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Abstract—In continuation of the present author’s 
recent development of Poisson’s theory in 
resolving sixteen-decade-old problem of 
Poisson-Kirchhoff’s boundary conditions 
paradox and its extended Poisson theory (EPT), a 
sequence of two dimensional problems 
converging to three dimensional problems within 
small deformation theory of elasticity is 
presented here in the analysis of laminated plates 
with anisotropic plies. Extended Poisson theory 
along with its modifications unlike higher order 
theories based on energy principles  is shown to 
be the most convenient and simple procedure for 
obtaining exact solutions of problems within the 
applicable range of small deformation theory. 
Preliminary solutions for transverse stresses in 
primary problems of bending, extension, and 
associated torsion problems are exact solutions 
of 3-D problems. Determination of displacements 
and in-plane stresses consists of a sequence of 
solutions of uncoupled 2-D problems defined 
from appropriate Fourier series expansion of 
transverse stresses. 
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 I. INTRODUCTION 

 
Kirchhoff’s theory [1] and first-order shear 

deformation theory based on Hencky’s work [2] 
abbreviated as FSDT of plates in bending are simple 
theories and continuously used to obtain design 
information. In Kirchhoff’s theory, 𝑤0(𝑥, 𝑦) is 
governed by a fourth-order equation associated with 
two edge conditions instead of three edge conditions 
required in a 3-D problem. Consequence of this 
lacuna is the well known Poisson-Kirchhoff boundary 
conditions paradox (vide Reissner’s article [3]). 
Assumption of zero transverse shear strains is 
discarded in FSDT forming a three-variable model. 
Reactive (statically equivalent) transverse shears are 
combined with in-plane shear resulting in 
approximation of associated torsion problem instead 
of flexure problem. It is necessary to use zero 

rotation 𝜔z = (v,x − 𝑢,y) about the vertical axis to 
decouple bending and associated torsion problems 
but not sufficient condition. Kirchhoff’s theory is in a 
way 0th order shear deformation theory though zero 
𝜔z is satisfied. Reactive transverse shear stresses [τxz 

τyz] and thickness-wise linear strain 𝜀z from 
constitutive relation form the basis for resolving the 

paradox. The theory thus developed is designated as 
“Poisson’s theory of plates in bending” [4].     w0(x, y) 
is a domain variable in FSDT and indirectly in 
Reissner’s theory. These theories are intended for 
rectification of lacuna in Kirchhoff’s theory. It is not 
proper, for this purpose, to use St.Venant’s torsion 
problem in which normal strains are zero to justify 
these theories. Associated torsion problem in the 
presence of bending loads is different from St. 
Venant’s torsion problem.  
 

   Most of the investigations reported in the literature 
on the analysis of laminated composite plates are 
based on energy principles with vertical displacement 
as domain variable. Ply element equations in layer-
wise theories are coupled and not convenient if the 
stacking sequence contains large number of plies 
(Moreover, there is a need to incorporate proper 
modifications in these theories in the analysis of 
unsymmetrical laminates). These theories are 
definitely not useful in the generation of a proper 
sequence of 2-D problems converging to 3-D 
problems. It does not serve much purpose to 
compare results from these theories with those from 
the sequence of 2-D problems reported in the 
present author’s earlier investigations [5, 6].  
 

   In the Extended Poisson’s Theory (EPT) [5, 6], ply 
analysis is independent of lamination and continuity 
of displacements and transverse stresses across 
interfaces is through solution of a supplementary 
problem in the face ply along with recurrence 
relations. It is shown that the expansion of 
displacements in polynomials of thickness coordinate 
z is not adequate for proper estimation of face and 
neutral plane deflections. This fact is overlooked in 
the analysis of even isotropic homogeneous plates 
through widely used FSDT and other shear 
deformation theories. Solution of a supplementary 
problem based on Levy’s work [7] is required for 
obtaining neutral plane deflection which is higher 
than face deflection. It is, however, observed that an 
error in the estimation of face deflection is much 
higher than that of neutral plane deflection. But it is 
desirable to provide uniform approximation to non-
zero displacements and stresses in the neutral plane 
(mid-plane) or face planes along each vertical normal 
of the plate. This is particularly necessary in the 
analysis of laminates embedded with piezoelectric 
actuators so as to describe a proper electric field due 
to actuators.   
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Here, one may recall Jemielita’s inspiring article [8], 
‘On the winding paths of the theory of plates’ with the 
following relevant observations: Facts in the 
development of plate theories have proved that one 
is supposed to study the previous works before 
creating a new theory. A significant observation in the 
referred treatise by Toudhunter and completed after 
his death by Pearson (1886) is that ‘the would-be 
researcher either wastes much time in learning the 
history of his subject, or else works away regardless 
of earlier investigations’. One could think that 
Pearson’s words written on 23rd June 1886 became 
out of date in times of a stormy progress of 
communication but, unfortunately, it is not the case.  
 

One should note that analysis of plates with 
different geometries and material properties under 
different kinematic and loading conditions does not 
provide much scope for development of new theories 
other than those with the analysis of primary 
problems of a square plate.  
 
   II. PRIMARY PROBLEMS 
 
   For simplicity in presentation, a symmetric laminate 
bounded by 0 ≤ X, Y ≤ a and Z = ± hn planes with 
interfaces Z = hk in the Cartesian coordinate system 
(X, Y, Z) is considered. For convenience, coordinates 
X, Y, and Z and displacements U, V, and W in non-
dimensional form x = X/L, y = Y/L, z = Z/hn, u = U/hn, 
v = V/hn, w = W/hn and half-thickness ratio α = hn/L 
with reference to a characteristic length L [mod(x, y) 
≤ 1] are utilized. The material of each ply is 
homogeneous and anisotropic with monoclinic 
symmetry. Interfaces are given by z = αk= hk/hn (k = 
1, 2…., n-1) in the upper-half of the laminate.  
 
   With the above notation, equilibrium equations in 
terms of stress components are: 
 
   α (σx,x + τxy,y) + τxz,z = 0         (1a) 
   α (σy,y + τxy,x) + τyz,z = 0         (1b) 
   α (τxz,x + τyz,y) +  σz,z = 0              (2) 
 
in which suffix after ',' denotes partial derivative 
operator.  
 
   Here, it is convenient to denote displacements [u, 
v] as [ui], (i = 1, 2), in-plane stresses [σx, σy, τxy] and 
transverse stresses [τxz, τyz, σz] as [σi], [σ3+i], (i = 1, 2, 
3), respectively. With the corresponding notation for 
strains, strain-displacement relations are  
 
   [ε1, ε2, ε3] = α [u,x, v,y, u,y + v,x]           (3) 
[ε4, ε5, ε6] = [u,z + α w,x, v,z + α w,y, w,z]          (4) 

 
   Strain-stress and semi-inverted stress-strain 
relations within small deformation theory with the 
usual summation convention of repeated suffix 
denoting summation over specified integer values 
are: 
 

   εi = Sij σj  (i, j = 1, 2, 3, 6)           (5) 
   εr = Srs σs  (r, s = 4, 5)                                   (6) 
   σi = Qij[εj – Sj6 σz]  (i, j = 1, 2. 3)                   (7) 
   σr = Qrs εs  (r, s = 4, 5)                                   (8) 

      
   With σi in equations (7), in-plane equilibrium 
equations (1) become 
 
α [Q1j(εj – Sj6 σz),x + Q3j(εj – Sj6 σz),y] + τxz,z= 0 (9a)   
                                                                           
α [Q2j(εj – Sj6 σz),y + Q3j(εj – Sj6 σz),x] + τyz,z = 0 (9b) 
             
 
   Upper face values of displacements [u, v, w]u and 
transverse stresses [τxz, τyz, σz]u in a ply are related to 
its lower face values [u, v, w]b and [τxz, τyz, σz]b, 
respectively, through the solution of equations (1, 2) 
together with the following three conditions at each of 
constant x (and y) edges.   
  

A. Edge conditions in primary problems 
 

   In EPT of primary plate problems, in-plane 
displacements [u, v] in each ply require two term 
representation in extension problems and one term 
representation in bending (or associated  torsion)  
problems.  Prescribed conditions with subscripts n 
equal to 0 and 1 in extension and bending problems, 
respectfully, at each of x = constant edges (with 
analog conditions along y = constant edges) in the 
primary problems are 

 

   u = ũn(y) or σxn(y) = Txn(y)                            (10a) 
   v = ṽn(y) or τxyn (y) = Txyn (y)                          (10b) 
   wn(y) = 0 or τxzn(y) = Txzn(y)            (11) 
 
Third edge condition (11) is required only in the face 
ply since interface continuity of displacements and 
transverse stresses is through solution of a 
supplementary problem defined in the face ply and 
recurrence relations across interfaces.  
 
     It is to be noted that vertical displacement is a 
face (and interface) variable but domain variable in 
the associated torsion problems (note that the 
condition w1(y) = 0 cannot be imposed in the 
extension problems). Prescribed transverse stresses 
along z = ± 1 faces of the plate are [Txz(x, y), Tyz(x, 
y), Tz(x, y)]n. Due to odd and  even z-distribution, 
however, [Txz1, Tkyz1, w1, Tz0] correspond to extension 
problems and vice versa in bending problems 
(contradiction between zero face shear conditions 
and prescribed transverse shears along wall of the 
plate in the bending problem is resolved earlier [5]). 
 
   B fn(z) functions and their use 
 
   In reducing 3-D problems into a sequence of 2-D 
problems, it is found convenient to generate a 
complete set of co-ordinate functions fn(z), (n = 
0,1,2,3,...) with associated 2-D variables such that 
f2n+1and f2n are odd and even functions of z with 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 12, December - 2016 

www.jmest.org 

JMESTN42351959 6314 

reference to mid- plane (z = 0). They are formulated 
with f0 = 1 from recurrence relations, f2n+1,zz = f2n,z = − 
f2n-1 (n ≥ 1) such that f2n(±αk) = 0 so that they are 
extremely useful in obtaining preliminary solutions of 
primary problems.   
 
   Displacements, strains and stresses are expressed 
in the form (with sum n = 0, 1, 2,...) 
 
   w = fn (z) wn(x, y) 
   [u,  v] = fn[u, v]n                 (12) 
   [εx, εy, γxy, εz] = fn[εx, εy, γxy, εz]n         (13) 
   [σx, σy, τxy, σz] = fn[σx, σy, τxy, σz]n        (14) 
   [γxz, γyz, τxz, τyz] = fn [γxz, γyz, τxz, τyz]n        (15) 
 
   In order to maintain continuity of a 3-D variable 
across interfaces and keep the associated 2-D 
variable as a free variable, it is necessary to replace 
f2n+1 by f*2n+1 given by  
 
   f*2n+1= f2n+1− β2n-1 f2n-1 , n = 1, 2, ----  
      
   In the above equation, β2n-1αk

2 = [f2n+1(αk) / f2n-1(αk)] 
so that f*2n+1(αk) = 0. With the above replacement of 
odd fn functions, transverse stresses and the 
corresponding displacements become continuous 
across the interfaces if the variables associated with 
f0 and f1 are continuous across interfaces. 
 
   Prescribed upper and bottom face conditions along 
with edge conditions can be modified such that even 
functions f2n(z) and odd functions f2n+1(z) in the z-
distribution of in-plane displacements are for analysis 
of extension and bending problems, respectively. 
Correspondingly, vertical displacement w(x, y, z) is 
odd and even in the extension and bending 
problems, respectively, due to transverse shear 
strain-displacement relations. In displacement based 
models, classical theories of plates deal with 
determination of basic variables [u, v, w]0. In the 
present work, role of linear thickness-wise distribution 
of each one of three displacements, six strains and 
six stress components in the analysis is considered. 
In the preliminary analysis of primary problems, it is 
found that fn(z) functions up to n = 5 are necessary 
and adequate to generate proper sequence 2-D 
problems. They are  
 
[f0, f1, f2, f3] = [1, z, ½(αk

2 – z2), ½(αk
2z – z3/3)]       

             (16)  
   f4 = [(5 αk

4 − 6 αk
2 z2 + z4)/24       (17a)  

   f5 = z (25 αk
4−10 αk

2z2+z4)/120]       (17b) 
 
   III. PRELIMINARY ANALYSIS OF PRIMARY 
PROBLEMS  

 
   In auxiliary problems in EPT, transverse stresses 
are expressed as [τxz, τyz]n = − α [ψn,x , ψn,y]. In 
bending  problem  with  σz = z σz1, one  gets from 
static equation  (2)  α2∆ψ0 = σz1 ( σz1=  q1/2)  and the    
transverse shear stresses are independent of  elastic 
deformations. In extension problem, the plate is 

subjected to normal stress σz0 = q0(x, y)/2, 
asymmetric shear stresses [τxz1, τyz1] = ± [Txz1(x, y), 
Tyz1(x, y)] along top and bottom faces of the plate. 
Here, σz0 = q0/2 satisfying face condition does not 
participate in static equation (2) and the 
corresponding applied face shears [Txz1, Tyz1] are 

gradients of a given harmonic function  ψ̃1 so that 

[Txz, Tyz]= − α [ψ̃1,x, ψ̃1,y]. Transverse shear stresses 

and normal stress satisfying face conditions are [τxz, 

τyz] = − α z [ψ̃1,x ,  ψ̃1,y] and σz0  = q0(x, y)/2.With σz = 

f2 σz2, one gets α2∆ψ1 = σz2 with σz2  dependent  on  
elastic  deformations  due  to in-plane displacements 
f2[u, v]2.  
 
   In EPT, one should note that the error in the 
analysis with reference to the exact solution of 3-D 
problem is due to participation of w0(x, y) in the 
bending problem and w1(x, y) from w = z w1 (x, y) in 
extension problem in the transverse strain-
displacement relations (w0 and w1 are from z-
integration of εz from constitutive relations). 
Determination of 2-D variables [u, v]n is independent 
of w0 and w1.  
 
    A. Initial solutions of primary bending problem 
 
A brief description of preliminary solutions of primary 
bending problem from [6] is presented here 
necessary for development of sequence of 
uncoupled 2-D problems. Transverse stresses are in 
the form  
 
    [τxz, τyz] = [τxz0, τyz0] + [f2 τxz2, f2 τyz2]k      
    σz = zσz1 + [f3 σz3]k      (18)                                   
     
   Transverse stresses [τxz0, τyz0, zσz1] are 
independent of lamination and material constants. 
Second expression in (18) consists of reactive 
stresses in the ply which are also independent of 
lamination due to the chosen fk(z) functions. 
Universal solution for ψ0 is governed by α2 Δψ0 = 
q1/2.  
                        
   Face deflection w0f from strain-displacement 
relations is given by 
 
w0f(x, y) = ∫ [γxz0 dx + γyz0 dy] − ∫ [u1 dx + v1 dy]  
             (19)     
       
Transverse shear stresses [τxz, τyz] and normal stress 
σz along with (z q1/2) in EPT are 
 
   [τxz, τyz] = [τxz, τyz]0 + f2(z) [τxz, τyz]2             (20) 
   σz = z [(1/2)q1 – β1 σz3] + f3 σz3         (21) 
       
In the above equations,  
 
   τxz2 = Q44u1+ Q45 v1+ τxz0       
   τyz2 = Q55v1+ Q45 u1+ τyz0          (22) 

 

One equation governing [u, v]1 from equilibrium 
equations is 
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α[(Q44 u1+Q45 v1),x+(Q54 u1+Q55 v1),y=β1σz3    (23) 
 
Modified displacements [u1, v1]* for the purpose of 
satisfying integrated equilibrium equations (1) are 
 
   u*1 = (u1 + γxz0 – α w0,x) 
   v*1 = (v1 + γyz0 – αw0,y)           (24) 
 
   Contributions of ψ1 and w0 in [u*, v*]1 are one and 
the same in giving corrections to w(x, y, z) and 
transverse stresses. Hence, w0 in [u*, v*]1 is replaced 
by ψ1 so that [u*, v*]1 are 
 
   u*1 = − α (2ψ1,x+φ1,y) + γxz0 
   v*1 = − α (2ψ1,y−φ1,x) + γyz0          (25)              
     
Correspondingly, in-plane strains [εx*, εy*, γxy*]1 with 

[ε̃x1, ε̃y1, γ̃xy1] = −α2 [(2ψ1,xx+ φ1,xy), (2ψ1,yy− φ1,xy), 
(4ψ1,xy+ φ1,yy− φ1,xx)] and reactive transverse stresses 
with sum j = 1, 2. 3 are 
 
   [ε*x, ε*y]1= [(ε̃x1 + α γxz0,x), (ε̃y1 + α γxz0,y)]         
                 (26a) 

γ*xy1 = [γ̃xy1 + α (γxz0,y + γyz0,x)]                   (26b)       

τ*xz2 = α [Q1j(ε̃j – Sj6 σz1),x + Q3j(ε̃j – Sj6 σz1),y]  
                 (27a) 

   τ*yz2 = α [Q2j(ε̃j – Sj6 σz1),y + Q3j(ε̃j – Sj6 σz1),x]   
                 (27b) 
   σz3 = − α (τ*xz2,x + τ*yz2,y)                    (28) 

 
Due to σz3 from equations (23, 28), one gets the 
equation governing in-plane displacements [u, v]1   
satisfying both static and integrated equilibrium 
equations in the form 
  
   α β1 (τ*xz2,x + τ*yz2,y) = α [(Q44 u1 + Q45 v1),x +   
                 + (Q54 u1 + Q55 v1),y]             (29) 
 
With the condition zero ωz (i.e., v,x= u,y) required to 
decouple bending and torsion, equation (29) consists 
of Laplace equation ∆φ1 = 0 and a fourth order 
equation in ψ1 to be solved with the following three 
conditions at each of x (and y) constant edges 
 
   (i) (u* or σ*)1 = 0, (ii) (v* or τ*xy )1 = 0 ,  

(iii) ψ1 or τ*xz2 = 0           (30) 
                              

    C. Supplementary problem in the face ply   
 
   Transverse stresses in the face ply are 
 
   [τxz, τyz]= [τxz0, τyz0] + f2 [τxz2, τyz2]          (31)              
   σz = z σz1 + f3 σz3                (32)                                    
 
Corrective in-plane displacements in the 
supplementary problem are assumed as 
 
   [u, v]s = [u1, v1]s sin (π z/2)                         (33) 
 

In-plane distributions u1s and v1s are added as 
corrections to the known in-plane displacements [u1, 
v1] so that [u, v] in the supplementary problem are 
       

[u, v] = [(u1+ u1s), (v1+ v1s)] sin (πz/2)        (34)

 

    
With the corresponding stresses and strains, one 
gets 

 
   β1σz3 = (2/π)2 α2 [Q1j ε1sj,xx + 2 Q3j ε1sj,xy +  
                                           + Q2j ε1sj,yy]           (35) 
    
   By expressing [u1s, v1s] = − α [ψ1s,x, (ψ1s,y],   above 
equation becomes a fourth order equation in ψ1s to 
be solved with two in-plane conditions along each 
one of x (and y) constant edges 
 

         u1s or σxs1 = 0, v1s or τxys1 = 0           (36)  

 
   Continuity of displacements and transverse 
stresses across interfaces 

  
   In-plane displacements and transverse stresses in 
the face ply become 
 
   u = z u1 + (u1 + u1s) sin (πz/2)                           (37a) 
   v = z v1 + (y1 + v1s) sin (πz/2)                           (37b) 
   τxz = τxz0 + f2 τxz2 + 

+(τxz2 + τxz2s) (π/2) cos (π z/2)                 (38a) 
   τyz = τyz0 + f2 τyz2 + 

+(τyz2 + τyz2s) (π/2) cos (π z/2)                 (38b) 
   σz = z (q/2) + [f3 −  sin (πz/2)] β1σz3 –  

      − σz3s sin (πz/2)                   (39) 
                                                                                            
   Continuity of u (with similar expressions for v) 
across interfaces is simply assured through the 
following recurrence relations 
 

   [u1s
(k) − u1s

(k+1)]sin 
π

2
αk = αk [u1

(k+1) − u1
(k)] +  

+[αk + sin 
π

2
αk] [u1

(k+1) – u1
(k)]            (40) 

 
Since [τxz0, τyz0] and σz1 = z q/2 are same throughout 
the laminate, recurrence relations for τxz2 (with similar 
expressions for τyz2) and σz3 are 
 
   f2(k+1)(αk) τxz2

(k+1) = {[τxz2s
(k) − τxz2s

(k+1)] +  

+[τxz2
(k) − τxz2

(k+1)]}
π

2
 cos 

π

2
αk         (41) 

   {[σz3s
(k)−σz3s

(k+1)]+β1[σz3
(k)−σz3

(k+1)]}sin
π

2
αk=        

 β1[f3(k+1)(αk) σz3
(k+1)− f3(k)(αk) σz3

(k)]    (42) 

 

With εz1 from constitutive relation, vertical deflection 

w(x, y, z) is given by 

 

   w = w0 – f2 εz1 + (π/2) wos cos (πz/2)         (43) 

 
Note that vertical deflections w0 and w0s are obtained 
from integration of shear strain-displacement 
relations (Note that εz1 is obtained from ε6 in the 
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constitutive relations (5) in the interior of each ply). 
They are 
 

   𝛼 w0 = ∫ [(ε40 − u1) dx + (ε50 − v1) dy]          (44) 

   𝛼 w0s = ∫ [(ε40 − u1s) dx + (ε50 − v1s) dy]       (45) 
                                                                 
Continuity across interfaces gives the recurrence 
relation 
 

   α[w0s
(k) – w0s

(k+1)] 
π

2
 cos 

π

2
αk =  

α [w0
(k+1) – w0

(k)] – [f2(αk) εz1](k+1)        (46) 
 
   B. Initial solution of primary extension problem 
 

   With the inclusion of gradients of the known ψ̃1 in 
the normal stresses [σx, σy]0 so that 
  

   σx0 = Q1j (εj0 – Sj6 σz0) − α ψ̃1,x  

   σy0 = Q2j (εj0 – Sj6 σz0) − α ψ̃1,y] 
 
In-plane equilibrium equations (1) become      
 

   α{[Q1j(εj0 – Sj6 σz0) − α ψ̃1,x],x +  
+ Q3j (εj0 – Sj6 σz0),y} = 0                (47a) 

   α{[Q2j (εj0 – Sj6 σz0) − α ψ̃1,y],y +  
+ Q3j (εj0 – Sj6 σz0),x} = 0                (47b) 

 
Above static equilibrium equations (47) along with 
two edge conditions (10) have to be solved for u0 and 

v0. They remain same in the integrated equations. 

 
   Above solutions for [u, v]0 with reference to 3-D 
problem are in error in transverse shear strain-
displacement relations due to w = z εz0 (εz0 = S6j σj0 + 

S66 q0/2 , j = 1, 2, 3, from constitutive relation). In 
order to rectify this error, it is initially necessary to 
consider f2(z) [u2, v2] which, in turn, induce [τxz1, τyz1]. 
Displacements from strain-displacement relations 
consistent with [τxz1, τyz1] and σz from equilibrium 
equation of transverse stresses are   
 
   w = z εz0 , u = u0 + f2 u2, v = v0 + f2 v2,  

        σz = f2 σz2          (48) 
 
(Note that σz2 is not priory known unlike σz1= q1/2 in 
bending problem) 
 
   Since w = z εz0 as face variable should not 
participate in static equilibrium equations (1), 
displacements [u2, v2] are modified in the form 
 
   [u2, v2]* = [(u2 – α εz0,x), (v2 – α εz0,y)]        (49) 

   τxz1 = − (Q44u2+ Q45 v2)                (50a) 
   τyz1 = − (Q55v2+ Q45 u2 )               (50b) 
 
   In order to keep [τxz3, τyz3] as free variables in the 
integrated equilibrium equations, f3(z) is modified with 
β1 = 1/3 as f*3(z) = f3(z) − β 1z so that  
 
   τxz = z (τxz1− β1 τxz3) + f3 τxz3              (51a) 
   τyz = z (τyz1− β1 τyz3) + f3 τyz3              (51b) 

 
One gets from equilibrium equation of transverse 
stresses with first term in equations (51) 
 
   α (τxz1,x + τyz1,y) = β1σz4         (52)  

 
One has from strain-displacement relations  
 
   [εx, εy, γ xy ]2* = [εx, εy, γxy]2 –  

−α2 [εz0,xx, εz0,yy, 2 εz0,xy]         (53)   

   
From integration of equilibrium equations, reactive 
transverse stresses are 
 
   τxz3 * = α (σ x,x + τxy,y) 2*              (56a) 

   τyz3 * = α (σ y,y + τxy,x) 2*              (56b) 

   σz4 = − α (τxz,x + τyz,y) 3*                (57) 

 
One equation governing in-plane displacements (u, 
v) 2 from equations (52) and (57) is 
 
α β1(τxz,x + τyz,y) 3* = α [(Q44 u + Q45 v)2,x +  

             + (Q54 u + Q55 v)2,y]               (58) 
 
   With the second equation v2,x = u2,y , the above 

equation becomes a fourth order equation in ψ2 to be 
solved along with harmonic function φ2 with three 
conditions u2* = 0 or σx2* = 0 ,  v2* = 0 or τxy2* = 0 and 
ψ2 = 0 or τxz3* = 0 along x (and y) constant edges. 
    
   Supplementary problem in the face ply   
 
   Here, corrective in-plane displacements in the face 
ply are assumed in the form: 
 

   [u, v]s = 
π

2
 [u, v]s cos (πz/2)                          (59) 

   σ0si = Qij ε0sj (i, j =1, 2, 3)                             (60)                                                                                           
  
If transverse shear stresses are expressed in terms 
of f3*, their continuity across interface is simply given 
by continuity of ψ1.  With the in-plane stresses σ0is 
along with [τxz, τyz] = [τxz1, τyz1]s sin (π z/2) and σz2 = 
σz2s cos (π z/2), integration of equilibrium equations 
give 
 
   τxz1s = − (2/π) α (Q1j ε0j,x + Q3j ε0j,y)s                   (61a) 
   τyz1s = − (2/π) α (Q2j ε0j,y + Q3j ε0j,x)s              (61b) 
   σz2s = (2/π)2 α2 [Q1j ε0j,xx + 2Q3j ε0j,xy +  

+Q2j ε0j,yy]s           (62)                                                                                           
    

In-plane distributions of [u0, v0]s are added as 
corrections to the known in-plane displacements [u0, 
v0] so that [u, v] in the supplementary problem are 

 

   [u, v] = [(u0+ u0s), (v0+ v0s)] cos (πz/2)      (63) 
   β0 σz2c = (2/π)2 α2 [Q1j ε0j,xx + 2Q3j ε0j,xy +  

Q2j ε0j,yy]s          (64)                                                         
    

By expressing [u0s, v0s] = − α [ψ0s,x, ψ0s,y], equation 
(64) becomes a fourth order equation in ψ0s to be 
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solved with two conditions along x (and y) constant 
edges  

 
   u0s or σxs0 = 0, v0s or τxys0 = 0               (65) 
 
   Continuity of displacements and transverse stresses 
across interfaces          
 
   In-plane displacements and transverse stresses in 
the face ply from above analysis are 
 

   [u, v] = [(u0+ u0s), (v0+ v0s)] cos (πz/2)      (66) 
   τxz = f1 τxz1 + (τxz1+ τxz1s)(π/2) sin (πz/2)            (67a) 
   τyz = f1 τyz1 + (τyz1+ τyz1s)(π/2) sin (πz/2)            (67b) 
   σz = (q/2) + [f2 − cos (πz/2)] β0 σz2 –  

−σz2s cos (πz/2)            (68)                                                                                          
    

   In the interior plies, displacements [u0, v0], thereby, 
in the neighboring plies are obtained from solution of 
sixth order system of equations (1, 2) governing [u0, 
v0]. They are dependent on material constants but 
independent of lamination. Displacements [u0, v0]s 

and transverse stresses [τxz1, τyz1, σz2]s are obtained 
from continuity conditions across interfaces.  
    
 
   Continuity of u (and v) across interfaces is simply 
assured through the recurrence relations (similar 
relations for v) 
  
   [u0s

(k) −  u0s
(k+1)]cos (παk/2) = αk[u0

(k+1)– u0
(k)]+        

         + [αk + cos (παk/2)] [u0
(k+1) – u0

(k)]        (69)                                                                                           
    
   Above analysis gives displacements and 
transverse stresses as 
 
   w = f1w1 + (π/2) w1ssin (πz/2) + f*3 w3       (70) 

   u = u0 + u2s cos (πz/2) + f2 u2                            (71a) 

   v = v0 + v2s cos (πz/2) + f2 v2                           (71b) 
   [τxz, τyz]= f1[τxz, τyz]1 + f*3 [τxz, τyz]3         (72)
  
    σz = q0(x, y)/2 + f2 σ*z2 + σz2s cos (πz/2) +  

+f2 σz2         (73)                                                               
 
   IV.  ASSOCIATED TORSION PROBLEMS  
 
   Here, the analysis requires only simple modification 
in the bending problem by replacing ψ1 and ψ3 with 
w0 and w2, respectively. Note that transverse shear 
strains from strain-displacement relations are [−αφ1,y, 
αφ1,x] which correspond to self-equating stresses. 
From zero face shear conditions, one gets an 
additional face deflection �̃�0c(x, y) given by 

 
   �̃�0c = ∫[φ1,y dx − φ1,x dy]         (74)                                                                                                                    
    
Above �̃�0c is a face variable which becomes zero with 
prescribed zero w0 at the edge of the plate by 
preventing vertical movement of intersection of the 
face with cylindrical surface of the side wall of the 
plate.  

 
   In the associated torsion problem in bending of the 
plate, normal strains [εx, εy, εz]1 are zero along mid-
plane. Similarly, they are zero along faces of the 
plate with reference to second order corrections in 
the extension problem and shear stresses 
correspond to non-torsion problem. In the associated 
torsion problem, the analysis requires only simple 
modification by replacing ψ2 and ψ4 with w1 and w3, 
respectively. 
   
   V. Sequence of solutions from uncoupled 2-D 
problems 
 
   Disadvantage in the application of EPT is in the 
development of software for generation of fk(z) 
functions and β2k+1, necessary for thickness ratio 
varying up to unit value. Errors in the analysis are 
due to statically equivalent transverse stresses 
associated with f2(z) and f3(z) in bending problems, 
and f3(z) and f4(z) in extension problems. In order to 
rectify these errors, it is more convenient to consider 
successive z-integrations of f1 = z in the suitable 
Fourier series expansion. For this purpose, we 
consider Fourier series of f1(z) in the form with λn = 
2/[(2n-1)π] 
 

   f1(z) = ∑ An sin (z/λn )  (sum on n)        (75) 
 
in which 
 

   An = ∫ sin
1

0
(z/λ n) dz = − (−1)n (λn)2         (76) 

 
Relevant [f2, f3, f4] functions are expressed (with sum 

on n), for convenience, in the form 
 

   f2 (z) = ∑ An λn cos (z/λn)               (77a) 

   f3(z) = ∑ An λn
 2 sin (z/λn)              (77b) 

   f4(z) = ∑ An λn
 3 cos (z/λn)              (77c) 

 
(Term by term differentiation in each of the above 

series is valid. At the ply analysis, replace z to z/𝛼k so 

that λn becomes λnαk) 

 

In the bending problem, displacements [u, v] due to 

σz3 in constitutive relations are expressed as 
 

   [u, v] = ∑ An λn
2[u, v]2n+1 sin (z/λn)        (78) 

       
Correspondingly, transverse shear stresses are 
expressed as 
 

   [τxz, τyz] = ∑ An λn [τxz, τyz]2 cos (z/λn)         (79)  

 
Equations governing [u, v]n from equilibrium 
equations (9) with vn, x = un,y are 
 

 α [Q1j(εj – Sj6 σz3),x + Q3j(εj – Sj6 σz3),y] + τxz2= 0  
                     (80a) 
 α [Q2j(εj – Sj6 σz3),y + Q3j(εj – Sj6 σz3),x] + τyz2= 0  
                             (80b) 
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Above Poisson equations have to be solved with 
relevant homogeneous edge conditions. 
 

   In the extension problem, in-plane displacements 

[u, v] due to σz4 are expressed as 
 

   [u, v] = ∑ An λn
3 cos (z/λn) [u, v]2n        (81) 

 
Correspondingly, transverse shear stresses are 
expressed as 
 

   [τxz, τyz]  = ∑ An λn
2 sin (z/λn) [τxz3, τyz3]    (82) 

 
Equations governing [u, v]2n from equilibrium 
equations (9) with v,x = u,y are 
 

 α [Q1j(εj – Sj6 σz4),x + Q3j (εj – Sj6 σz4),y] + τxz3= 0  
                            (83a) 
α [Q2j(εj – Sj6 σz4),y + Q3j (εj – Sj6 σz4),x] + τyz3 = 0  
                            (83b) 
 
Above Poisson equations have to be solved with 
relevant homogeneous edge conditions. 
           
   VI.  UNSYMMETRICAL LAMINATES                  
 
   Here, suffix n in (− hn) of the bottom face is 
replaced by m with number of layers ‘m’ in the 
bottom-half z ≤ 0 need not be equal to number of 
layers ‘n’ in the upper-half z ≥ 0. Initial set of 
solutions in the upper-half of the laminate in all the 
problems presented above are unaltered up to the 
reference plane z = 0. One has to consider continuity 
of non-zero displacements and transverse stresses 
across reference plane. They will be different due to 
asymmetry from similar analysis in the bottom-half of 
the laminate. A novel procedure is proposed here to 
maintain necessary continuity across z = 0 plane in 
bending problems and a similar procedure in 
extension problems. Corresponding procedures in 
torsion problems which involve simple modifications 
are not presented.  
 
   A.  Bending problem   
 

   From analysis of the upper-half the laminate,𝜎z = 0 
and transverse shear stresses including first order 
corrections due to σz1 in the in-plane constitutive 
relations along the reference plane z = 0 are 
 
(τxz)z=0 = τxz0 + f2(0) τxz2+ (π/2) [τ*xz2 + τxz2s]          
                             (84a) 
(τyz)z=0 = τyz0 + f2(0) τyz2+ (π/2) [τ*yz2 + τyz2s]          
                             (84b) 
 
in which 
 
   τ*xz2= τxz0 + (Q44 u1 + Q45 v1)c                (85a) 
   τ*yz2 = τyz0 + (Q54 u1 + Q55 v1)]c                  (85b) 
                                                                                                                                                                             

   Continuation of the same analysis with 𝑧 (= − z) ≥ 

0, one obtains along 𝑧 = 0 plane that normal stress 𝜎z 

= 0 and 
 

   𝜏xz=𝜏xz0+𝑓2(0)𝜏xz2+ (π/2)[ 𝜏*xz2 +𝜏xz2s]                (86a)  

   𝜏yz=𝜏yz0 +𝑓2(0)𝜏yz2+(π/2)[𝜏*yz2 + 𝜏yz2s]       (86b)                                                                                           
    
in which 

  

   𝜏*xz2 = 𝜏*xz0 + (�̅�44𝑢1 + �̅�45𝑣1)c                            (87a)  

   𝜏*yz2 = 𝜏*yz0 + (�̅�45𝑢1 + �̅�55𝑣1)c                 (87b)                                                                                                                                                                                     
    
   Associated extension problem in bending          
 
   In the initial set of solutions, transverse shear 
stresses obtained along z = 0 plane are sum of   the 
stresses in equations (85, 87). For continuity of these 
stresses across z = 0 interface, one has to consider 
the adjacent plies above and below the interface 
subjected to shear stresses 
 

   τxz ʹ = ± [𝜏̅xz− τxz]z=0; τyzʹ = ± [𝜏̅yz− τyz]z=0         (88) 
                                                        
Continuity of these stresses is ensured by adding 
solutions of the laminate with free top and bottom 
faces along with above stresses in the adjacent plies 
of the interface z = 0 to the solutions of problems in 
the  initial set. Continuity of these stresses ensures 
also continuity of vertical displacement across z = 0 
plane.  
 
   It is convenient to introduce the coordinate zʹ = (1− 
z) for (z ≥ 0) so that the reference plane z = 0 
corresponds to zʹ = 1. hkʹ = 1- hk, interfaces αkʹ= (1– 
αk). Here, q = 0 along zʹ = 1 and the faces zʹ=0 are 
free of transverse stresses. It is inconvenient to use 
linear zʹτxzʹ along edges satisfying above face 
conditions since the corresponding solutions for in-
plane displacements [u0ʹ, v0ʹ] from in-plane 
equilibrium equations are lamination independent 
thereby not satisfying continuity across interfaces. As 
such, edge conditions at x = constant edges (and 
analogous conditions along y = constant edges) are 
assumed in the form 
 
   τxz =  τxzʹ(y) sin (π zʹ/2)                               (89)                                                                                            
 
Since [τxzʹ, τyzʹ] are gradients αʹ[ψ1,x, ψ1,y] of a 
harmonic function ψ1 and ∂/∂z = − ∂/∂zʹ, in-plane 
static equilibrium equations governing  [u0ʹ, v0ʹ] cos(π 
zʹ/2) are 
 
   αʹ[Q1j εʹj,x + Q3j εʹj,y] = αʹ (π/2) ψ1,x                     (90a) 
   αʹ[Q2j εʹj,y + Q3j εʹj,x] = αʹ (π/2) ψ1,y                     (90b)                                                                     
 
Solutions of the above equations with zero bending 
and twisting stresses along edges give [u0ʹ, v0ʹ] in 
each ply independent of lamination. Continuity of 
these displacements across interfaces is through 
recurrence relations 
 
[uʹ0(k) − uʹ0(k+1)] cos (παʹk/2) = [uʹ0(k+1) − uʹ0(k)]     (91) 
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Normal strain εʹz = εʹz0 cos (πzʹ/2) from constitutive 
relation in which εʹz0 is given by 
 
   εʹz0 = Sij σʹj    (i, j = 1, 2, 3)         (92)                                                                                           
    
Vertical deflection wʹ= − εʹz0 (2/π) sin (πzʹ/2) from 
integration of εʹz in the interior of the ply. This 
deflection along the interface is obtained from shear 
stress-strain and strain displacement relations as 
 

   𝛼 wʹ = (π/2) cos (παʹk/2) ∫ [(εʹ40 − uʹ0) dx +  
                     +(εʹ50−vʹ0)dy]   (93)                                                                                           

    
Its continuity across interfaces is through recurrence 
relations  
 
   α(εʹ(k) − εʹ(k-1))z0 (2/π) sin (π αʹk /2) = (π/2) ∫ 
[(εʹ40−uʹ0)dx+(εʹ50 − vʹ0)dy](k) cos (παʹk/2)      (94)                                                                                            
 
   Similar analysis is to be carried out with 𝑧 (= − z) ≥ 

0 and 𝑧ʹ = (1 - 𝑧) so that 𝑧 = 0 plane is 𝑧ʹ = 1 (this part 
of the analysis is omitted). By adding the above 
vertical displacements to the corresponding 
displacements obtained in the upper-half and bottom-
half of the relevant symmetric laminate ensure 
continuity across reference plane. One can choose, 
in principle, any one interface (excluding faces of the 
laminate) as reference plane but from consideration 
of limitations of small deformation theory, it is better 
to choose either mid-plane or its adjacent interface 
as reference plane.    
 
   B.  Extension problem   
 
   Along the reference plane z = 0, w and transverse 
shear stresses are zero and in-plane displacements 
and σz are (sum n ≥ 1) 
 
   u = [u0 + (u*2 + u2s)+ f2n(0) u2n                           (95a)

    v = [v0 + [v*2 + v2s] + f2n(0) v2n                           (95b) 
   σz=q0/2+[σ*z2+σz2s]+f2n(0)σz2n (96)                                                                               
    

Continuation of the same analysis with 𝑧 (= − z) ≥ 0, 
𝑢, 𝑣 and σz along 𝑧 = 0 plane are   
 

   𝑢 = 𝑢0+ [𝑢2* + 𝑢2s] + 𝑓2n(0)𝑢2n                           (97a) 

   𝑣 = 𝑣0+ [𝑣2* + 𝑣2s] + 𝑓2n(0)𝑣2n                           (97b) 

   σz = q0/2 + [σ*z2 + σz2s] + 𝑓2n(0) σz2n           (98) 
                                                                                            
Continuity of σz and in-plane displacements across z 
= 0 plane requires them to be same in the adjacent 
ply on each side of the z = 0 plane. For this purpose, 
one needs solutions of associated bending problems.  
 
    Associated bending problem in Extension   
 
   In the initial set of solutions, in-plane displacements 
obtained along z = 0 plane are sum of the 
displacements in equations (95, 97). For continuity of 

these displacements across z = 0 interface, one has 
to consider the adjacent plies above and below the 
interface z = 0 with 
 

   [uʹ, vʹ, σzʹ] = ± [(u̅ – u), (v̅ – v), (σ̅ z− σz)    (99)                                                                                        
  
Continuity of u, v and σz is ensured by adding 
solutions of the laminate with free top and bottom 
faces along with above displacements and σzʹ in the 
adjacent plies of the interface z = 0 to the solutions of 
problems in the initial set. 
 
   It is convenient to introduce the coordinate zʹ = (1− 
z) for (z ≥ 0) so that zʹ=1 is reference plane z = 0, hkʹ 
= 1- hk and α kʹ = (1– αk) are interfaces. Here, σzʹ = 

[σz− σz] and [uʹ, vʹ] = [(u̅ – u), (v̅ – v)] along zʹ = 1 
plane and the faces zʹ=0 are free of transverse 

stresses. It is convenient to assume σzʹ = [σz− σz] sin 
(πzʹ/2). Then, equation governing ψʹ is α2 Δ ψʹ1 = σzʹ 
with ∂/∂z = − ∂/∂zʹ and  
 
   τxzʹ(π/2) cos (πzʹ/2) = αʹψʹ1,x (π/2) cos (πzʹ/2)     
               (100a)  
   τyzʹ (π/2) cos (πzʹ/2) = αʹψʹ1,y (π/2) cos(πzʹ/2)     
               (100b)  
 
Above equation is to be solved with zero normal 
gradient (ψʹ1)n along the edge of the plate. 
 
   In-plane static equilibrium equations governing [u0ʹ, 
v0ʹ] sin (π zʹ/2) are 
 
αʹ[Q1j εʹj,x + Q3j εʹj,y] +αʹ (π/2) ψʹ1,x = 0                (101a) 
αʹ[Q2j εʹj,y + Q3j εʹj,x] +αʹ (π/2)2 ψʹ1,y = 0              (101b) 
                                                                                                
Solutions of the above equations with zero bending 
and twisting stresses along edges give [u0ʹ, v0ʹ] in 
each ply independent of lamination. Continuity of 
these displacements and σzʹ across interfaces is 
through recurrence relations 
 
[uʹ0(k) − uʹ0(k+1)]sin (παʹk/2) = [uʹ0(k+1) − uʹ0(k)]           
                           (102a) 
[vʹ0(k) − vʹ0(k+1)]sin(παʹk/2) = [vʹ0(k+1) − vʹ0(k)]             
                           (102b) 
[σzʹ(k) − σzʹ(k+1)]sin (παʹk/2) = [σzʹ(k+1) − σzʹ(k)]  
                 (103) 
                                                                                              

   Similar analysis is to be carried out with (z̅ = − z) ≥ 
0 and z̅ʹ = (1 - z̅) so that z̅ = 0 plane is 𝑧ʹ = 1 (this part 
of the analysis is omitted). By adding in-plane 
displacements and normal stress σzʹ with those in the 
analysis of the upper-half and bottom-half of relevant 
symmetric laminates ensure continuity across 
reference plane.  
 
   CONCLUDING REMARKS 
 
   Poisson’s theory developed in the present study for 
the analysis of bending of anisotropic plates within 
small deformation theory forms the basis for 
generation of proper sequence of 2D problems. 
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Analysis for obtaining displacements, thereby, 
bending stresses along faces of the plate is different 
from solution of a supplementary problem in the 
interior of the plate. A sequence of higher order shear 
deformation theories lead to solution of associated 
torsion problem only. In the primary analysis of 
homogeneous and laminated plates, transverse 
stresses are independent of material constants [6, 9].  
       
   One significant observation is that sequence of 2D 
problems converging to 3D problems in the analysis 
of extension, bending, and torsion problems are 
mutually exclusive to one other. 
 
   HIGHLIGHTS 
 
   Estimation of transverse stresses in the preliminary 
solution is independent of material constants through 
Poisson’s theory in the analysis of primary bending 
problem defined from Kirchhoff’s theory. Hence, it is 
unaltered in the analysis of bending of homogeneous 
and laminated plates with orthotropic and anisotropic 
material. 
 
   An attempt is made here to present a proper 
sequence of sets of 2-D problems necessary for 
analysis of laminated plates within small deformation 
theory. Emphasis is on the usage of vertical 
displacement variable. If it is used as a domain 
variable, analysis corresponds to the solution of 
associated torsion problem in which normal strains 
are not zero unlike in the St. Venant’s torsion 
problem. In bending and extension problems, it 
cannot be used as a domain variable. In the interior 
of the domain, it is from thickness-wise integration of 
normal strain ϵz. Zero vertical displacement along the 
edge of the plate is to be replaced by zero ϵz. 
Displacement w(x, y) arising out of integration of ϵz is 
to be obtained as a face variable from integration of 
transverse strain-displacement relations. Zero w(x, y) 
along the prescribed edge condition requires only the 
prevention of vertical movement of line segment of 
intersection of face and wall of the plate.  
 
   Set of polynomials generated in z is necessary in 
satisfying both static and integrated equilibrium 
equations. (It is, however, not simple to develop 
software for generation of fk(z) functions and β2k+1, 
necessary for application of the theory with thickness 
ratio varying up to unit value. This problem is avoided 
recently in [10].  
 

   The present theory needs exploitation in 
investigations on optimum ply lay-up, its utility in the 
analysis of associated Eigen-value problems of free 
vibration and buckling of plates, and even in the area 
of fracture mechanics. However, polynomials in z are 
not adequate for proper solutions of 3-D problems. 
Solution of a supplementary problem based on 
appropriate trigonometric function in z representing 
each of displacement and stress components is 
required. Solution of additional similar problem is 
required in the analysis of unsymmetrical laminates. 
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