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Abstract—Studies on superconductivity arising 
from doping a Mott insulator have become critical 
in the area of superconductivity. Within the 
framework of the Bose-Fermi-Hubbard model, we 
discuss the thermodynamic phase transition via 
specific heat in hole and electron doped high-TC 
cuprate superconductors. By considering the 
interplay between the electrons (fermions) and 
cooper pairs (bosons), the main features of the 
temperature dependence of the specific-heat, are 
well reproduced. It is shown that a hump-like 
feature in the specific-heat appears at the 
superconducting transition temperature TC, and 
then the specific-heat varies exponentially as a 
function of temperature for the temperatures T<TC. 
This is in consistency that at lower temperatures, 
a superconducting gap seems to open 
progressively. In particular, quantitatively, we 
report a specific heat value ~4.6661×10

-3
eV/K for 

YBa2Cu3O6 (YBCO), 4.6419×10
-3

eV/K for La2-

xSrxCuO4 (LSCO), 4.67×10
-3

eV/K for Nd2-xCexCuO4 
(NCCO) and 4.662×10

-3
eV/K for Pr2-xCexCuO4 

(PCCO) at their respective TC values which are in 
favorable agreement with other recent research 
findings.  

Keywords— Specific Heat; Superconducting 
Transition; Mott Insulator 

I. INTRODUCTION  

Great insights towards understanding HTS have been made 

over the years of intense experimental and theoretical 

research on cuprate superconductors [1]. However, no 

general consensus on a specific microscopic pairing 

mechanism, capable of consistently explaining the complex 

phenomenology of the superconducting and normal states, 

has emerged. Since the discovery of cuprate high-

temperature superconductors [2], electronic properties of a 

two-dimensional (2D) system near the Mott transition have 

attracted considerable attention, because the high-

temperature superconductors are obtained by doping 

layered-structure Mott insulators with holes or electrons 

[3]. The anomalously high superconducting transition 

temperature (Tc) is considered to be related to the 

anomalous features near the Mott transition in a 2D system 

[4]. Because both hole-doped and electron-doped systems 

exhibit superconductivity, it is natural to consider that the 
mechanism of high-Tc superconductivity is included in 

both cases [5]. Thus, a comprehensive understanding of the 

thermodynamic properties of hole-doped and electron-

doped systems is desired in order to elucidate the 

mechanism of high-Tc superconductivity. Among the 

highly unconventional properties of the cuprate 

superconductors are the d-wave symmetry of the 

superconducting gap and the presence of a pseudogap also 

with d-wave symmetry. Theoretical insight is provided by 

study of the low-energy excitations around the node in the 

d-wave gap, where low-temperature experiments including 

specific heat, transport, and penetration depth, together with 

angle-resolved photoemission spectroscopy are explored 

[6]. 

The Mott transition is a pervasive and complex 

phenomenon, observed in many correlated oxide systems 

[7]. It comes in two varieties: the bandwidth-controlled 

transition at half-filling, tuned by the ratio of the on-site 

Coulomb repulsion U and band width W, and the filling-

controlled transition, tuned by electron doping x away from 

half-filling. Theoretically, Mott insulators exist only at half-

filling: With one electron per site, hoppings necessarily 

create empty and doubly occupied sites that are heavily 

penalized by U. Introducing a finite charge density allows 

carriers to move without incurring the on-site Coulomb 

cost, destroying the Mott insulator[8]. However, owing to 

the effect of strong on-site Coulomb repulsion between the 

electrons, superconductivity in these systems may be quite 

different. Whereas in a conventional BCS superconductor, 

screening and retardation effects serve to minimize the role 

of Coulomb interaction, the role of the latter becomes 

crucial in a doped Mott insulator where the charge degrees 

of freedom are partially frozen by the severity of the 

Coulomb interaction. Strong arguments have been 

presented in the literature that a high temperature 

superconductor evolves from a Mott insulator doped by 

holes, and consequently the ground state can be very 

different from a conventional BCS state [9]. Several 

theoretical models have been advanced to explain the 

various properties of high-TC including the electronic 

models i.e one-band and three band models, Hubbard 
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models and the t-j models. These models provide an 

integral tool for studying the properties of such materials. 

The two-dimensional t-J model has been studied for many 

years as a model for the copper oxide planes found in high 

temperature superconductors. Despite considerable effort 

the basic thermodynamic properties of this model are still 

not well understood [10] and that its basic feature is still 

controversial due to its non-perturbative feature [4] which 

hinders the further understanding of the unconventional 

superconductivity [11]. 

The Hubbard model is a prototypical example of a strongly 

correlated system characterized by the competition between 

the strong particle interaction (U) and the kinetic energy (t). 

It is exactly solvable in one dimension, where the ground 

state at half filling is a Mott insulator for any repulsive non-

zero interaction [12]. Despite the simplicity of the model, 

the physics arising in dimensions higher than one remains 

poorly understood. Different many-body approximations 

have been applied along the years in different lattice 

geometries and coupling regimes (U/t). Among them, let us 

cite Quantum and Variational Monte Carlo calculations, 

Dynamical Mean-Field Theory, Density Matrix 

Renormalization Group and, more recently, Density Matrix 

Embedding Theory [13]. However, all these approaches 

have shown their limitations to describe the strongly 

correlated regime of the Hubbard model (U/t ≫ 1), in spite 

of the significant computational cost of most of them [12]. 

While the Bose-Hubbard model takes care of the repulsive 

on-site interaction energy, Fermi Hubbard model contains 

attractive interaction energy, U in addition to their 

respective hopping terms. Thus, neither the Bose Hubbard 

model nor the Fermi Hubbard model can singularly and 

conclusively describe interacting particles in a doped High-

TC cuprate system (containing free electrons or fermions 

and cooper pairs or bosons) and hence in this research we 

propose a hybrid model christened Bose-Fermi-Hubbard 

model that can effectively describe the dynamics of a doped 

cuprate. Fundamentally, we report on the temperature 

dependence of specific heat within the Bose-Fermi-

Hubbard model for hole and electron doped cuprates. 

Specific Heat is the amount of heat required to raise the 

temperature of a unit mass of substance by unit degree. 

From first law of thermodynamics, we have; 

𝑄 = 𝑑𝑈 + 𝑑𝑊 = 𝑑𝑈 + 𝑃𝑑𝑉                                       (1) 

  

The specific heat at constant pressure and constant 

volume are: 

 𝐶𝑃 = (
𝜕𝑄

𝜕𝑇
)

𝑃
= (

𝜕𝑈

𝜕𝑇
)

𝑃
                                  (2a) 

And 

 𝐶𝑉 = (
𝜕𝑄

𝜕𝑇
)

𝑉
= (

𝜕𝑈

𝜕𝑇
)

𝑉
                                  (2b) 

The small difference between CV and Cp can be 

negligible for lower temperatures, but for higher 

temperatures, it is very important since the rate of 

thermal expansion is high at high temperatures. We 

have considered CV and assumed that the inter-atomic 

distance does not change during the heating process. 

Specific heat theories are summarized below [14]. 

a)  Dulong and Petit’s Law 

Dulong and Petit’s law states that the specific heat per 

gram atom of a crystal is CV=3R = 5.96 cal/mol, where 

R is the universal gas constant. It is valid at room 

temperature and above but invalid at lower 

temperatures. According to Nernst, the specific heat 

tends to zero as the temperature approaches zero. 

b)  Einstein’s Theory 

According to Einstein’s quantum theory, the specific 

heat at constant volume is; 

       

𝐶𝑉 = 3𝑁𝑘𝐵(𝜃𝐸) [
𝑒𝜃𝐸

(𝑒𝜃𝐸−1)
2]                                         (3) 

where 𝜃𝐸 = (ℎ𝜐
𝑘𝐵𝑇⁄ )  is the Einstein’s temperature.  

Einstein’s theory explained the decrease in specific 

heat with decreasing temperature. But this decrease 

was more rapid than the experimentally observed 

value. 

c) Debye’s Theory 

The specific heat at constant volume due to Debye’s 

theory is given by; 

 𝐶𝑉 =
3𝑁𝑘𝐵

𝑥𝑚
3 [12 ∫

𝑥3𝑑𝑥

𝑒𝑥−1

𝑥𝑚

0
−

3𝑥𝑚
4

𝑒𝑥𝑚−1
]                (4) 

  

where 𝑥 = (
𝜉

𝑘𝐵𝑇⁄ ) , 𝑥 = (
𝜃𝐷

𝑇⁄ )  and 𝜃D is the Debye’s 

temperature. It holds good for all substances except for 

graphite, bismuth, selenium and tellurium etc., and is valid 

for both higher and lower temperatures. 

The heat capacity measurement of the specific-heat can 

probe the bulk properties of a superconductor, which has 

been proven as a powerful tool to investigate the low-

energy quasi-particle excitations, and therefore gives 

information about the charge-carrier pairing symmetry, 

specifically, the existence of gap nodes at the Fermi surface 

[24]. 

In this paper, we start from this theoretical framework, and 

then provide an explanation to the temperature dependence 

of the thermodynamic specific heat in cuprate 

superconductors. We evaluate explicitly the specific heat 

and qualitatively reproduce some main features of the heat 

capacity on cuprate superconductors. In particular, we show 

the temperature dependence of specific heat has a hump-

like feature at the superconducting (SC) transition 

temperature. 

 

II. FORMALISM 

A. Bose-Fermi-Hubbard Model 

The two-dimensional Hubbard model [15] and the t-j model 

[16] are believed to capture the essential physics of HTSC. 

These models incorporate, the strongly correlated nature of 

the 3d electrons due to copper spins in CuO2 planes, but fail 

to account for the interaction between the cooper pairs and 

free electrons introduced as a result of doping. Doping 

introduces free electrons at the Fermi level of the 

superconductor which also interact among themselves and 

so to the cooper pairs within the crystal. The free electrons 

(fermions) could well be described by Fermi-Hubbard 

model while the interacting cooper pairs (bosons) are 

described by the Bose-Hubbard model. Cooper pair is a 

boson-like particle, and these (ground state) pairs only form 

in the vicinity of Fermi energy (EF). But Cooper pairs are 

composed of electrons, and these pairs are not bosons in a 
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real physical sense due to Cooper-pair formation 

mechanism. This means that, a Cooper pair as an 

independent boson-like entity cannot obey Fermi-Dirac 

(FDS) or Bose-Einstein (BES) statistics. However, the 

electrons in Cooper pairs do obey FDS [16]. In order to 

include these aspects, a hybrid model (Bose-Fermi Hubbard 

model) was constructed. 

The Bose-Hubbard model in momentum space thus reads; 

 )1(
2

)(

††

†††

,







 

kk

k

kk

k

kkkkkk

k

HB

bbbb
U

bbbbbbJH 


          (5) 

The first term represents the kinetic energy of the bosons 

(cooper pairs), J is the super-exchange energy. J ≥ 0 

denotes the strength of the nearest neighbour hopping term. 

The second term in equation (5) accounts for the chemical 

potential µ, which fixes the particle number in the grand 

canonical ensemble. The third term is the repulsive 

interaction among bosons on the same lattice point. (U > 0) 

is the magnitude of the on-site repulsion between the 

bosons. 

The corresponding Fermi-Hubbard Hamiltonian is; 

 












k

kk

k
kkkk

kk

kkHF

cc

ccccUcctH

†

††

,

†

 (6) 

Where t is the hopping parameter, μ is the chemical 

potential that determines the occupation of the band. The
 

)(†

kk cc are the fermionic creation (annihilation) operators. 

B. Diagonalization of the Bose-Fermi-Hubbard Model 

Equations (5) and (6) are combined to obtain the 

Hamiltonian for the hybrid Bose-Fermi-Hubbard model. 

                                                                                                                                                                                                                                                             

                                 

 

 

 

 

 

(7) 

 

 

Equation (7) was written in the formalism of second 

quantization by using the creation and annihilation 

operators (bosonic and fermionic) having momentum, k and 

spin σ and then constructed in terms of new creation-

destruction operators’ i.e Bogoliubov operators. 

For the electron operators, we define new operators kγ  in 

terms of old operators, kc
; 

 
† υγ kkkkk ccu                                          (8a) 

 
† 

kkkkk ccu                                         (8b) 

There corresponding complex conjugates are; 

 
 † † 

kkkkk ccu  
                                      (8c)

 

 
 † † 

kkkkk ccu                                          (8d)              

The γ's are called quasi-particle annihilation (creation) 

operators. They fulfill the same fermionic anticommutation 

relations like the original operators so that they produce a 

complete set of fermionic excitations in one-to-one 

correspondence with the excitations of a normal metal and 

thus they are well-defined fermionic quasi-particles. 

For the boson operators, we define new operators 𝒷𝑘 terms 

of old operators, kb
;  

 𝒷𝑘 =
† υ kkkk bbu                                       (9a) 

 𝒷−𝑘 =
† υ kkkk bbu                                    (9b) 

The complex conjugates for the boson operators are; 

 𝒷
k

†
= kkkk bbu  υ†

                                   (9c) 

 𝒷
−k

†
= kkkk bbu υ†                                     (9d) 

The corresponding electronic and bosonic inverse 

transformation of equations (8) and (9) respectively and 

their conjugates are considered; 

 
†γυγ kkkkk uc 

                               (10a) 
† γυγ kkkkk uc  

                                  (10b)       

 kkkkk uc  γυγ††

                               (10c) 

kkkkk uc γυγ††                                       (10d)  

 
𝑏𝑘 = 𝒰𝑘𝒷𝑘 + 𝒱𝑘 𝒷−𝑘

†
                                      

(11a)
 

 𝑏−𝑘 = 𝒰𝑘𝒷−𝑘 − 𝒱𝑘 𝒷𝑘

†
                                 

(11b)
                     

 
𝑏

𝑘

†
= 𝒰𝑘𝒷

𝑘

†
+ 𝒱𝑘𝒷−𝑘                                   

(11c)
 

 𝑏
−𝑘

†
= 𝒰𝑘𝒷

−𝑘

†
− 𝒱𝑘𝒷𝑘                                   

(11d)
 

Substituting equations (10) and (11) in (7), generates a 

transformed effective Hamiltonian for the Bose-Fermi-

Hubbard model 

𝐻𝐵−𝐹−𝐻 = −𝑡 ∑ (𝑢𝑘
2

𝑘 𝑚𝑘 + 𝑣𝑘
2 − 𝑣𝑘

2𝑚−𝑘 + 𝑢𝑘𝑣𝑘(𝛾
𝑘

†
𝛾

−𝑘

†
+

𝛾−𝑘𝛾𝑘)) − 𝑈 ∑ {𝑢𝑘𝑣𝑘𝑢𝑘′𝑣𝑘′[𝑘,𝑘′ 𝑚𝑘′ + 𝑚−𝑘′ − 1)(𝑚𝑘 +

𝑚−𝑘 − 1) + 𝑢𝑘′𝑣𝑘′(1 − 𝑚𝑘′ − 𝑚𝑘′)(𝑢𝑘
2𝛾

𝑘

†
𝛾

−𝑘

†
+ 𝛾−𝑘𝛾𝑘) −

𝛾−𝑘𝛾𝑘] + 𝑢𝑘𝑣𝑘[(𝑚𝑘 − 1 + 𝑚−𝑘)(𝑣
𝑘′
2 𝛾

𝑘′

†
𝛾

−𝑘′

†
+ 𝛾−𝑘′𝛾𝑘′) −

𝛾−𝑘′𝛾𝑘′]} + 4𝑂𝑇 − 𝜇 ∑ (𝑢𝑘
2𝑚𝑘 +𝑘 𝑣𝑘

2 − 𝑣𝑘
2𝑚−𝑘 +

𝑢𝑘𝑣𝑘(𝛾
𝑘

†
𝛾

−𝑘

†
+ 𝛾−𝑘𝛾𝑘) − J ∑ [2𝒱k

2+2(𝒰k
2−𝒱k

2)(𝓃k +k,

𝑛−𝑘) + 2𝒰k𝒱k (𝒷k

†
𝒷

−k

†
+ 𝒷−k𝒷k)] −

μ ∑ [𝒱k
2+(𝒰k

2−𝒱k
2)(𝓃k + 𝑛−𝑘) + 𝒰k𝒱k (𝒷k

†
𝒷

−k

†
+k,

𝒷−k𝒷k)] +
U

2
∑ {[𝒱k

4+𝒱k
2(𝒰k

2−𝒱k
2)(𝓃k + 𝑛−𝑘) +k,

𝒱k
2𝒰k𝒱k (𝒷k

†
𝒷

−k

†
+ 𝒷−k𝒷k) − 𝒱k

2]                                (12) 

 

The system energy is then obtained by invoking the 

constraint that the off-diagonal components degenerate to 

zero and the contribution of the forth-order terms is 

insignificant. The diagonal terms correspond to equilibrium 

states of the system and hence they are considered. Thus the 

ground state energy becomes; 












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
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



k
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k
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k
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k
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ccccccUcct
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U
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𝐸0 = −𝑡 ∑(𝑢𝑘
2

𝑘

−𝑣𝑘
2)(𝑚𝑘 + 𝑚−𝑘) + 𝑣𝑘

2

− 𝑈 ∑{𝑢𝑘𝑣𝑘𝑢𝑘′𝑣𝑘′[

𝑘,𝑘′

𝑚𝑘(1 − 𝑚𝑘′)

− 𝑚𝑘𝑚−𝑘′] − 𝑢𝑘𝑣𝑘𝑢𝑘′𝑣𝑘′[(1 − 𝑚−𝑘)(1
− 𝑚𝑘′) + (1 − 𝑚−𝑘)𝑚−𝑘′]}

− 𝜇 ∑(𝑢𝑘
2−𝑣𝑘

2)(𝑚𝑘 + 𝑚−𝑘) +

𝑘

𝑣𝑘
2)

− 𝐽 ∑ 2𝒱𝑘
2

𝑘

+2(𝒰k
2−𝒱k

2)(𝓃k + 𝑛−𝑘)  

− 𝜇 ∑[𝒱𝑘
2

𝑘

+(𝒰k
2−𝒱k

2)(𝓃k + 𝑛−𝑘)]

+
𝑈

2
∑{(𝒱𝑘

4

𝑘𝑘′

+𝒱k
2(𝒰k

2−𝒱k
2)(𝓃k + 𝑛−𝑘)

− 𝒱𝑘
2)+[𝒱k

2(𝒰k
2−𝒱k

2)(𝓃k + 𝑛−𝑘)
+ (𝒰k

2−𝒱k
2)(𝒰k

2 − 𝒱k
2)(𝓃k

+ 𝑛−𝑘)−(𝒰k
2−𝒱k

2)(𝓃k + 𝑛−𝑘)]   (13) 
 

In order to diagonalize the Hamiltonian in equation (12), 

we put the sum of the off-diagonal terms equal to zero. By 

equating the coefficients of the off diagonal terms to zero, 

we obtain  𝑢𝑘 = √5  and 𝜈𝑘 = 2 by invoking the constraint 

(14); 

 𝑢𝑘
2  −  𝜐𝑘

2  = 1                                                   (14) 

Further still, at the lowest energy of the system, all 

occupation numbers;  𝑚𝑘,  𝑚−𝑘, 𝑛𝑘  and  𝑛−𝑘  decomposes to 

zero.  

𝑚𝑘 = 𝑚−𝑘 = 0;𝑛𝑘 = 𝑛−𝑘 = 0                                           (15) 

Substituting the values of 𝑢𝑘  and 𝜈𝑘  alongside equation 

(15) simplifies the Hamiltonian to;    

              𝐸0 = −4𝑡 − 2√5 △ −8𝜇 + 8𝐽 + 6𝑈                 (16)   

In order to inculcate temperature dependence into the 

system energy, the total energy is multiplied by the thermal 

activation factor 𝑒
−△𝜖

𝑘𝑇 , where k is Boltzmann’s constant and 

△ 𝜖 is the energy gap. The energy gap for superconductors 

is a very small quantity and it is generally 1% of the 

minimum energy of the system [16]. Hence, △ 𝜖 = 0.01𝐸0. 

At any temperature T, the energy of the system is given as; 

 𝐸𝑇 =   𝐸0 𝑒−
𝐸0

100𝑘𝑇                                                   (17) 

  

The first derivative of the energy of the system with respect 

to the temperature gives the specific heat at constant 

volume 𝐶𝑣. Using equation (17), specific heat is calculated 

as follows; 

       

𝐶𝑣 =
𝜕𝐸𝑇

𝜕𝑇
=

𝜕

𝜕𝑇
{(−4𝑡 − 2√5∆ − 8𝜇 − 8𝐽 

+ 3𝑈)𝑒−
(−4𝑡−2√5∆−8𝜇−8𝐽 +3𝑈)

100𝑘𝑇 } (18𝑎) 

which simplifies to specific heat equation as; 

𝐶𝑣 =
(−4𝑡 − 2√5∆ − 8𝜇 − 8𝐽 + 3𝑈)

2

100𝑘𝑇2
 

𝑒−
(−4𝑡−2√5∆−8𝜇−8𝐽 +3𝑈)

100𝑘𝑇                                          (18b) 

          
 

Equation (18b) is the expression for determining the 

specific heat for the Bose-Fermi-Hubbard system. 

III. RESULTS AND DISCUSSION 

The cuprate total specific heat at constant volume CV is the 

specific heat of the gas of Cooper-pairs (bosons) plus the 

specific heat of the gas of electrons (fermions). One of the 

characteristics quantities in the thermodynamic properties 

of cuprates is the specific heat, which can be obtained by 

evaluating the temperature-derivative of the internal energy 

as in equation (18a). In Fig. 1, we plot the specific heat Cv 

as a function of temperature for hole doped cuprates 

(YBCO and LSCO). The parameters used are t=0.44 eV, 

U=12t, J = 0.4t, μ=U/2 and Δ=1.6 eV for YBCO and t=0.42 

eV, U=12t, J = 0.4t, μ=U/2 and Δ=1.8 eV for LSCO.  The 

curves obtained for the Bose- Fermi-Hubbard hybrid model 

assume Gaussian nature. Similar curves were obtained by 

[17]; [18]; [19]; [20] and [21] while investigating specific 

heat as a function of temperature for different 

superconductors under different conditions. Apparently, the 

main feature of the specific-heat observed experimentally 

on the cuprate superconductors is qualitatively reproduced.  
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As can be seen from Fig. 1, the specific-heat anomaly (a 

jump) at TC appears. At the peak (T=TC), the specific heat is 

4.6661 ×10-3eV/K (7.4658 ×10-22JK-1) and 4.6419 ×10-

3eV/K (7.4270 ×10-22JK-1) for YBCO and LSCO 

respectively. Hence our Bose-Fermi-Hubbard model gives 

an almost constant specific heat of 7.0 ×10-22JK-1. While 

studying the variation of specific heat with temperature for 

the t-J-d model [21] noted that the maximum heat capacity 

for YBCO and LSCO is 4.7 ×10-3eV/K and hence the 

obtained values are in fine agreement. While investigating 

the interaction of Cooper pair and an electron for Y123 

(TC=93 K), Bi2212 (TC=95 K), Hg1212 (TC=128 K) and 

Ti2212 (TC=105 K) [22] obtained a constant specific heat 

of 4.5 Jmol-1K-1equivalent to 7.472 ×10-24JK-1. The SC 

transition is reflected by a peak in the specific-heat at TC, 

however, the magnitude of the specific-heat decreases 

dramatically with decreasing temperatures for the 

Figure 1: Variation of specific heat with temperature for YBCO and LSCO.                                                                    
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temperatures T < TC. According to [22], the specific heat is 

fully determined by the low-lying excitation of super-fluid 

condensate. The low-lying condensate excitations are the 

quasi-particles. However, at low temperatures their 

contribution to the internal energy is exponentially 

suppressed. So that we are left with nodal quasi-electrons as 

the only relevant low-energy excitations in the 

superconductive phase at low enough temperatures. 

Customarily, the specific heat anomaly is characterized by 

∆C(TC), the difference of the specific heat between the peak 

value with respect to the background lattice specific heat. 

The essential physics of the humplike anomaly of the 

specific-heat near TC in cuprate superconductors in the low 

temperature regime can be attributed to the emergence of 

the normal-state pseudo-gap [22]. The steep reduction of 

CV at T<Tc indicates that the energy gap grows rapidly 

below Tc and quasi-particle excitations are largely 

suppressed. These features suggest that the SC order 

parameter develops to a large extent at T>Tc but its phase 

fluctuates largely in the pseudo-gap regime. The peak value 

of the Gaussian curves represents the superconducting 

transition temperature of the hole-doped cuprates. At this 

point, a condensate is formed and CV remains fairly 

constant. This depicts that the system is unstable at the peak 

and a second order phase transition (normal metal to 

superconducting state) occurs due absence of latent heat. It 

is vivid from the graphs that the TC for YBCO is TC≈171 K 

which is higher than the experimental value of 92 K but 

close to the calculated value of 178 K. The graph for LSCO 

gives a TC≈111 K which is in fine agreement with the 

calculated value of 111 K. It is worth noting that the two 

values are in good agreement with the reported 

experimental value of 38 K. 

Fig. 2 shows the graphs obtained using the Bose-Fermi-

Hubbard model for NCCO and PCCO. The experimental 

values used are: t=0.42eV, U=12t, J = 0.4t, μ=U/2 and 

Δ=1.2eV for NCCO and t=0.38eV, U=12t, J = 0.4t, μ=U/2 

and Δ=1.2eV for PCCO. The curves obtained are Gaussian 

mirroring those for YBCO and LSCO. We show that the 

specific-heat anomaly (a jump) appears at TC, and then the 

specific heat varies exponentially as a function of 

temperature for the temperatures T < TC. This is in 

consistency that at lower temperatures, a superconducting 

gap seems to open progressively. It is shown clearly that 

our present theoretical results capture all essential 

qualitative features of the doping dependence of the 

specific-heat observed experimentally on cuprate 

superconductors [23]. Like the hole doped cuprates, NCCO 

and PCCO equally have a hump-like turning point at TC. 

According to [12], in the under-doped regime, the specific-

heat jump near TC is strongly suppressed, therefore there is 

no step-like specific-heat anomaly near TC, instead, it shows 

a humplike peak and remains as long tail. However, in the 

optimal doping, although the specific-heat anomaly is still 

not a sharp step-like, it shows a symmetric peak, and 

therefore there is a tendency towards to the step-like 

specific-heat anomaly with increasing doping. This 

tendency is particularly obvious in the over-doped regime, 

where the long tail appears in the under-doped regime 

becomes much shorter, and hence the specific-heat anomaly 

ends near TC in the heavily over-doped regime, and a step-

like BCS transition with the absence of the long tail 

appears. 
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At the peaks, superconducting phase transition occurs and 

we can estimate TC at this point. Peak specific heat occurs 

at critical temperature [24]. As expected the transition 

temperature corresponding to this phase transition is lower 

for PCCO compared to NCCO. The step-like transition 

occurs at TC≈250 K and TC≈210 K for NCCO and PCCO 

respectively. The values of specific heats corresponding to 

this jump are; CV=4.67 ×10-3eV/K (7.472 ×10-22JK-1) for 

NCCO and 4.662 ×10-3eV/K (7.4592 ×10-22JK-1) for PCCO. 

Comparing with hole doped cuprates in this study, it worth 

to note that our model predicts comparable value of specific 

heat although at different transitional temperatures. 

However, both cuprates registered very high TC values 

compared to their experimental values. The experimental 

value for NCCO is 24.5 K while that of PCCO is 19 K [25]. 

This result infers that a characteristic feature of the second 

order normal-superconductor phase transition is the jump in 

specific heat at TC which is related to the release of entropy 

through the opening of the gap at the Fermi surface. At the 

peak (T=TC), the cuprates considered have an approximate 

CV ~4.7×10-3eV/K which is in quantitative consonance with 

the findings of other authors. The specific heat 

discontinuity (jump) is proportional to the SC volume and 

its width mirrors the distribution of TC within the whole 

volume. According to [26] the jump is experienced when 

specific heat is measured at a constant pressure and that 

lattice specific heat is considered not to change with the 

onset of superconductivity though it turns out to contribute 

more than 60%-70% [26] or more than 98% of total 

specific heat [27]. 

CONCLUSIONS 

The temperature dependence of specific heat at T < TC is 

strongly reminiscent of that of a d-wave superconductor 

with line nodes in the gap and essentially different from 

that of an isotropic s-wave. We have explicitly 

demonstrated that superconductivity is a bulk phenomenon 

as exhibited by a hump-like feature on the specific heat 

Figure 2: Variation of specific heat with temperature for NCCO and PCCO. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 4 Issue 4, April - 2017 

www.jmest.org 

JMESTN42352132 7025 

curve. The peak value of the Gaussian curves of specific 

heat represents the superconducting transition temperature 

of the cuprates. At this point, a condensate is formed and Cv 

remains fairly constant. This depicts that the system is 

unstable at the peak and a second order phase transition 

(normal metal to superconducting state) occurs due absence 

of latent heat. At their respective Tc’s the cuprates 

considered have an approximate CV ~4.7×10-3eV/K. In 

general, the total specific heat of any system is the sum of 

several different excitations. Apart from fermionic specific 

heat driven by electrons, bosonic (driven by phonons and 

plasmons) specific heat need to be explored in order to 

unravel the magnitude of different contributions to the total 

specific heat. Investigating the contribution by phonons, for 

instance, could give information on the strength of electron-

phonon coupling. The work on fermionic specific heat will 

be published later. The present formalism may be applied to 

other HTSC cuprates and to some iron-based 

superconductors, which will be considered in our future 

publication. 
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