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Abstract–Nonlinear asymmetric breakup of a circular capillary jet when an asymmetric periodic

initial disturbance is given at the surface is presented. It is shown that the complex amplitude of the

wave can be described by nonlinear Schrödinger equation. Numerical examples are presented for

various values of asymmetry. Also included the analysis and numerical works when the surrounding

gas is absent.
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1. Introduction

When a dense fluid is ejected into a less dense fluid from a hole, a jet formes. The fluid jet

is inherently unstable and breakup easily. The capillary force is shown with linear theory to be

responsible for the onset of instability in the presence or absence of fluid viscosities. Subsequent

to the onset, the amplitude of disturbances grows rapidly and the neglected nonlinear terms in the

linear theory are no longer negligible. Thus the nonlinear evolution of disturbances that lead to the

eventual pinching off of drops from a liquid jet can only be explained with nonlinear theories. The

neglected nonlinear convective acceleration term in the linear theory can induce higher harmonics

which appear to lead to the formation of satellites between the main drops.

The breakup of a liquid jet into droplets has been of great interest because of the numerous

applications in various fields. In some modern applications of instability of jets, it is advantageous

to hasten the breakup, but in other applications suppression of the breakup is essential.

Recent applications include internal combustion engines, spray drying, ink jet printing, film

coating, nuclear safety curtain formation, agricultural sprays, fiber and sheet drawing, powered milk

processing, powder metallurgy, toxic material removal, and encapsulation of biomedical material.

The stability and the disintegration of liquid jets have been investigated by linear and nonlinear

instability theories and computational methods.
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These analyses are mostly concerned with the axisymmetric jets, but asymmetric analyses are

scant, moreover the nonlinear work is rare.

This assumption of axisymmetric initial disturbance and subsequent growth has the serious

weaknesses. This assumption is true only for low-speed jets known as capillary jets when the

breakup mechanism is due to the growth of axisymmetric oscillation induced by the competition

between cohesive and disruptive forces on the surface of the jet.

Although the axisymmetric mode appears in the low speed jets, under high speed conditions

substantially different jet instability is noticed in the experiments. When the difference between

the velocity of the jet and that of the ambient gas is large, asymmetric instability is observed.

With increase in the relative velocity between the liquid and the gas, the mechanism of the jet

instability is characterized by the first transverse mode(m=1) in the experiments reported in[1].

It was Lord Rayleigh [2] who first made a detailed analysis concerning the capillary waves on a

liquid column of an ideal fluid in the absence of the surrounding gas. He showed by means of a first

order perturbation calculation that the only unstable disturbances must be axisymmetric, and that

their wave lengths must be longer than the circumference of the jet. By extending Rayleigh’s theory,

Weber [3] included the effects of both the liquid viscosity and the pressure of the surrounding gas

on the stability of a columnar jet. He showed that the viscous effect does not alter the value of

the cut-off wave number predicted by the inviscid theory and that the influence of the ambient air

is not very significant so far as the speed of the columnar jet is not too large.

Liquid breakup and formation of droplets are nonlinear phenomena. The inadequate linear

theory has led the development of the nonlinear analysis to investigate the shape of the waves on

the jet surface, as well as to estimate the volume of main and satellite drops formed during the

breakup.

Yuen [4] developed a third-order nonlinear theory for the capillary instability of a inviscid liquid

jet, neglecting the effect of surrounding air using the method of straining coordinates. He found

that the cut-off wave number and the fundamental frequency of the wave for a given k are different

from linearized theory. Wang [5], Nayfeh [6] , and Lafrance [7] have also carried out nonlinear

perturbation analyses of a capillary of an inviscid liquid jet of circular cross section in the absence

of the surrounding gas.

Only a limited number of works is found that is concerned with the asymmetric analysis of

a liquid jet. Yang [1] worked on the linear nonaxisymmetric instability of an invscid liquid jet

in the presence of an injected coaxial gas. He derived a dispersion equation that accounts for

the growth of asymmetric waves. He showed that there exists a critical Weber number which is

defined as the ratio of surface tension force to the inertial force, below which the nonaxisymmetric
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disturbance becomes unstable, while Ibrahim and Jog [8] investigated a nonlinear asymmetric

breakup of a liquid jet exposed to a swirling gas stream by a perturbation expansion technique

with the initial amplitude of the disturbance as the perturbation parameter. The have neglected

liquid and gas viscosities. They obtained solutions upto the second order, and the breakup time

of the jet is obtained numerically until the deepest trough of the wave profile coincides with the

centerline of the jet, whereas we carried out the solutions upto the third order to obtain a nonlinear

Schrödinger equation to determine the cut-off wave number k, and the region of stability. The

problem of nonlinear breakup of an asymmetric electrohydrodynamic jet was investigated by the

present author[9,10] using the method of straining of coordinates and multiple scales.

In this presentation, a nonlinear problem is considered, in which a jet of invscid fluid having a

circular cylindrical geometry with or without the surrounding gas is given a nonaxisymmetric initial

disturbance at the surface. In this paper, by the method of multiple scales, we have developed a

third order asymmetric nonlinear theory on the propagation of waves over the surface of circular

jet. The basic equations with the accompanying boundary conditions are given in Sec.2. The first

order theory and the linear dispersion relation are obtained in Sec.3. In Sec.4 we have derived

second order solutions. In Sec.5 third order problem is considered. Sec.6 discusses the case when

there is no surrounding gas. Finally Sec.7 is devoted to some numerical examples and discussions.

2. Formulation

We consider an incompressible, inviscid fluid jet whose density is ρ1 and whose radius is a is

injected with a uniform velocity U1 along with a coaxial gas of density ρ2 at a uniform velocity U2.

We use the cylindrical polar coordinates (r, θ, z) with z− axis taken along the axis of the jet.

The interface is defined by a function of θ, z and time. Let η(θ, z, t) denote the elevation of the

free surface measured from the unperturbed level. Now, a periodic initial disturbance is given at

the surface of the jet.

If u1 and u2 denote velocity fields , at any time t, then equations are as follows:

∇ · uuu1 = 0, (2.1)

∇ · uuu2 = 0, (2.2)

If φ() and φ(2) denote velocity potentials of the liquid and the gas, respectively, so that uj =

∇φ(j), (j = 1, 2), then the equations for φ(j) are given by

∇2φ(j) = 0, (j = 1, 2) (2.3)

for r ≤ a + η(θ, z, t),
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The unit normal n to the surface is given by

n =
∇F

|∇F | =
(
−er +

1
r

∂η

∂θ
eθ +

∂η

∂z
ez

){
1 +

(
∂η

r∂θ

)2

+
(

∂η

∂z

)2}− 1
2

, (2.4)

where F = 0 is the equation of the surface of jet.

The condition that the interface is moving with the fluid leads to

∂η

∂t
− ∂φ(j)

∂r
+

1
r2

∂φ(j)

∂θ

∂η

∂θ
+

∂φ(j)

∂z

∂η

∂z
= 0 at r = a + η, (j = 1, 2) (2.5)

Now the boundary condition at the free surface is,
[[

ρ

(
−∂φ

∂t
− 1

2

{(
∂φ

∂r

)2

+
(

1
r

∂φ

∂θ

)2

+
(

∂φ

∂z

)2})]]
− T

r|∇F |
{

1 +
(

1
r

∂η

∂θ

)2 2
|∇F |2

}

+
T

|∇F |3
[
∂2η

∂z2

{
1 +

(
1
r

∂η

∂θ

)2}
− 2

r2

∂η

∂θ

∂2η

∂θ∂z

∂η

∂z
+

1
r2

∂2η

∂θ2

{
1 +

(
∂η

∂z

)2}]
= C, (2.6)

where C is a constant and [[ h]] represents the difference in a quantity as we cross the interface,i.e.,

[[ h]] = h(1) − h(2) and T is the surface tension and F is given by

F = r − η(θ, z, t)− a.

To investigate the nonlinear effect on the stability of the jet, we employ the method of multiple

scales. Introducing ε as a small parameter, we assume the following expansion of the variables:

φ(1)(r, θ, z, t) =
3∑

n=0

εnφ(1)
n (r, θ0, θ1, θ2, z0, z1, z2; t0, t1, t2) + O(ε4), (2.8)

φ(2)(r, θ, z, t) =
3∑

n=0

εnφ(2)
n (r, θ0, θ1, θ2, z0, z1, z2; t0, t1, t2) + O(ε4), (2.9)

and

η(θ, z, t) =
3∑

n=1

εnηn(θ0, θ1, θ2, z0, z1, z2; t0, t1, t2) + O(ε4). (2.10)

The multiple scales zn(≡ εnz),θn(≡ εnθ and tn(≡ εnt) are assumed to satisfy the following derivative

expansions:

∂

∂z
=

2∑

n=0

εn ∂

∂zn
+ O(ε3), (2.11)

∂

∂θ
=

2∑

n=0

εn ∂

∂θn
+ O(ε3), (2.11)

∂

∂t
=

2∑

n=0

εn ∂

∂tn
+ O(ε3), (2.12)
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If we substitute (2.8)-(2.10) into (2.5)-(2.6), boundary conditions for various orders are obtained.

A Maclaurin series expansion of the boundary conditions at r = a provides successive orders of

approximation to these conditions which are then used to specify the problem in those orders.

3. Linear theory

We substitute the expressions (2.8), (2.9) and (2.10) for φ(1), φ(2) and η, respectively into the

field equations (2.3) and the boundary conditions (2.5)-(2.6). Equating the coefficient of first power

of ε leads to

∇2
0φ

(1)
1 = 0, (3.1)

∇2
0φ

(2)
1 = 0, (3.2)

where

∇2
0 =

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
0

+
∂2

∂z2
0

.

We take φ
(j)
0 = Ujz0, (j = 1, 2). The various boundary conditions at the interface are, (at r = a)

∂η1

∂t0
+ Uj

∂η1

∂z0
− ∂φ

(j)
1

∂r
= 0, (j = 1, 2) (3.3)

−
[[

ρ

(
∂φ1

∂t0
+ U

∂φ1

∂z0

)]]
+ T

{
η1

a2
+

∂2η1

a2∂θ2
0

+
∂2η1

∂z2
0

}
= 0, (3.4)

The solutions to (3.1)-(3.3) are given by

η1 = A(z1, z2, θ1, θ2; t1, t2)eiϑ + Ā(z1, z2, θ1, θ2; t1, t2)e−iϑ, (3.5)

φ
(1)
1 = i(U1k − ω)A

Im(kr)
I ′m(ka)

eiϑ + c.c. + B1(z1, z2, θ1, θ2; t1, t2), (3.6)

φ
(2)
1 = i(U2k − ω)A

Km(kr)
K ′

m(ka)
eiϑ + c.c. + B2(z1, z2, θ1, θ2; t1, t2), (3.7)

where Ā is the complex conjugate of A and ϑ = kz0 + mθ0 − ωt0, Im(kr) and Km(kr) are the

modified Bessel functions of the first and second kind, respectively and I ′m(ka) = dIm(kr)
dr |r=a,

K ′
m(ka) = dKm(kr)

dr |r=a. Substituting (3.5)-(3.7) into (3.4), we obtain following dispersion relation

D(ω, k, m) = ρ1(ω − U1k)2γ(1)
m − ρ2(ω − U2k)2γ(2)

m +
T

a2
{1−m2 − (ka)2} = 0, (3.8)

where

γ(1)
m =

Im(ka)
I ′m(ka)

, γ(2)
m =

Km(ka)
K ′

m(ka)
(3.9)

Equation(3.8) is in agreement with the result obtained by Yang [1].

4.Second order solutions

The second order problem is governed by
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∇2
0φ

(j)
2 = −2

∂2φ
(j)
1

∂z0∂z1
− 2

r2

∂2φ
(j)
1

∂θ0∂θ1
, (j = 1, 2) (4.1)

The boundary conditions at r = a are:

L(η2, φ
(j)
2 ) = −∂η1

∂t1
+

∂2φ
(j)
1

∂r2
η1 − ∂η1

∂z0

∂φ
(j)
1

∂z0
− ∂η1

∂z1

∂φ
(j)
0

∂z0
− 1

a2

∂η1

∂θ0

∂φ
(j)
1

∂θ0
, (j = 1, 2), (4.2)

N(η2, φ
(1)
2 , φ

(2)
2 ) =

[[
ρ

(
∂φ1

∂t1
+

∂2φ1

∂t0∂r
η1+

1
2

{(
∂φ1

∂r

)2

+
(

1
a

∂φ1

∂θ0

)2

+
(

∂φ1

∂z0

)2}
+U

{
∂φ1

∂z1
+

∂2φ1

∂z0∂r
η1

})]]

+
T

a

{
η2
1

a2
− 1

2

(
∂η1

∂z0

)2

+
3
2

(
1
a

∂η1

∂θ0

)2}
+T

{
2
a2

η1
∂2η1

∂θ2
0

− 2
∂2η1

∂z0∂z1
− 2

a2

∂2η1

∂θ0∂θ1

}
, (4.3)

where L(η2, φ
(j)
2 ), and N(η2, φ

(1)
2 , φ

(2)
2 ) denote the left-hand sides of (3.3), and (3.4) with η1, φ

(j)
1

being replaced by η2, and φ
(j)
2 , (j = 1, 2), respectively.

Substituting the first order solutions in (4.2)-(4.3), we obtain following equations:

L(η2, φ
(j)
2 ) = −

(
∂A

∂t1
+Uj

∂A

∂z1

)
eiϑ+i(Ujk−ω)

{
2
(

k2+
m2

a2

)
γ(j)

m − 1
a

}
A2ei2ϑ+c.c., (j = 1, 2) (4.4)

N(η2, φ
(1)
2 , φ

(2)
2 ) =

[[
ρi(Uk − ω)γm

[
∂A

∂t1
+ U

∂A

∂z1

]
eiϑ

]]
− 2Ti

(
k

∂A

∂z1
+

m

a

∂A

∂θ1

)
eiϑ

+
[[[

ρ
(Uk − ω)2

2

{
−3 +

(
m2

a2
+ k2

)
γ2

m

}]]
+

T

a3
{1
2
(m2 + k2a2) + 1− 4m2}

]
A2e2iϑ

+c.c. +
[[[

ρ(Uk − ω)2
{
−1 +

(
m2

a2
+ k2

)
γ2

m

}]]
+

T

a3
{2−m2 − k2a2}

]
AĀ +

∂B1

∂t1
, (4.5)

Equations(4.4)-(4.5) furnish following second order solutions:

η2 = N2e
iϑ + q1A

2ei2ϑ + c.c. +
(
|A|2q2 +

∂B1

∂t1
ρ1 − ∂B2

∂t1
ρ2

)
a2

T
, (4.6)

where

N2 =
1
i

{
∂A

∂z1

(
−m

k
+

{
m2

ka
+ ka

}
γ(1)

m − U1

U1k − ω

)
− ∂A

∂t1

1
U1k − ω

}

φ
(1)
2 = (U1k − ω)

{
rIm+1(kr)

I ′m(ka)
∂A

∂z1
+

∂

∂m

(
Im(kr)
I ′m(ka)

)
∂A

∂θ1

}
eiϑ

−i(U1k − ω)
{

2
(

m2

a2
+ k2

)
γ(1)

m − 1
a
− 2q1

}
I2m(2kr)
I ′2m(2ka)

A2ei2ϑ + c.c.

+B3(z1, z2; t1, t2), (4.7)

Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 12, December - 2016 

www.jmest.org 
JMESTN42351970 6353



φ
(2)
2 = (U2k − ω)

{
−rKm+1(kr)

K ′
m(ka)

∂A

∂z1
+

∂

∂m

(
Km(kr)
K ′

m(ka)

)
∂A

∂θ1

}
eiϑ

+(U2k − ω)
Km(kr)
K ′

m(ka)

{
∂A

∂z1

[(
m2

ka
+ ka

)
(γ(1)

m − γ(2)
m ) +

U2

U2k − ω
− U1

U1k − ω

]

+
∂A

∂t1

[
1

U2k − ω
− 1

U1k − ω

]}
eiϑ

−i(U2k − ω)
{

2
(

m2

a2
+ k2

)
γ(2)

m − 1
a
− 2q1

}
K2m(2kr)
K ′

2m(2ka)
A2ei2ϑ + c.c. + B4(z1, z2; t1, t2), (4.8)

where

q1 =
[[[

ρ
(Uk − ω)2

2

{
−3 +

(
m2

a2
+ k2

)
γ2

m

}
+ 2ρ(Uk − ω)2

{
2γm

(
m2

a2
+ k2

)
− 1

a

}
γ2m

]]

+
T

a3
{1
2
(m2 + k2a2) + 1− 4m2}

]
1

D(2ω, 2k, 2n)
, (4.9)

q2 =
[[

ρ(Uk − ω)2
{
−1 +

(
m2

a2
+ k2

)
γ2

m

}]]
+

T

a3
{2−m2 − k2a2} (4.10)

with

γ
(1)
2m =

I2m(2ka)
I ′2m(2ka)

, γ
(2)
2m =

K2m(2ka)
K ′

2m(2ka)
.

I ′2m(2ka) =
dI2m(2kr)

dr

∣∣∣∣
r=a

, K ′
2m(2ka) =

dK2m(2kr)
dr

∣∣∣∣
r=a

∂Im(kr)
∂m

= lim
ν→m

∂Iν(kr)
∂ν

= Im(kr) ln(
1
2
kr)−

∞∑

n=0

(1
2kr)m+2n

n!(n + m)!
ψ(n + m + 1)

ψ(n + 1) =
1
1

+
1
2

+ · · ·+ 1
n
− γ

where γ denotes Euler’s constant, 0.57751. . . .[ 11, p.377]. ∂Km(kr)/∂m is similarly defined.

Here D(2ω, 2k, 2m) is obtained from (3.8) by replacing γ
(1)
m , γ

(2)
m by γ

(1)
2m, γ

(2)
2m and ω, k and m by

2ω, 2k and 2m respectively, and B3 and B4 are arbitrary constants. Furthermore, we assume that

D(2ω, 2k, 2m) 6= 0. The case D(2ω, 2k, 2m) = 0 corresponds to the second harmonic resonance.

The vanishing of coefficient of eiϑ in (4.5) gives the secular equation

∂A

∂t1
+ Vk

∂A

∂z1
+ Vm

∂A

∂θ1
= 0, (4.11)

where Vk and Vn are the group velocities expressed as

Vk =
∂ω

∂k
, (4.12)

Vm =
∂ω

∂m
, (4.13)

5.Third order problem
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We proceed now to the third order problem.

∇2
0φ

(j)
3 = −2

∂2φ
(j)
2

∂z0∂z1
− ∂2φ

(j)
1

∂z2
1

− 2
∂2φ

(j)
1

∂z0∂z2
− 2

r2

∂2φ
(j)
2

∂θ0∂θ1
− 1

r2

∂2φ
(j)
1

∂θ2
1

− 2
r2

∂2φ
(j)
1

∂θ0∂θ2
, (j = 1, 2) (5.1)

The solution to (5.1), φ
(1)
3 takes the following form

φ
(1)
3 = −(U1k − ω)

[
i

2

{
r2Im(kr)− r

k
Im+1(kr)(1 + 2m)

}
∂2A

∂z2
1

− rIm+1(kr)
∂A

∂z2

]
eiϑ

I ′m(ka)

−(U1k − ω)i
[
∂2α(r)
∂k∂m

− ∂α(r)
∂m

{
m

k
− γ(1)

m

(
ka +

m2

ka

)}]
∂2A

∂z1∂θ1
eiϑ

+(U1k − ω)
[
∂α(r)
∂m

∂A

∂θ2
− i

2
∂2α(r)
∂m2

∂2A

∂θ2
1

]
eiϑ + c.c.

−1
4

∂2B1

∂z2
1

r2 +
1
2

∂2B1

∂θ2
1

θ0(2π − θ0) + · · · , (5.2)

where

α(r) =
Im(kr)
I ′m(ka)

η3 =
1
i
N3e

iϑ + c.c + · · · , (5.3)

where

N3 = − i

ω − U1k

∂2A

∂t1∂z1

(
−m

k
+

{
m2

ka
+ ka

}
γ(1)

m − 2U1

U1k − ω

)
− i

(U1k − ω)2
∂2A

∂t21
+

1
(ω − U1k)

∂A

∂t2

− ∂A

∂z2

(
m

k

{
1− m

a
γ(1)

m

}
− akγ(1)

m +
U1

U1k − ω

)
− i

∂2A

∂z2
1

[
−(2m + 1)

(
−m

k

{
1− m

a
γ(1)

m

}
+ akγ(1)

m

)
1
2k

+aγ(1)
m +

a2

2
−

(
−m

k
+

(
m2

ka
+ ka

)
γ(1)

m − U1

U1k − ω

)
U1

U1k − ω

]

where · · · denotes nonsecular terms.

φ
(2)
3 = (U2k − ω)p3e

iϑ + c.c.− 1
4

∂2B2

∂z2
1

r2 +
1
2

∂2B2

∂θ2
1

θ0(2π − θ0) + · · · , (5.4)

where p3 can be found in the Appendix.

Using (5.2) and (5.4) and eliminating η3 in (2.5) and (2.6), we obtain following nonsecularity

condition:

i

(
∂A

∂t2
+ Vk

∂A

∂z2
+ Vm

∂A

∂θ2

)
+ R1

∂2A

∂z2
1

+ 2R2
∂2A

∂z1∂θ1
+ R3

∂2A

∂θ2
1

= QA2Ā + RA, (5.5)
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where

R1 =
1
2

∂2ω

∂k2
, R2 =

1
2

∂2ω

∂k∂m
, R3 =

1
2

∂2ω

∂m2

Q =
S1

2[[ρ(ω − Uk)γm]]

R =
S2

2[[ρ(ω − Uk)γm]]
S1 and S2 are found in the Appendix.

Introducing the transformation

τ = t2 = ε2t = εt1, ξ = (z2 − Vkt2)
1
ε

= (z1 − Vkt1), (5.6)

ζ =
{

θ2 − R2

R1
z2 −

(
Vn − R2

R1
Vk

)
t2

}
1
ε

=
{

θ1 − R2

R1
z1 −

(
Vn − R2

R1
Vk

)
t1

}
. (5.7)

Equation (5.5) governing the evolution of the amplitude of the wave packet reduces to

i
∂A

∂τ
+ P1

∂2A

∂ξ2
+ P2

∂2A

∂ζ2
= QA2Ā + RA, (5.8)

where

P1 = R1, P2 = R3 − R2
2

R1

Now that φ3 is expressed as (5.2), the boundary condition (2.5) in O(ε3) becomes

∂η3

∂t0
=

(
−q2

∂ĀA

∂t1
− ∂2B1

∂t21
ρ1 +

∂2B2

∂t21
ρ2

)
a2

T
− 1

a

∂ĀA

∂t1
− 1

2
∂2Bj

∂z2
1

a

+(Ujk − ω)
{(

2kγ(j)
m − Uj

a(Ujk − ω)

)
∂ĀA

∂z1
+ γ(j)

m

2m

a2

∂ĀA

∂θ1

}
+ · · · , (j = 1, 2)

where · · · again indicates the non-secular terms. The non-secular condition for η3 with respect to

t0 gives (
−q2

∂ĀA

∂t1
− ∂2B1

∂t21
ρ1 +

∂2B2

∂t21
ρ2

)
a2

T
− 1

a

∂ĀA

∂t1
− 1

2
∂2Bj

∂z2
1

a

+(Ujk − ω)
{(

2kγ(j)
m − Uj

a(Ujk − ω)

)
∂ĀA

∂z1
+ γ(j)

m

2m

a2

∂ĀA

∂θ1

}
= 0, (j = 1, 2) (5.9)

If we assume that B1 depends on the slower scales only through the amplitude A, (5.9) reduces

to

a2

T

[[
ρ

(
∂2B

∂z2
1

V 2
k + 2

∂2B

∂z1∂θ1
VkVm +

∂2B

∂θ2
1

V 2
m

)]]
+

1
2

∂2Bj

∂z2
1

a = T
(j)
1

∂ĀA

∂z1
+ T

(j)
2

∂ĀA

∂θ1
, (5.10)

where

T
(j)
1 =

{(
q2

a2

T
+

1
a

)
Vk + (Ujk − ω)

(
2kγ(j)

m − Uj

a(Ujk − ω)

)}
∂ĀA

∂z1
,
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T
(j)
2 =

{(
q2

a2

T
+

1
a

)
Vm + (Ujk − ω)γ(j)

m

2m

a2

}
∂ĀA

∂θ1
, (j = 1, 2)

Using the transformation (5.6)-(5.7), the above equation can be put into the form

a2

T

[[
ρ

(
M1

∂2B

∂ξ2
+ M2

∂2B

∂ξ∂ζ
+ M3

∂2B

∂ζ2

)]]
+

a

2

(
∂

∂ξ
− R2

R1

∂

∂ζ

)2

Bj

= T
(j)
1

∂|A|2
∂ξ

+
(

T
(j)
2 − T

(j)
1

R2

R1

)
∂|A|2
∂ζ

, (j = 1, 2)

Assume A, B1 and B2 are functions of χ = `ξ + nζ and τ only [ 12], then the above equation

yields
a2

T
(M1`

2 + M2`n + M3n
2)

[[
ρ
∂2B

∂χ2

]]
+

a

2

(
`− R2

R1
n

)2 ∂2Bj

∂χ2

=
{

T
(j)
1 ` +

(
T

(j)
2 − T

(j)
1

R2

R1

)
n

}
∂|A|2
∂χ

, (j = 1, 2) (5.11)

Integrating (5.11) , R can be expressed in the form

R = GAĀ + C(τ)

where C(τ) is a constant of integration.

And (5.8) can be written as

i
∂A

∂τ
+ P3

∂2A

∂χ2
= Q1A

2Ā + R∗A, (5.12)

which is a nonlinear Schrödinger equation, and

P3 = P1`
2 + P2n

2, Q1 = Q + G, R∗ = C(τ)

We note that R∗ may be eliminated from(5.12) by an appropriate frequency shift in A. The stability

of the solution of (5.12) is subject to the same criterion as that found by Hasimoto and Ono [13],

P3Q1 > 0, (5.13)

In the case when the propagation is along the z-axis, namely, when A is dependent on the slower

scales z1, z2, (5.8) reduces to

i
∂A

∂τ
+ P1

∂2A

∂ξ2
= QA2Ā +

S2

2[[ρ(ω − Uk)γm]]
A, (5.14)

S2 = −
[[

ρ(Uk − ω)γm

(
2k

∂B

∂z1
+ Vk(Uk − ω)

{
γm

(
m2

a2
+ k2

)
− 1

a

}[[
ρ

∂B

∂z1

]]
a2

T

)]]

−Vk

[[
ρ

∂B

∂z1

]]
a2

T

(
2T

a2
(1−m2)− [[(Uk − ω)2]]

)
, (5.15)
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∂Bj

∂z1
=

(
ρ1ρ2

ρj

a2

T
V 2

k

[[
2k(Uk − ω)γm − U

a

]]

+
a

2

{(
q2

a2

T
+

1
a

)
Vk + (Ujk − ω)(2kγ(j)

m − Uj)
})

AĀ

∆
+ Cj(t2, z2), (j = 1, 2) (5.16)

where ∆ = a3

2T (ρ1 − ρ2)V 2
k + a2

4 .

So (5.14) is of the form of (5.12) and the stability condition is

P1Q1 > 0

.

6. Liquid jet without the surrounding gas.

In this case, it is convenient to normalize the physical variables by using the radius of the

unperturbed jet a for the characteristic length, and
√

T/ρ1a for the characteristic speed and use

the moving frame of reference with a uniform speed U1. The resulting equations can be obtained

from the previous equations by setting T = a = 1 and U1 = 0, and omitting all terms associated

with the surrounding gas. We also use the notation

γ(1)
m =

Im(k)
I ′m(k)k

, Ia

k
, γ

(1)
2m =

I2m(2k)
I ′2m(2k)2k

, Ib

2k

where prime denotes the differentiation with respect to the argument. Thus S2 in (5.15) reduces to

S2 =
[
ωIa

k

{
2k − ωVk

(
Ia

k
(m2 + k2)− 1

)
− Vk{2(1−m2)− ω2}

]
∂B1

∂z1

=
[
2ωIa + Vk

ω2Ia

k

{
kI−1

a − k2 + m2

k
Ia + 1− 2(1−m2)k

ω2Ia

}]
∂B1

∂z1

And ∂B1
∂z1

in (5.16) reduces to

∂B1

∂z1
=

(
1
2

+ V 2
k

)−1

{Vk(q2 + 1)− 2ωIa}AĀ + C1(z2, t2)

Thus (5.14) becomes

i
∂A

∂τ
+ P1

∂2A

∂ξ2
= Q1A

2Ā + R∗
1A

where

Q1 = Q +
(

1
2

+ V 2
k

)−1

{Vk(q2 + 1)− 2ωIa}
[
k +

ωVk

2

{
kI−1

a − k2 + m2

k
Ia + 1− 2(1−m2)

k2 + n2 − 1

}]

R∗
1 =

[
k +

ωVk

2

{
kI−1

a − k2 + m2

k
Ia + 1− 2(1−m2)

k2 + m2 − 1

}]
C1
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with

Q =
{

ω2

[
4(k2 + m2)

Ia

k
+

1
2

+ (2q1 − 2(m2 + k2)k−1Ia + 1){2(1 +
m2

k2
)IaIb − 1}

+
3I2

a

2k2
(k2 − 3m2)− (q1 + q2)

{
1 +

Ia

k
− I2

a

(
1 +

m2

k2

)}]

+
1
2
(k2 + 9m2 − 6) + 2(q1 + q2)(1−m2)− 3

2
(m2 + k2)2 − 2(m2 + k2)q1

}
k

2ωIa

When m = 0, these equations completely agree with the results of Kakutani et al. [ 14].

7. Numerical examples and discussion
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When the gas is present outside the liquid jet, values of PQ versus wave number k have been

plotted for different modes in Fig.1-2. When m=2 the figure for PQ is displayed in Fig.1. It

is known that by linear theory, the wave is always stable, however by the nonlinear theory, it is

unstable .

Here, the inner liquid is water, and the outer gas is air. U2 = 48.5m/sec , U1 = 10m/sec and

a = 0.5 cm are chosen.

However when the speed of the liquid U1 is 50 m/sec, the situation is quite different. It is stable.

The case for m = 3 is shown Figure 2. The situation is very similar to the case when m = 2.

When U1=10 m/sec, the jet is unstable . When U1=50 m/sec,it is stable . By linear theory, in

both cases, the jet is stable.

In Figures 3-5, we display the values of PQ, when there is no surrounding gas, for various wave

number k for different modes. When m=0 the figure for PQ is displayed in Fig.3. It is known that

by linear theory the cut-off wave number is k=1, namely the wave is stable when k > 1, however

by the nonlinear theory, it is stable only for 1 < k < 1.28 but unstable for all other values.

When m = 1 the jet is always unstable.

The cases for m = 2 and m = 3 are shown Figure 4 and Figure 5, respectively.

Only for the values of k where PQ is positive, the wave is stable. Therefore as we can notice

from these figures the values of k where the wave is stable are quite limited. When m=3, second

harmonic resonance takes place at k=7.357.. . At that point PQ is infinite, thus the second

harmonics blow up.

Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 12, December - 2016 

www.jmest.org 
JMESTN42351970 6360



7. Conclusions

In this paper the problem nonaxisymmetric nonlinear instability of a capillary jet is considered and

the results of the investigation may be summarized as follows:

1. By the linear theory, the present nonaxisymmetric circular jet is always stable, however, by a

nonlinear theory the values of wave number for which the jet is stable are rather limited .
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2. Instability takes place by two cases, when the wave number takes a imaginary number, which

will lead to the exponential growth of disturbance or the amplitude A grows large, even though the

initial disturbance remains periodic. It is the latter case with nonlinear asymmetric analysis.

When m=0, as the present solution agrees with that of Kakutani et. al.[12], it is believed that

the present solution is correct.

Appendix.

p3 =
[
2k

∂A

∂z2
− i

∂2A

∂z2
1

− 2ik
∂2A

∂z2
1

[{
ka +

m2

ka

}
(γ(1)

m − γ(2)
m ) +

U2

U2k − ω
− U1

U1k − ω

]

−2ik
∂2A

∂z1∂t1

(
1

U2k − ω
− 1

U1k − ω

)][−rKm+1(kr)
2kK ′

m(ka)
+

β(r)
2k

{
m

k
−

(
ka +

m2

ka

)
γ(2)

m

}]

+ik
∂2A

∂z2
1

[
−β(r)

2k
(r2 + a2 + 2aγ(2)

m )− m + 1
k2

{
rKm+1(kr)

K ′
m(ka)

+
{

m

k
−

(
ka +

m2

ka

)
γ(2)

m

}
β(r)

}]

−i

[
∂2β(r)
∂k∂m

− ∂β(r)
∂m

{
m

k
− γ(1)

m

(
ka +

m2

ka

)
− U2

(U2k − ω)
+

U1

(U1k − ω)

}]
∂2A

∂z1∂θ1

+
∂2A

∂θ1∂t1

(
1

U2k − ω
− 1

U1k − ω

)
∂β(r)
∂m

− i

2
∂2A

∂θ2
1

∂2β(r)
∂m2

+
∂A

∂θ2

∂β(r)
∂m

+
β(r)

U2k − ω)

[
∂A

∂t2
+

1
i

∂2A

∂t1∂z1

{
−m

k
+ γ(1)

m

(
ka +

m2

ka

)
− U1

U1k − ω

}

−1
i

∂2A

∂t21

1
U1k − ω

+ N3 + U2

(
∂A

∂z2
+

∂N2

∂z1

)]

with

β(r) =
Km(kr)
K ′

m(ka)

S1 =
[[

ρ(Uk−ω)2
{

4
(

k2 +
m2

a2

)
γm +

1
2a

+
{

2q1−2
(

m2

a2
+k2

)
γm +

1
a

}{
4
(

k2 +
m2

a2

)
γmγ2m−1

}

+
3γ2

m

2a

(
k2 − 3

m2

a2

)
−

(
q1 + q2

a2

T

)[
1 +

{
1
a
−

(
m2

a2
+ k2

)
γm

}
γm

]}]]

+
T

2a2

(
k2 + 9

m2

a2
− 6

a2

)
+

2T

a3

(
q1 + q2

a2

T

)
(1−m2)− 3T

2

(
m2

a2
+ k2

)2

− 2T

a

(
m2

a2
+ k2

)
q1,

S2 = −
[[

ρ(Uk − ω)γm

(
∂B

∂z1
2k +

1
a2

∂B

∂θ1
2m−

[[
ρ
∂B

∂t1

]]
a2

T
(Uk − ω)

{
γm

(
m2

a2
+ k2

)
− 1

a

})]]

+
[[

ρ
∂B

∂t1

]]
a2

T

{
2T

a2
(1−m2)− [[(Uk − ω)2]]

}
.
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