem 
size increases, the CPU time requirement of our 

algorithm increases on a lower rate compared to SEA. 

Fig. 4. Best makespan value averages of our genetic 
algorithm for different route selection strategies and for 
different instances (1..24) 

As changes that affect the current schedule occur 
during production process, the rescheduling module 
generates a new schedule in seconds for the 
remaining operations taking into account the new 
constraints. In Table 3, a schedule generated for 
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instance 1 of Kim et al.’s [18] data set is shown on the 
left part. It is assumed that at time 120, machine 10 
breaks down. For the new case, the right part of Table 
3 shows the new schedule generated by the 
rescheduling module. As noticed, in the new schedule, 
only some of the operations that are scheduled after 
time 120 originally are rescheduled. Due to 
rescheduled operations, makespan increases from 259 
to 279. 

Fig. 5. CPU time averages  of different route selection 
strategies for instances 1to 24 

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

In this study, we analyze the integrated process 
planning and scheduling problem, a frequently 
occurring problem in manufacturing facilities. We 
developed a genetic algorithm to solve this integrated 
problem. By allowing two different operations of a job 
to be processed at the same as long as there is no 
precedence relationship between each other, we 
showed that it is possible to improve the existing 
solutions. Although our assumption relaxes the 
integrated process routing and scheduling problem 
studied in the literature a little bit, this assumption also 
allows us the assembly type production and job 
scheduling to be combined in production planning. 
Also we show that by eliminating non-promising 
solutions during search process, it is possible to 
greatly shorten computational time without sacrificing 
solution quality. 

 

For future studies, by using the Multi Agent 
Systems, process planning and scheduling can be 
performed in an integrated way within the dynamic 
production environment including the instant customer 
demands or changing shop floor conditions (such as 
machine breakdown). We may also consider some 
studies such as genetic algorithm or other heuristic 
and meta-heuristic algorithms are applied to Multi 
Agent System (MAS) as a supervisor agent which 
provides additional flexibility and configurability. By this 
way we may create a dynamic Multi Agent Production 
System which is designed to produce new schedules 
rapidly in changing production conditions.  

Another future study can be designed based on the 
RFID-embedded MAS architecture, an agent 
interaction protocol for dynamic manufacturing control 
can be proposed to utilize the real-time RFID 
information, machine and order status to guide agents’ 
cooperative behavior in the manufacturing system. 
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TABLE I.  COMPARISON OF SYMBIOTIC EVOLUTIONARY ALGORITHM AND OUR ALGORITHM IN TERMS OF BEST MAKESPANS 
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1 428 437.6 10.9 60.5 225 232.9 7.49 136.44 47.43% 46.78% 

2 343 349.7 5.9 68.9 244 245.4 1.80 145.03 28.86% 29.83% 

3 347 355.2 7.4 81.7 214 219.6 4.18 151.88 38.33% 38.18% 

4 306 306.2 0.4 65.6 247 249.7 1.85 132.81 19.28% 18.45% 

5 319 323.7 3.6 63.5 206 219.8 6.00 136.03 35.42% 32.10% 

6 438 443.8 5 73.3 215 226.3 5.80 156.66 50.91% 49.01% 

7 372 372.4 1.3 69 244 246.5 3.04 151.81 34.41% 33.81% 

8 343 348.3 5.7 67.3 202 207.1 4.78 163.39 41.11% 40.54% 

9 428 434.9 9.8 73.2 219 229 7.72 145.89 48.83% 47.34% 

10 443 456.5 10.8 136 284 292.6 5.80 237.14 35.89% 35.90% 

11 369 378.9 5.1 165.8 269 282.4 9.43 243.51 27.10% 25.47% 

12 328 332.8 3.4 143.4 275 292.4 9.35 225.25 16.16% 12.14% 

13 452 469 10.7 161.2 278 285.9 6.76 245.50 38.50% 39.04% 

14 381 402.4 10.6 150.8 286 293.8 5.29 243.85 24.93% 26.99% 

15 434 445.2 11 156 267 280.3 8.60 230.58 38.48% 37.04% 

16 454 478.8 12 333.6 354 361.7 6.08 315.71 22.03% 24.46% 

17 431 448.9 8.7 435.2 342 349.1 4.30 335.21 20.65% 22.23% 

18 379 389.6 7.5 357 326 335.5 8.71 319.91 13.98% 13.89% 

19 490 508.1 10 417.8 342 356.1 8.79 332.84 30.20% 29.92% 

20 447 453.8 5.2 384 328 354.1 11.71 328.31 26.62% 21.97% 

21 477 483.2 6.8 392.4 336 348.2 9.16 327.19 29.56% 27.94% 

22 534 548.3 6.9 1033.3 408 424.4 10.97 413.78 23.60% 22.60% 
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23 498 507.5 8.3 1016.6 398 413.3 11.46 409.90 20.08% 18.56% 

24 587 602.2 7.1 1622.7 471 490.9 11.64 526.71 19.76% 18.48% 
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TABLE II.  COMPARISON OF SYMBIOTIC EVOLUTIONARY ALGORITHM AND OUR ALGORITHM IN TERMS OF BEST MEAN FLOW TIMES 
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1 313.3 318.9 3.7 57.5 189.7 206.4 10.98 136.44 39.46% 35.29% 

2 281.2 287.7 4.7 68 187.7 205.7 11.48 145.03 33.26% 28.49% 

3 295.8 304.8 4.3 81.3 192.0 203.4 7.44 151.88 35.09% 33.26% 

4 247.2 251.3 4.8 65.7 217.3 224.6 5.01 132.81 12.08% 10.64% 

5 275.7 280.3 3.2 66.8 188.8 197.8 4.83 136.03 31.51% 29.43% 

6 374.2 384.7 5.7 75.4 177.0 203.8 10.64 156.66 52.70% 47.02% 

7 310.5 314.1 2.6 68.1 207.0 218.1 6.66 151.81 33.33% 30.58% 

8 288.5 295.2 5 67 183.7 191.8 6.62 163.39 36.34% 35.04% 

9 292.8 298.9 7 71.8 192.8 209.9 8.57 145.89 34.14% 29.77% 

10 338.9 349.2 6.1 133.8 254.3 265.5 8.56 237.14 24.95% 23.98% 

11 303.4 312.9 7.6 163.3 234.4 255.1 14.17 243.51 22.73% 18.46% 

12 271.7 279.6 4.7 150.5 239.7 257.4 6.76 225.25 11.79% 7.92% 

13 375.9 387 7.1 156 241.7 258.0 7.20 245.50 35.71% 33.32% 

14 330 346.9 8.5 149.5 248.1 262.1 7.52 243.85 24.81% 24.45% 

15 305.1 316.1 6.2 155.9 239.3 248.7 7.75 230.58 21.56% 21.33% 

16 352.4 359.7 4.3 339.1 300.8 319.2 11.79 315.71 14.66% 11.27% 

17 359 364.7 4.7 438.7 290.8 311.9 8.71 335.21 19.01% 14.47% 

18 313.5 322.5 6.4 355.6 279.8 299.7 13.68 319.91 10.77% 7.06% 

19 400.4 406.4 4.6 416.6 305.4 318.9 10.73 332.84 23.72% 21.53% 

20 361.3 372 5.7 337.7 292.1 310.6 8.54 328.31 19.16% 16.51% 

21 350.9 365.4 8.2 364.7 298.5 312.4 10.84 327.19 14.93% 14.51% 

22 411.5 417.8 5.8 1007.6 359.6 383.0 13.65 413.78 12.61% 8.32% 

23 396.3 404.7 5.1 999.3 345.3 370.9 11.94 409.90 12.86% 8.35% 

24 435.9 452.9 7.5 1597.2 416.5 443.1 15.89 526.71 4.45% 2.17% 
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TABLE III.  ORIGINAL SCHEDULE AND REGENERATED SCHEDULE FOR INSTANCE 1 OF KIM ET AL.  * DENOTES RESCHEDULED OPERATIONS IN THE NEW 

SCHEDULE. 
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0 6 1 11 0 29 6 1 11 0 29   
1 3 7 1 0 50 3 7 1 0 50   
2 5 1 6 0 30 5 1 6 0 30   
3 4 3 13 0 24 4 3 13 0 24   
4 6 8 12 0 20 6 8 12 0 20   
5 5 6 2 0 28 5 6 2 0 28   
6 2 1 5 0 10 2 1 5 0 10   
7 1 1 14 0 10 1 1 14 0 10   
8 2 2 15 10 17 2 2 15 10 17   
9 6 9 14 20 27 6 9 14 20 27   
10 4 4 10 24 46 4 4 10 24 46   
11 5 8 2 28 34 5 8 2 28 34   
12 5 7 14 28 70 5 7 14 28 70   
13 6 2 8 29 75 6 2 8 29 75   
14 1 2 11 29 53 1 2 11 29 53   
15 6 5 15 29 53 6 5 15 29 53   
16 2 7 6 30 55 2 7 6 30 55   
17 6 13 2 34 60 6 13 2 34 60   
18 3 16 10 46 95 3 16 10 46 95   
19 4 5 4 46 83 4 5 4 46 83   
20 3 8 1 50 56 3 8 1 50 56   
21 3 1 11 53 87 3 1 11 53 87   
22 1 3 15 53 96 1 3 15 53 96   
23 3 9 13 56 95 3 9 13 56 95   
24 5 2 8 75 115 5 2 8 75 115   
25 4 6 9 83 95 4 6 9 83 95   
26 6 10 4 83 101 6 10 4 83 101   
27 6 3 11 87 98 6 3 11 87 98   
28 3 10 7 95 136 3 10 7 95 136   
29 2 8 10 95 136 4 9 2 95 118   
30 4 9 2 95 118 2 4 9 95 105   
31 2 4 9 95 105 1 5 13 95 125   
32 1 5 13 95 125 3 13 15 96 131   
33 3 13 15 96 131 1 4 12 96 139   
34 1 4 12 96 139 2 3 4 101 141   
35 2 3 4 101 141 2 5 1 105 138   
36 2 5 1 105 138 5 3 3 115 126   
37 5 3 3 115 126 6 6 2 118 160   
38 6 6 2 118 160 3 17 13 125 164 * 
39 3 2 15 131 164 5 4 8 126 155 * 
40 2 12 8 136 162 2 8 15 131 175 * 
41 3 17 10 136 156 6 11 7 136 175   
42 6 11 7 136 175 6 14 1 138 143 * 
43 6 4 12 139 180 4 10 12 139 184 * 
44 1 6 4 141 173 1 6 4 141 173   
45 2 6 5 141 179 6 15 9 143 182 * 
46 3 18 13 156 189 4 1 1 143 177 * 
47 3 11 2 160 189 3 2 2 160 195 * 
48 5 4 8 162 191 3 18 13 164 197 * 
49 3 3 1 164 175 1 7 5 173 222 * 
50 3 14 4 173 185 2 12 4 175 200 * 
51 1 7 11 173 212 4 2 6 177 204 * 
52 2 13 7 175 214 6 18 9 182 204 * 
53 6 12 6 175 188 6 4 12 184 225 * 
54 5 9 5 179 219 4 11 14 184 201 * 
55 4 10 12 180 225 3 11 2 195 224 * 
56 3 15 14 185 201 5 9 13 197 233 * 
57 4 1 4 185 218 2 13 7 200 239 * 
58 6 14 13 189 198 3 14 6 204 218 * 
59 3 5 2 189 208 3 15 14 218 234 * 
60 5 5 6 191 220 5 5 6 218 247 * 
61 6 15 9 198 237 2 6 5 222 260 * 
62 3 19 14 201 235 1 8 8 222 269 * 
63 3 12 1 201 220 3 5 2 224 243 * 
64 1 8 8 212 259 6 7 11 225 240 * 
65 6 7 11 212 227 3 19 14 234 268 * 
66 2 14 10 214 251 3 12 1 234 253 * 
67 4 2 15 218 238 3 3 7 239 247 * 
68 3 6 12 225 234 2 14 12 239 279 * 
69 3 4 3 234 254 3 6 7 247 255 * 
70 4 11 14 235 252 6 12 6 247 260 * 
71 6 18 13 237 256 3 4 2 255 273 * 
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