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Abstract—In this paper the movement perfectly 
flexible thread in a viscous liquid.Elastic 
deformation assocaited with the thread tension or 
compression, are not counted. We assume that 
the thread of the wetting liquid and the conditions 
of adhesion. The fluid motion is described by the 
Navier-Stokes equation (Radiant approximation 
for low Reynolds numbers). A closed system of 
equations with the boundary conditions. 
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The paper considers the motion of a flexible 
filament system in a viscous fluid flow (Fig. 1) 

 

Fig. 1 

The problem under consideration reduces to 
solving a two-dimensional problem. We consider an 
ideally flexible thread in the flow of a viscous fluid (Fig. 
1). Since such a system does not have a resistance to 
bending, the only internal force is the tension force. 
The forces of inertia and gravity are negligibly small in 
comparison with the axial tension. It is assumed that 
each thread (j = 1,2 . N) in the zone of a viscous liquid 
does not come into contact with other threads. From 
the side of the deformable viscous liquid, the frictional 
force due to the velocity field acts on it. 

The velocity field in the liquid is not violated. Elastic 
deformations associated with tension or compression 
of the filament are not taken into account. There are 
no sections of large (or infinite) curvature on the 
filament. The flow of a liquid is laminar and isothermal. 
The axis of the filament remains in the plane of fluid 
motion. 

 Write the equation of equilibrium. In the Cartesian 
XOU, the yarn coordinate system in the parameters of 
the pure shape is described by the functions x (s), y 
(s), where s is the coordinate counted along the 
filament axis. The axis of the filament lies in the plane 
XOY. The friction force acts on the thread element of 
length ds on the liquid side, the projection of which on 
the normal is dF, and on the tangent - dP (Fig. 1a). 
The angle between the horizontal direction, which we 
take as the direction of the x axis, and the tangent to 
the axis of the filament, is denoted by  . Then the 

equilibrium equations have the form: 
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and neglecting infinitesimals above the first order, 
we obtain the equations: 
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jj

х

j dPxdFyNd  (1) 

  0 jj dFxdPyyNd  (2) 

Taking into account the relations 

;/sin ydsdy   `/cos xdsdx  , here and 

below, the prime denotes the derivative of S. 

If we use the conditions of inextensibility of the axis 
of the filament, then we obtain the following differential 
equation: 

    1
22
 yx  . (3) 

We differentiate (3) by s: 

0 yyxx  . (4) 

We multiply equation (1) by x׳, and equations (2) - 

on y׳, adding them together with (3) and (4) we have 

0 dPdN  (5) 

Similarly, multiplying equation (1) by y(2) ,׳ by x, 

and subtracting the equalities obtained taking into 
account relation (3), (4), we obtain the second 
equation of equilibrium 

0/  xyNF  (6) 

Equations (5) and (6) describe the velocities of a 
liquid and a filament. 

Consider the components of the frictional force. 
We assume that the thread is wetted with a liquid and 
the adhesion conditions are fulfilled. The maximum 
radius of curvature is much larger than the diameter of 
the filament. A boundary layer forms near the surface 
of the moving filament. Because of the linearity of the 
Navier-Stokes equations (the inertial approximation 
for small Reynolds numbers), the motions in the 
boundary layer can be regarded as the imposition of 
two motions: transverse and longitudinal flow around 
the filament. We note that for the non-Newtonian fluid 
the superposition principle of flows is not satisfied. In 
the case of a transverse flow past a filament (in an 
infinite cylindrical form), the friction force is 
determined by Lamb's formula [1]. 

dSVBdF nn  (7) 

where    /Re;Re4.7ln/4 dVBn  - 

Reynolds number;  - Fluid viscosity; d- Thread 

diameter;  - Fluid density; nV - Relative velocity of 

transverse flow; V - Characteristic velocity. 

In the formula (7) the coefficient Вn takes into 
account the influence of the diameter of the thread. In 
a wide range of Reynolds numbers, it varies 
insignificantly (with increasing Re от 10

-8
 before 10

-3
 

coefficient Ви increases by 2.3 times). Therefore, the 
value Вп is assumed to be constant, corresponding to 
the characteristic flow velocity of the filament by the 
liquid. 

With the mixing of systems filled with fibers 
(filaments), the flow of fluid around the individual fiber 
is topographically limited by the hydrodynamic 
influence of neighboring fibers. Therefore, in the first 
approximation, we consider a filament axially moving 
in a cylindrical tube filled with a viscous liquid 
(axisymmetric flow of Poette). Radius of the 
conditional tube <r> is determined by the average 
distance between the fibers and is related to their 
volume concentration <с> ratio [2] 

)1.2/(  cdr  (d – thread diameter), 

<c>=0.050.30). In this case, the axial frictional force 
acting on the surface of the filament is given by [1] 

dSVAdP   (8) 

where, 

    rludrlurdA 952.0(/21/2/ 

; 

V - the relative velocity of longitudinal flow 

around the filament by a liquid. Formulas (7) and (8) 
correctly reflect the linear dependence of the frictional 
force on the velocity under laminar flow. The 
stationary field of fluid velocity is characterized by 

components    1 jiivivv yx


, single points 

for the point M (arbitrary orthogonal vectors) of the 

point of the thread ./,/ dtdyyvdtdxxv yx    

The forces of viscous friction are due to some lag 
of the filament from the moving surrounding fluid. For 

example, in the direction of the X axis, the fluid 

velocity vx exceeds the thread speed x , this is the 

magnitude xvx
 . Projecting these velocities to the 

tangent and normal to the axis of the filament, for 
relative velocities we obtain expressions: 
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The dot denotes the derivatives with respect to t. 
As in (1), replacing trigonometric functions by the 

quantities yх , , we have 
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 (9) 

Considering together (3), (5) - (9), we obtain a 
system of equations describing the nonstationary 
deformation of a flexible filament: 
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 (10) 

    1
22
 yx  

Equations (10) must be supplemented by initial 
and boundary conditions: 

0t   sxx 0 ,  syy 0 , 0N  

0t  lts   0N ; 0y  

where tl- length of thread; хо (s), y0(s)- Parametric 
description of the initial form of the thread. We take 
the sample S from the middle of the thread: to the 
right - the positive direction, to the left - the negative 
one (Fig. 1). 
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