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 Abstract—Nowadays, GPU is widely used for 

graphics and general-purpose parallel 
computations. In the GPU software development, 
memory coalescing is one of the most important 
optimization techniques, which reduces the 
number of memory transactions. In this paper, the 
performance of the global memory coalescing is 
evaluated in the recent GPU Titan X Pascal 
processor. The experimental result shows that the 
coalesced access improves the performance by 
2.3 times compared to the uncoalesced one for 
the benchmark programs while the performance 
degradation is relatively small by the unaligned 
access, which ranges from 1.2% to 31.3%. 

Keywords—GPU; performance; global memory; 
coalescing; alignment 

I.  INTRODUCTION 

GPU (Graphics Processing Unit) is a specialized 
processor designed to handle graphics operations 
mainly for the rendering of 2D and 3D graphics. GPU 
contains a powerful SIMD (Single Instruction Multiple 
Data) engine which is normally superior to the CPU 
vector processor, and thus, many researches are 
made to utilize GPUs for parallel processing 
applications [2, 4, 8, 9] in addition to graphics 
computation. In 2002, Harris et al. [1] coined the term 
GPGPU (General-Purpose computations on GPUs) for 
using GPUs for general-purpose computation. 
Nowadays, GPGPU is widely used in many parallel 
applications such as deep learning, image processing, 
and video encoding. In AlphaGo for Go game, it is 
reported that the number of used processors are 1,920 
CPUs and 280 GPUs [10]. 

Major GPU vendors such as NVIDIA and AMD 
provide GPU as not only the rendering graphics engine 
but also the multicore computing platform. They 
supports programming languages such as CUDA 
(Compute Unified Device Architecture) [5, 6], and 
OpenCL (Open Computing Language) [3]. In 2006, 
NVIDIA introduced CUDA, a general purpose 
computing platform, which is the software layer to the 
GPU. Now, it is supported by all the GPUs of NVIDIA. 
The CUDA platform is cooperated with the widely used 
programming languages such as C, and C++. This 
enables programmers to use GPU resources easily 
when developing GPU software. NVIDIA defines 
CUDA compute capabilities to describe the features 
supported by the GPU hardware. The first CUDA 

GPUs had compute capability 1.0 while the compute 
capability is 6.1 for the recent Titan X Pascal GPU [7]. 

In GPU program, most data resides in the global 
memory. Therefore, it is important to maintain a large 
amount of coherence in memory accesses. This 
reduces the number of memory transactions, which 
leads to the performance improving. 

In this paper, the performance of global memory 
coalescing is evaluated on the recent NVIDIA Titan X 
Pascal processor. The additional discussion is given to 
the unaligned memory accesses.  

The rest of this paper is organized as follows. 
Section II shows the background of GPU architecture, 
and Section III gives the overview of the global 
memory coalescing technique. Detailed evaluation is 
presented in Section IV, and conclusions are given in 
Section V. 

II. BACKGROUND 
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Fig. 1. GPU architecture 

The GPU processor normally has hundreds or 
thousands of cores, operating on a common memory 
like DRAM. Fig. 1 shows the typical GPU architecture. 
The computing power is excellent with these cores, but, 
the memory latency is high. Therefore, a lot of 
arithmetic computation is needed to hide memory 
latency and achieve good performance.  

In Cuda, threads are independent and can be 
executed in parallel. A warp is the group of 32 threads 
that are executed simultaneously, which is the smallest 
executable unit of parallelism. A block consists of 
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addresses from a warp 

warps, and a grid is composed of blocks which are 
independent. 

There are several memory spaces in CUDA. They 
are register, shared, local, texture, constant, and 
global memory. Local memory and shared memory are 
visible to the thread and all the threads in the block, 
respectively. All the threads in a grid can access the 
global memory. Two additional spaces, constant and 
texture, are read-only and accessible by all the threads. 
The global memory is largest among the memory 
spaces. In access latency, the register file is fastest, 
and shared memory is next. Three slowest memory 
spaces are global, local, and texture. The device 
memory features are shown in Table I.  

TABLE I.  DEVICE MEMROY FEATURES [6] 

Memory 
Location 

on/off 
chip 

Cached Access Scope 

Register On n/a R/W 1 thread 

Local Off * R/W 1 thread 

Shared On n/a R/W 
All threads in 

block 

Global Off * R/W 
All threads, 

host 

Constant Off Yes R 
All threads, 

host 

Texture Off Yes R 
All threads, 

host 

* Cached only on devices of compute capability 2.x. 

 

III. GLOBAL MEMORY COALESCING 

Global memory can be accessed by the 32-, 64-, or 
128-byte memory transaction. This transaction needs 
to be aligned to its size. Only the aligned 32-, 64-, or 
128-byte segment can be accessed by memory 
transaction. Thus, if the memory access is not aligned, 
more segments are transferred than are needed. 

Global memory transactions of a warp are 
coalesced when the requirements are satisfied for the 
access addresses and the alignments. When a warp of 
32 threads executes a global memory instruction, it 
coalesces the memory accesses into the memory 
transactions depending on the size of the data 
accessed by each thread and the distribution of the 
memory addresses.  

Global memory coalescing is one of the most 
important optimization techniques in CUDA program 
because the number of memory transactions impacts 
on the performance. Therefore, it is important to 
maximize coalescing by performing optimal global 

memory data layout and the efficient memory 
addressing.  

Global memory accesses are cached in L2 cache in 
CUDA compute capability 5.0 and above. On the other 
hand, the L1 caching is controlled by the -dlcm option. 
They can be cached in both L1 and L2 (-Xptxas -
dlcm=ca) or in L2 only (-Xptxas -dlcm=cg). If only L2 
cache is used, a memory access is serviced with a 32-
byte memory transaction whereas the transaction is 
128 bytes for both L1 and L2, which are a cache line 
size.  

Fig. 2 shows the simplest case of coalescing. The i-
th thread in a warp accesses i-th word in a cache line 
where the start address of memory accesses is 128. In 
this case, a single 128-byte transaction can service all 
the memory accesses of the warp. 
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Fig. 2. Coalesced access [6]  

Consider the case that sequential threads in a warp 
access sequential locations in a memory, but the first 
address is not aligned with a cache line. Then, two 
128-byte L1 cache lines are requested. Fig. 3 shows 
the unaligned access pattern.  
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Fig. 3. Unaligned access [6] 

Fig. 4 shows other examples of global memory 
accesses. In this example, suppose that compute 
capabilities is above 2.0, and an each thread accesses 
a 4-byte word. Consider first the aligned access 
pattern. If cached, a single 128-byte transaction 
services all the threads accessing from the address 
128. Otherwise, four 32-byte L2 memory transactions 
are required. Next, consider the misaligned pattern. In 
this case, if cached, two 128-byte transactions are 
required. When L1 cache is not used, five 32-byte 
transactions are necessary. 
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Fig. 4.  Other aligned and unaligned acccess 
examples [6]  

IV. EVALUATION 

Experiments are performed on GTX Titan X Pascal 
processor [7] released in 2016. Table II shows the 
specification of the processor. It has 3,584 cores, and 
base and boost clocks are 1,417MHz, and 1,531MHz, 
respectively. Memory clock is 10Gpps, and standard 
config is 12GB. Interface width and band width are 384 
bits, and 480 GB/sec, respectively. 

TABLE II.  TITAN X PASCAL SPECIFICATION 

Titan X Pascal Specification 

Engine 
Spec 

Cores  3.584 

Base Clock (MHz) 1,417 

Boost Clock (MHz) 1,531 

Memory 
Spec 

Clock 10 Gbps 

Standard config 12GB 

Interface width 384 bits 

Band Width (GB/sec) 480 

 

Table III shows the CUDA kernel programs used in 
the experiment, which contain the coalescing and 
uncoalescing global memory access code. Two array 
elements are accessed that are 4-byte float and 1-byte 
char types, respectively. Suppose that the dimension 
is one for each of both the block of threads and the 
grid of blocks, and the number of threads is 1,024 for 
each block. Then, a global thread index is computed 
as blockIdx.x * 1,024 + threadIdx.x. In the coalescing 
code, the memory address of each thread is given by 
the global thread index, blockIdx.x * 1024+ threadIdx.x. 
For the threads in a warp, the block index (blockIdex.x) 
is the same, and the local thread index (threadIdx.x) is 
sequential. Now, memory accesses of a warp are 
coalesced because the addresses of a warp are 
sequential. On the other hand, in the uncoalescing 

example, the memory address of each thread is given 
by threadIdx.x * 1,024 + blockIdx.x. Now, the address 
difference of adjacent threads of a warp is 1,024, and 
thus, the accesses can not be coalesced.  

TABLE III.  EXPERIMENTAL COALESING AND 

UNCOALESING CODE 

Assume that the number of threads is 1,024 in each 
code 

Type Code 

Coalesce
d float array 
access 

float Pixel[1024*1024]; 

__global__ void 
coal_float_kernel( float *Pixel) 

{ 

Pixel[blockIdx.x*1024+ 
threadIdx.x] ++; 

} 

Coalesce
d char array 
access 

char Pixel[1024*1024]; 

__global__ void 
coal_char_kernel( char *Pixel) 

{ 

Pixel[blockIdx.x*1024+ 
threadIdx.x] ++; 

} 

Uncoales
ced float 
array access 

float Pixel[1024*1024]; 

__global__ void 
uncoal_float_kernel (float*Pixel) 

{ 

Pixel[threadIdx.x *1024 
+blockIdx.x]++ ; 

} 

Uncoales
ced char 
array access 

char Pixel[1024*1024]; 

__global__ void 
uncoal_char_kernel (char *Pixel) 

{ 

Pixel[threadIdx.x *1024 + 
blockIdx.x]++ ; 

} 

 

Fig. 5 shows the performance of the uncoalescing 
denoted by UNCOAL compared to the coalescing 
global memory access denoted by COAL. For the float 
type memory access, the execution speed of the 
UNCOAL code is just 47.5% of the coalescing 
accesses. For the char type, the performance 
degrades as the 38.5% of the coalesced one. 

addresses from a warp 

addresses from a warp 
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Fig. 5. Performance of uncoalescing memory access 

Table IV shows the experimented CUDA kernel 
programs which have unaligned global memory access 
code. There exist 16 unaligned offsets from 1 to 16 
represented by unAlign1 to unAlign16, respectively. 
There also exist 16 programs for the character type 
Pixel array, which are quite similar to the float type 
programs. 

TABLE IV.  EXPERIMENTAL UNALIGN ACCESS CODE 

Assume that the number of threads is 1,024 in 
each code 

Unaligned array access 

float Pixel[1024*1024]; 

__global__ void unAlign1 (float *Pixel) 

{ 

Pixel[blockIdx.x*1024+ threadIdx.x+1]++ ; 

} 

__global__ void unAlign2 (float *Pixel) 

{ 

Pixel[blockIdx.x*1024+ threadIdx.x+2]++ ; 

} 

__global__ void unAlign3 (float *Pixel) 

{ 

Pixel[blockIdx.x*1024+ threadIdx.x+3]++ ; 

} 

. 

__global__ void unAlign16 (float *Pixel) 

{ 

Pixel[blockIdx.x*1024+ threadIdx.x+16]++ ; 

} 

 

Fig. 6 shows the performance of the unaligned 
access pattern denoted by Un1 to Un16, which 

represent unaligned offsets from 1 to 16 compared to 
the aligned coalescing access denoted by COAL, 
respectively. For the float type memory access, the 
performance of Un1, to Un16 are 88.8%, 88.5%, 
86.4%, 84.4%, 95.1%, 88.0%, 95.8%, 79.0%, 87.2%, 
81.8%, 94.5%, 86.7%, 96.4%, 94.8%, 86.4%, and 
75.1%, respectively. The values range from 79.0% to 
96.4%. For the char type, they are 98.8%, 88.8%, 
74.9%, 90.8%, 76.7%, 79.0%, 68.7%, 86.3%, 85.4%, 
88.8%, 97.5%, 86.3%, 71.2%, 79.4%, 89.8%, and 
86.8%, respectively. The range is from 68.7% to 
98.8%. The performance degrades from 1.2% to 
31.3%. The performance loss by the unaligned access 
is relatively small compared to the uncoalesced access. 

 

Fig. 6. Performance of unaligned memory access 

V. CONCLUSIONS 

In this paper, the performance of the global 
memory coalescing is evaluated on the GPU Titan X 
Pascal processor. The Uncoalescing access results in 
a significant performance loss by the average of 57.0%. 
For the unaligned accesses, the performance 
degradation is relatively small compared to the 
uncoalescing. The evaluation on other GPU 
processors remains as a future work. 
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