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Abstract— Biological signals are generated 
during the activity of physiological systems. 
Hence these signals contain information that can 
be extracted to get information about the state 
and working of the physiological systems. In 
order to extract information about underlying 
complex dynamics of physiological system, 
sophisticated and robust analysis techniques are 
required. Various linear and non-linear methods 
have been proposed for analysis of these signals. 
In this research multi-scale entropy analysis 
(MSE) method (a complexity based method) is 
used for analyzing the human gait signals under 
various diseased and normal conditions. It is 
found that the complexity of the stride interval 
derived from controlled (normal) subject is higher 
than that of pathological/diseased subject.  

Keywords— Gait dynamics; Stride Interval; 
Approximate Entropy; Parkinson Disease 

I.  INTRODUCTION  

Variability analysis technique are applicable to any 
physiological time series but there has been significant 
interest in quantifying the dynamics of 
neurophysiologic control systems, particularly, human 
gait regulation and heartbeat regulation in diseased, 
health, and advanced age. Studies showed that the 
gait fluctuations present a complex and non-stationary 
behavior that may contain some hidden information, 
which may not be extractable with traditional analysis 
methods. Such information is of clinical values and is 
also relate to basic mechanism of healthy and 
pathologic function. Hausdorff and coworkers were the 
pioneers to show that the nature of stride to stride 
interval time series called stride rate variability (SRV), 
is similar to heart rate variability (HRV) time series [1]. 
The later studies showed that SRV time series is multi-
fractal rather than mono-fractal [2].   

During last three decades, various techniques for 
quantifying the variability of physiological signals has 
been developed. Though these techniques can be 

applied to any biological time signal, but considerable 
efforts have been made for quantifying the dynamics of 
neurophysiologic control systems like heartbeat 
regulation and human gait regulation in control, 
diseased and increased age [3]. 

Hausdorff and co-workers applied detrended 
fluctuation analysis (DFA) to analyze stride interval 
time series derived from the subjects who walked 
under different walking conditions and indicated that 
fluctuations of human gait cycle under free walking 
conditions exhibit long range co-relations with power 
law decay [4]. This means that any stride interval 
depends not only on the values of most recent stride 
intervals but on values of previous stride intervals also 
showing a memory affect. These findings are indicative 
of very complex dynamics. Costa and co-workers used 
Multiscale entropy method (MSE) to quantify the 
complexity of stride interval time series obtained from 
healthy subjects under constrained and unconstrained 
conditions walking at different speeds [5]. 

 Recently Anees & Wajid applied threshold based 
symbolic time series analysis method to the human 
gait signals obtained from walking under normal and 
metronomic protocols at different speeds [6]. They also 
tested the hypothesis that the complexity of time series 
is encoded in the sequential order of the stride interval 
and does not result from stride interval histogram. 
They found that the complexity of the gait signals 
obtained under free conditions was more than that of 
signals obtained under metronomic walking conditions.  

In the present study we have applied multiscale 
entropy to quantify the complexity of stride interval 
time series data derived from subjects having 
pathological subjects and normal subjects.  The result 
indicates that diseased systems, when associated with 
the emergence of more regular behavior, show 
reduced entropy values compared to the dynamics of 
free-running healthy systems. 
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II. MATERIAL AND METHOD 

Entropy is basically related to information content. It 
can be defined as the rate of production of information 
with reference to dynamical system. Entropy methods 
are useful to calculate complexity for analysis of 
biological signals those involves noisy and short data 
sets specifically the heart rate and stride rate time 
series datasets.  

MSE method to analyze physiological data is based 
on approximate entropy and the sample entropy (a 
revision of ApEn) [7]. In this method entropy is not 
computed directly by matching the patterns of fixed 
length. In this method original time series is 
transformed into a new coarse-grained averaged time 
series related to scale factor τ. If the scale is one, the 
coarse-grained time series will be exactly input 
(original)series will contain average of ith and (i+1)th, 
data item of original time series. The size of coarse-
grained time series will be equal to size of original time 
series divide by „τ‟. Then Samp of new time series is 
computed and plotted against scale factor. The 
mathematical details and computation methods are 
described in below sections.  

A. Multi Scale Entropy Analysis (MSE) 

Multiscale entropy method is described by Anees & 
co-workers is reproduced as under [8]: 

Let the data input is X = {X1, X2, X3…….. XN} (time 
series) where time series length is indicated with N. 
The first step in calculation of MSE is to construct a 
new time series called coarse-grained data series. 
This new time series is constructed by taking average 
of the continuous points in the series (As shown is 
Figure. 1). A single point in the newly constructed time 

series 𝑌𝑗
(𝑠)

 is computed by applying following equation: 

𝑌 𝑗 
( 𝑠)

  =    
1

𝑠
   ∑  𝑋 𝑖

𝑗𝑠
𝑖 = ( 𝑗 − 1 ) 𝑠 + 1                         (1) 

In the above equation the scale factor is 
represented by ‘s’ and 1  ≤   J  ≤  N / s,  and N/s will be 
the length of each coarse-grained time series. If we 
use s=1, then the original time series and newly 
constructed time series will be same. 

If Scale=2 then: 

 

 

 

 

After construction of coarse grained series, 
SampEn (Sample Entropy) is computed for new series 
and the result is plotted as function of ‘s’.  The 
SampEn is based on Approximate entropy which is 
described in following sections. 

B. Approximate Entropy Analysis (ApEn) 

The summary of calculation method of ApEn 
presented by Pincus is reproduced as under[9]: 

1. Given a sequence SN, consisting of  instant 
Stride rate measurements, X(1),X(2)  , X(N).  

 

2.  In the second we decide the values of two 
input parameters  m and r ,  m specifies the pattern 
length, and  r  defines the similarity criteria.  

3. Another subsequence (pattern sequence) of   
stride rate measurements is formed, beginning at 
measurement  within SN, by the vector Pm(i).  

4. The difference between two patterns Pm(i) 
and Pm(j) in pattern sequence (P) is calculated and 
both sequence are  said to be similar if the difference 
is less than the similarity criteria(r), i.e., if  

  X(i+k)-X(j+k) < r for 0<k<m   (2) 

5. Let Pm (pattern sequence) is the set of all 
patterns of length  i.e.[Pm(1),Pm(2)……,Pm(N-m+1]], 
within Sn. In next step we calculate  Cm(r) which 
expresses the prevalence of repetitive patterns of 
length  in SN 
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6. In last step the approximate entropy of SN is 
calculated as under, which is natural logarithm of ratio 
of prevalence of repetitive patterns of length  m and 
length m+1 
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C. Sample Entropy Analysis (SampEn) 

Sample Entropy is modification of the ApEn 
algorithm in which  the patterns are not matched with 
itself (self-matches are omitted). This technique is less 
dependent on the size of the data and shows 
consistency over broad ranges of possible m, r and N. 
The method for calculating Sample Entropy is same as 
of Approximate Entropy.  

For all cases presented in the study of Costa et. al. 
are , m = 2 and r = 0:15 [5]. In general, Pincus 
suggested m=2 and r=0:2 for the analysis of heart rate 
data [9]. 

D. Data Sets 

The Data sets used in our study were obtained 
from neurodegenerative database available at 
www.physionet.org [10]. The total data sets are 64 
which are categorized as below: 

 

 

Description/ Subject Groups No. of Subjects Male Female Age Range 

Fig. 1   Presentation of Coarse grained time series at s=2 

TABLE I.  DESCRIPTION OF DATA SETS 
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(Years) 

Healthy Subjects 16 2 14 20-74 

Huntington Disease Subjects (HD) 20 14 6 29-71 

Parkinson Disease Subjects (PD) 15 10 5 44-80 

Amyotrophic Lateral Sclerosis (ALS)  

Disease Subjects 
13 10 3 36-70 

 

 

 

 

 

 

   

a. Controlled Subject  b.  Parkinson Disease 
subject 

c. Huntington Disease 
subject 

d. ALS Disease subject 

Fig. 2 (a-d). MSE Values of different signals at Scales =1 to 10 and (m2, r=0.15) 

III. RESULTS 

The complexity of stride interval time series data 
derived from the subjects who walked freely (normal 
pace) was calculated using the multiscale entropy 
technique. The number of scales for which the original 
time series is coarse grained was used between 1 to 
10. 

Fig. 2(a-d)  shows, the values of multiscale entropy 
(MSE) across different scales (1 to 10) at pattern 
length m=2 and similarity criteria r=0.15 for time series 
data derived from different conditions. It can be 
observed that the values of MSE are maximum at 
scale s=10.  

The comparison of MSE values for all types of 
subjects (controlled, ALS, Huntington, Parkinson) is 
shown in Fig. 3. It can be observed that the maximum 
value of multiscale entropy is obtained for the stride 
interval time series data derived from normal 
(controlled) subject. At some scales other types of 
subject also have higher MSE values but the maximum 
value is for controlled subject at scale 10. This shows 
that the complexity of controlled subject is higher than 
that of diseased subjects.  

The resultant MSE data was not normally 
distributed, so we used Wilcoxon- rank-sum test 
(Mann–Whitney–Wilcoxon (MWW) test) to check the 
significant difference between the subjects. The 
degree of separation between groups at different scale 
values was quantified by using the p-values. 

 

The comparison of MSE values of controlled subjects 
and diseased subjects and their corresponding p-
values at various scales are presented in Table 2. 

The p-values show that the results are not statistically 
significant for Normal and Parkinson Diseased 
subjects  at scales less than 8 and 9 to 10 (because p-
value is greater than 0.05). However, the maximum 
degree of separation is available at scale=8(2.170, 
1.600and p-value=0.019). This shows that controlled 
and Parkinson diseased subjects show the same 
behavior along smaller scales. On comparison of 
Normal Subjects with Huntington Diseased subjects, 
the p-values show that the results are not statistically 
significant at scales greater than 6 (because p-value 
is greater than 0.05). We got the statistically 
significant results at scale 1 to 6. However, the 

Fig 3. Comparison of MSE values for different 

subjects at Scales =1 to 10 and (m=2, r=0.15) 
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maximum degree of separation is available at 
scale=5(1.761, 2.112and p-value=0.004). This shows 
that controlled and Huntington diseased subjects 
show the same behavior along larger scales. 

Next, the MSE values for controlled subjects were 
compared with the MSE values for the subjects with 
ALS disease. The p-values show that the results are 
not statistically significant at scales 1-6 and 8-9 
(because p-value is greater than 0.05). 

We got the statistically significant results at scale 7 
and 10. However, the maximum separation is 

available at scale=10 (2.278, 1.680 and p-
value=0.015). This shows that controlled and ALS 
diseased subjects show the same behavior along 
shorter scales. The hypothesis that the complexity of 
these time series is encoded in the sequential 
ordering of the stride intervals and does not result 
from stride interval histograms was further tested. For 
each time series, a surrogated time series was 
obtained by shuffling (randomly reordering) the 
sequence of data points. 

 

 

 

 

Correlations among the stride intervals were 
destroyed while preserving the statistical properties of 
the distribution. The results are shown in Table III. 
These results show that physiologic time series are 
more complex than surrogate ones. 

The results show that the complexity of original 
time series is more than the complexity of shuffled 
time series. The category to category description is 
listed below:  

A. Controlled Original Vs Controlled Surrogated  

The p-values show that the results are statistically 
significant for controlled subjects (Normal and 
shuffled/ surrogated data) at scale 2 to 7 while they 
are not statistically significant at other scales. 
However, the maximum degree of separation is 
available at scale=5 (1.761, 1.430and p-
value=0.0001). 

B. ALS Original Vs ALS Surrogated  

The p-values show that the results are statistically 
significant at scale 7 while they are not statistically 
significant at other scales. The maximum degree of 
separation is available at scale=7(1.583, 1.992and p-
value=0.0451) 

C. Huntington Original Vs Huntington Surrogated  

The p-values show that the results are statistically 
significant at scale 5,6 and 8 while they are not 
statistically significant at other scales. The maximum 
degree of separation is available at scale=5(2.112, 
2.205and p-value=0.0179). 

D. Parkinson Original Vs Parkinson Surrogated  

The p-values show that the results are not statistically 
significant at scale 1, 5 and 10 while they are 
statistically significant at other scales. The maximum 
degree of separation is available at scale=6 (1.690, 
2.107and p-value=0.0014). 

 

IV. DISCUSSION 

The extraction of information related to the 
physiological behavior of system by analyzing the 
biological signals is an interesting and imperative 
research field. Because of the nonlinearities and 
complexness present in the underlying physiological 
systems, the linear analysis cannot provide the 
complete information about the state of the system.  
This limitation of linear techniques makes the non-
linear measures an important way to analyze the 
physiological signals. More robust techniques with 
ability of classification of signals are needed to 
quantify the dynamics of biological signals in normal 

Scale 
MSE 

p-value 
MSE P-value MSE P-value 

Normal ALS Normal HD Normal PD 

1 1.879 1.572 0.361 1.879 2.025 0.032 1.879 1.671 0.253 

2 1.685 1.545 0.748 1.685 2.012 0.006 1.685 1.631 0.950 

3 1.763 1.732 0.980 1.763 1.972 0.029 1.763 1.723 0.787 

4 1.736 1.653 0.902 1.736 2.047 0.021 1.736 1.696 0.755 

5 1.761 1.660 0.902 1.761 2.112 0.004 1.761 1.883 0.394 

6 1.864 1.730 0.537 1.864 2.066 0.067 1.864 1.690 0.289 

7 2.025 1.583 0.028 2.025 2.070 0.399 2.025 1.817 0.280 

8 2.170 1.610 0.415 2.170 2.177 0.514 2.170 1.600 0.019 

9 2.155 1.660 0.401 2.155 2.180 0.899 2.155 1.850 0.371 

10 2.278 1.680 0.015 2.278 2.190 0.577 2.278 1.870 0.560 

TABLE II.  COMPARISON OF MSE VALUES FOR NORMAL AND DISEASED SIGNALS AND CORRESPONDING P-VALUES 

http://www.jmest.org/
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and abnormal conditions.  In this thesis, multiscale 
entropy analysis is used to study the human gait 
dynamics of controlled and diseased subjects. 

The stride interval time series of controlled 
subjects was compared with the stride interval time 
series of neurodegenerative disease subjects. The 
MSE values for controlled subject were large than the 
MSE values of  ALS diseased subjects at  all scale 
values At a scale of 10, maximum value of MSE 
(hence maximum complexity) is obtained. While 
comparing the controlled subjects with Huntington 
diseased subjects, it was found that at shorter scales 
the complexity of Huntington diseased subjects is 

higher than that of controlled subject but at scale 
value of 10, the maximum value of MSE is obtained 
for controlled subjects. The MSE values for controlled 
subject were large than the MSE values of  Parkinson 
diseased subjects at  all scale values. At a scale of 
10, maximum value of MSE (hence maximum 
complexity) is obtained.  

The neurodegenerative diseased subjects were 
compared with each other also to find out the 
classification in the sub groups. On comparing the 
ALS subject with Huntington  and Parkinson subjects, 
it was found that the  Huntington diseased subjects 
are more complex than ALS and Parkinson diseased  

 

subjects, while Parkinson subject are more 
subjects, while Parkinson diseased subjects are more 
complex than ALS subjects at almost all scale values 
At a scale of 10, maximum value of MSE (hence 
maximum complexity) is obtained. The 
neurodegenerative diseased subjects were compared 
with each other also to find out the classification in the 
sub groups. On comparing the ALS subject with 
Huntington and Parkinson subjects, it was found that 
the  Huntington diseased subjects are more complex 
than ALS and Parkinson diseased subjects, while 
Parkinson subject are more complex than ALS 
subjects at almost all scale values. The Multiscale 
entropy showed a significant difference between 
controlled subjects and diseased subjects. Our study 
showed that the dynamics of normal subjects are 
more complex than the subjects who suffered from 
neurodegenerative diseases.  

 We noted that our findings complement those 
obtained from previously reported Multiscale Entropy 
analysis of gait data by Costa et al [5]. 

V. CONCLUSION  

Multiscale entropy analysis has widely been used to 
analyze the signals generated from biological 

systems. In this study, multiscale entropy analysis 
was applied to compare the complexity of human gait 
time series from healthy subjects neurodegenerative 
diseases subjects. We note that stride interval time 
series of human gait presents a complex behavior and 
the complexity of spontaneous output of the human 
locomotors system during normal walking is higher 
than diseased conditions. The main limitation of the 
study is that, the number of subjects is modest and we 
were unable to study the subtle distinctions among the 
sub-groups on gender and age basis. 
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