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Abstract—In this paper, we have presented a new 
conjugate gradient algorithm based on the Armijo-
type line search for solving unconstrained 
optimization problems. Under some suitable 
conditions, we proved the global convergence of 
the algorithm. The numerical results show that the 
proposed methods are effective. 
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I.  INTRODUCTION  

Various numerical methods have been introduced to 
solve unconstrained optimization problems as they 
appear in engineering, mathematics and computer 
science. The conjugate gradient method is an efficient 
algorithm for the numerical solution of unconstrained 
optimization problems. In this paper, we consider the 
following unconstrained optimization problems  

 ( )min
nx R

f x
                                         (1) 

where ( ) : nf x R R  is a smooth, nonlinear function 

whose gradient will be denoted by ( )g x . the conjugate 

gradient method for solving problem (1) always 

generates a sequence { }kx  as  

1 ,          0,1,2 ,k k kkx x d k   
                     

       (2) 

where 
0k 

is obtained by line search and the 

directions kd
 are generated as 
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where
( )kk f xg 

, and k  is a scalar, different 
conjugate gradient algorithms correspond to  different 

choices for the scalar parameter k . There are some 

well-known formulas for k  which are given 
below(see[1-6]): 
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or by other formulae(where 11   kkk ggy , the 

symbol  be the Euclidean norm.). The stepsize k is 

determined by exact or inexact line search. The 

Armijo-type line search: Let 0s be a constant,

   1,0,1,0   , choose k to be the largest  in 

 ,,,, 2  sss such that  

  k

T

kkkk dgdxff   . 

In this paper, we devote to the global convergence 
of a modified Conjugate Gradient Method for 
unconstrained optimization problems. This method 
uses a new Armijo-type line search which allows one 
to find a larger accepted step size and possibly 
reduces the function evaluations at each iteration. It 
can guarantee the global convergence of modified 
method under some mild conditions. 

II. DESCRIPTION OF ALGORITHM. 

We first assume that 
H2.1 

 i) The objective function ( )f x  is continuously 

differentiable and has a lower bound on the level set 

0 0{ | ( ) ( )}nL x R f x f x   , where 0x  is the starting 

point. 

ii)  The gradient ( )g x  of ( )f x  is Lipschitz continuous 

in some neighborhood U of L0, namely, there exists a 

constant L > 0 such that 

, ,( ) ( ) .    x g y L x y x y Ug  

Throughout this paper we suppose that the Lipschtiz 

constant L of g(x) is a known priori or easy to estimate 

in practical computation. There are some estimations 

Lk for the Lipschitz constant L [6-7]. Motivated by [6], 

we propose the following New Armijo-type line search: 
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Given      1,0,1,0,1,0,
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and k is the first   in 

 2, , , ,k k kl l l  such that： 

  k

T
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Now we state our algorithm as follows. 

Algorithm A: 

Step 0 Initialization: 

Given a starting point
nRx 0 , choose parameters

 
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   0,1 , 0,1 .c    Set : 0k  ; 

Step 1 If |||| kg , STOP, else go to Step 2; 

Step 2 Compute the search direction kd by (3), where 
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Step 3  k  is defined by the new Armijo-type line 

search (4). 

Step 4  Let kkkk dxx 1 , k := k + 1, and go to Step 

2. 
 
Lemma 2.1  Assume thatH2.1 hold, the infinite 

sequence }{ kx is generated by Algorithm A. Then,  

1) there exist 0 00  0m and M   such that

0 0 km L M  . 

2) for 1k  , if  
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III. GLOBAL CONVERGENCE OF ALGORITHM 

In this section, we analyze the global convergence of 

the Algorithm. 

Lemma 3.1. Assume thatH2.1 hold, then the new 

Armijo−type linear search is well-defined. 

Proof.  1)  If 
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 2) If 
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, then, set 

k 1 , the following inequality does not hold, 

  k

T

kkkk dgdxff   , 

i.e. 

  k

T

kkkk dgdxff   。 

Considering mean value theorem on the left-hand side 

of the above inequality, there exists  1,0kt , such 

that 

  k

T

kk

T

kkk dgddtxg   , 

i.e. 

  k

T

kk

T

kkk dgddtxg   . 

By H2.1, and Lemma 2.1, we have  

 

   

 

2

2

1

1 .

k k k k k k k

T T

k k k k k k

k

L d g x t d g d

g x t d d g d

c g

 

 



  

   

 

 

From Lemma 2.1, we can get that  
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Theorem 3.1 Under the assumption H2.1, the 

sequence }{ kx  generated by Algorithm A is global 

convergent. That is 

lim 0k
k

g


 . 

Proof:  Set  0 inf k
k

 


 ，if 0 0  ，then we have  
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By H2.1 we have 
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  If the conclusion doesn’t hold, assume that 0 0  . 

Then, there exists an infinite subset  0,1,2,...,K 

such that  
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By Lemma 2.1 and Lemma 3.1 we obtain 
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Therefore, there is a 'k  such that

1 ', ,k kl k k k K      . Let 
1

k   , by 

Lemma 3.1 we obtain 
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Which contradicts (5). This shows that 0 0  . The 

whole proof is completed. 

IV. NUMERICAL EXPERIMENTS 

In the following numerical experiment, the code of the 
proposed algorithm is written by using MATLAB 7.0. 

We stop the iteration if the inequality 
610kg   is 

satisfied. The problems that we tested are from [8] and 
[9]. Table 1 show the computation results, where the 
columns have the following meanings: 
Dim —the dimension of the problems;  
NI—the number of iterations; 
NF—the number of function evaluations; 

 NG—the dimension of gradient evaluations; 

Table 1 The numerical results of Algorithm A  

Problem Dim   
Algorithm A 

NI/NF/NG 

Penalty1                                         4   5/128/89         

Trigonometric 100   18/72/67 

Brown 2 13/148/51 

Axis hyper 500 183/6168/705 

DeJong 
2 3/18/13 

500 4/24/15 
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