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Abstract—This paper is to continue our study on 
the global-local mean square error criterion 
(GLOMSEC) in Gaussian equivalent linearization 
(GEL) [15-16]. Herein, an extension of GLOMSEC 
to nonlinear oscillators under narrow band 
random input is presented. Two illustrative 
examples comprise Duffing system and Duffing 
one with nonlinear damping to be analyzed. The 
results show that the accuracy of outputs by the 
proposed criterion is significantly improved in 
comparison with the one by the classical criterion. 
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I.  INTRODUCTION  

One popular class of methods for approximate 
solutions of nonlinear systems under random 
excitations is Gaussian equivalent linearization (GEL) 
techniques. These techniques are popular among 
structural dynamics and in the engineering mechanics 
community. This is partially due to its simplicity and 
applicability to systems with multi-degree-of-freedom 
(MDOF), and systems under various types of random 
excitations. The underlying idea of GEL is to replace 
the nonlinear system by a linear one such that the 
behavior of the equivalent linear approximates that of 
the original nonlinear oscillator. The standard way of 
implementing this technique is that the coefficients of 
linearization are to be found from the classical mean 
square error criterion that minimizes the equation 
error. Although the method is very efficient, but its 
accuracy decreases as nonlinearity is increasing and 
in many cases it results in very larger errors due to the 
non Gaussian property of the response. For this 
reason, a good deal of research has been published in 
recent decades on improving GEL that were reported 
in [1-7]. In 2006, Crandall’s work [8] described a 
number of interesting episodes in the history of the 
linearization technique that have arisen in the past half 
century. In 1995 based on the assumption that the 
global integration domain taken in the mean square 
error criterion should be reduced to a local one where 
the response would be concentrated N. D. Anh and Di 
Paola [9] proposed a local mean square error criterion 
(LOMSEC). Further investigations by N. D. Anh and L. 
X. Hung [10-11] have showed a good accuracy of this 
criterion, however, the local domain in question was 

unknown and it has resulted in the main disadvantage 
of LOMSEC. Recently a dual conception was 
proposed in the study of responses to nonlinear 
systems [12] and has been developed in [13-14]. One 
of significant advantages of the dual conception is its 
consideration of two different aspects of a problem in 
question allows the investigation to be more 
appropriate. Using the dual approach to LOMSEC, a 
new technique namely global-local mean square error 
criterion (GLOMSEC) was proposed [15-16] for 
nonlinear systems under white noise excitation, in 
which new values of linearization coefficients are 
obtained as global averaged values of all local 
linearization coefficients. The applications to nonlinear 
oscillators under white noise excitation, MDOF 
included [15-16] show a significant improvement on 
the accuracy of solutions. The white noise excitation 
that has been widely used thus far is a mathematical 
idealization rather than an adequate representation of 
many excitation processes in reality. It is 
acknowledged that such an idealization can be used in 
the analysis of response that give important insight 
and useful results in the design process of a particular 
system. Quite frequently in real nature, the excitations 
should conceptually be better described as narrow 
band random processes. An important class of 
engineering systems modeled as dynamical ones 
under narrow band excitation is ships and ocean 
structures subjected to water waves, e.g. ship rolling 
motion, structures subjected to wind and earthquake 
loadings, vehicle vibration by road roughness. While 
with wide ban excitation, at least simple nonlinear 
systems can be solved, the corresponding solutions 
with narrow band excitation are not available. Due to a 
Gaussian narrow band process is essentially a filtered 
white noise, dimension of the response vector shall be 
at least four, the Fokker-Planck (FP) equation for the 
probability density can be easily built but solving this 
equation is a formidable task. The stochastic 
averaging method can reduce the number of variables 
to three, but the obtained FP equation is still difficult to 
solve. Thus GEL is still an efficient tool to get 
approximate solutions. Applications of GEL to 
nonlinear oscillators under narrow band excitations 
were reported in [17-24]. As the above-mentioned, the 
improvement of GEL for more accurate solutions is 
needful. This paper presents an extension of 
GLOMSEC with the input to be narrow band excitation. 
Two illustrative examples comprise Duffing system and 
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Duffing one with nonlinear damping to be analyzed. 
The applications show that the accuracy of outputs by 
the proposed criterion is significantly improved in 
comparison with the one by the classical GEL. 

II. GLOMSEC FOR NONLINEAR OSCILLATORS UNDER 

NARROW BAND EXCITATION  

Consider a nonlinear oscillator under             
narrow    band excitation governed by 

 ,z g z z f                                                             (1) 

Where,  ,g z z  is a nonlinear function of zz , ,  f  is a 

narrow band excitation that can be obtained by 
filtering a stationary Gaussian white noise through a 

linear filter with center frequency f  and bandwidth 

 such that the equation of motion for the filter is 
2 2

f ff f f w                                                       (2) 

Where, w is the zero mean Gaussian white noise 

whose spectral density is S . The form of filter (2) was 

presented in publications by Iyengar, R.N. [21] and 
Cho, W.S. To [24] when considering a cubic 
hardening oscillator under narrow band excitation. 

The spectral density function of f is 

   
2 4

f fS H S                                                    (3) 

Where,      
2

H H H    ,  H   is the complex 

frequency response of the linear filter defined by 

   
1

2 2

fH i


                                                 (4) 

Therefore,  
 

4

2
2 2 2 2

f

f

f

S
S


 

   
                 (5) 

The variance of the filter response f is 

 
2

2 f

f f

S
S d





 
    

                                           (6) 

Suppose that a stationary solution to (1) exists. 
Following GEL, (1) is placed by the following 
equivalent linear equation 

x cx kx f                                                                (7) 

Where, ,k c are linearization coefficients that shall be 

determined by minimizing the error between the 
original nonlinear system in (1) and the equivalent 

linear system in (7) in some sense. In (7), )(tx  and 

)(tx  assumed as zero mean Gaussian random 

processes.  

Denote  L  the frequency response function of the 

linear  system (7) that defined by 

   
1

2L k i c


                                                    (8) 

The spectral density function of process )(tx can be 

obtained as follows. 

     
 

 

2

2
2 2 2

f

x f

S
S L S

k c


    

  

                    (9) 

The variances of )(tx and )(tx  respectively are 

   2 2 2;    x x x xS d S d

 

 

          .                     (10) 

Combine (5), (6), (9), (10) then one can get the 

variances of )(),( txtx   as follows.  

 

    

 

    

2 2 22
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ff
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f f
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f f

ck c cS

ck k c c k

S c

c k c c k

    
 

       
  

  
 

       
  

              (11) 

2 2,  x x   are considered as the approximate solutions to 

original nonlinear oscillator in (1). However, in (11), 

the linearization coefficients ,k c must be defined by 

minimizing the error between the original nonlinear 
oscillator in (1) and the equivalent linear oscillator in 
(7) in some sense. The error between (1) and (7) is 

   , ,e x x g x x kx cx   .                                           (12) 

The classical GEL requires  2

,
, min

k c
e x x  , or in 

explicit form of  

   2

,
, , min

k c
e x x P x x dxdx

 

 

  .                                 (13) 

Where, ( , )P x x is the normal joint probability density 

function (PDF) of the random variables )(tx and )(tx  

that can be separated into two independent single 

PDFs ( , ) ( ) ( )P x x P x P x  with the assumption that 

)(tx and )(tx are mutually independent. 

The necessary conditions for (13) to be true are   

   2 2, ,
0, 0.

e x x e x x

k c

 
 

 
                                 (14) 

Expanding (14) and noting that 0xx , one gets 

2 2

( , ) ( , )
, .

g x x x g x x x
k c

x x
                                  (15) 

Equations (11) and (15) form a close system for 

determining the unknowns ,k c , )(tx  and )(tx .  

Since the integrations is taken over the entire 
coordinate space (  , ), criterion (13) may be 

called as global mean square error criterion. Basing 
on an assumption that the global integration domain 
taken in the classical criterion should be reduced to a 
local one where the response would be concentrated, 
N. D. Anh and Di Paola [9], N. D. Anh and L. X. Hung 
[10-11] proposed a local mean square error criterion 
(LOMSEC) as follows. 

   
0 0

0 0

2

,
, , min

x x

k c
x x

e x x P x x dxdx
 

  .                             (16) 

Where, 00 , xx  are given positive values. The expected 

integrations in (16) can be transformed to 

nondimensional variables by 0 0,  x xx r x r     with r  

is a given positive value,  x and  x are the normal 
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deviations of the random variables )(tx and )(tx , 

respectively. Thus, criterion (16) leads to 

     2 2

,
, , , min  

x x

x x

r r

k c
r r

e x x e x x P x x dxdx

 

   

               (17) 

Where, [.] denotes the local mean values of random 
variables which are taken as follows. 

     . . ,  
x x

x x

r r

r r

P x x dxdx

 

   

   .                                       (18) 

Similar to the classical GEL, one gets  

   
2 2

( , ) ( , )
( ) , ( ) .

g x x x g x x x
k r c r

x x
 

      

                            (19) 

It is seen from (18) and (19) the linearization 
coefficients obtained by LOMSEC are functions 

depending on r ( ( ), ( )k k r c c r  ), and also depending 

on the local mean values of random variables that are 
not explicit expressed here. 
The appendix provides the calculation of local mean 

values of )(tx and )(tx by LOMSEC. Formulas in (19) 

indicate that the linearization coefficients are functions 
depending on parameter r  and when r  is 
determined they become constant values. In this 

sense the linearization coefficients ( ), ( )k r c r can be 

called as local linearization coefficients. The 

unknowns ( ), ( )k r c r , ( )x t and ( )x t  can be obtained 

when r is given. The main limitations of LOMSEC, is 
that the local domain of integration, namely in our 
case the value of r, is unknown and the open question 
is of how to find it. Using the dual conception to 
LOMSEC, the authors of [15-16] suggested that 
instead of finding a special value of r one may 
consider its varying in all the global domain of 
integration. Thus, the constant linearization 

coefficients ,k c can be suggested as global mean 

values of all local linearization coefficients as follows. 

0

1
( ) ( ) ,

s

s
k k r Lim k r dr

s

 
   

 


0

1
( ) ( ) .

s

s
c c r Lim c r dr

s

 
   

 
                                    (20) 

Where, <.> is used as the conventional notation for 
averaging operators of deterministic functions. 
Criterion (20) is called global-local mean square error 
criterion (GLOMSEC). Now (11), (19) and (20) allow 
finding the unknowns without specifying any value of 
r, in such way GLOMSEC is extended to nonlinear 
oscillators under narrow-band random excitation.  

III. ILLUSTRATIVE EXAMPLES  

A. Duffing oscillator under narrow-band excitation  

The equation of oscillator is described by  
2 3( )z z z z f                                                (21) 

Where, 2, ,     are positive parameters, 

  2 3, ( ) g z z z z z    is a nonlinear function of 

zz , , and f is a narrow-band excitation that its motion 

is defined by the above given (2). The original 

nonlinear equation (21) can be replaced by the 
equivalent linear equation as described by (7). 
The key procedure is that of defining the linearization 

coefficients of ,k c . Apply (19) and the results from 

the appendix (a.5-a.7) to find ( ), ( )k r c r by LOMSEC. 

   

   

2 2 2 4

2 2

2
2

2, 0, 2,2 2 2

2
1,1, 0,

2 2 2 3

2 2

( , )
( )

2 2
1 1 ,

2 2

( , )
( ) .

r r r

rr r

xx x xg x x x
k r

x x

T x T T
x

TT x T

x xx x xg x x x
c r

x x

         
  

      

   
           

  

         
   

      

(22) 

The formula (22) indicates ( )  c r   (constant) while 

( )k r depends on r , apply (20) to find this linearization 

coefficient by GLOMSEC and note that 2 2  xx   . 

2,2 2 2

1,0 0

1 1
( ) ( ) .

s s
r

x
s s

r

T
k k r Lim k r dr Lim dr

s s T 

  
          

   
 

                                                                                (23) 

Where, 
, ( 1,2)n rT n is defined by (a.5) in the appendix. 

The limitation value in (23) can be obtained by the 
computational approximate calculation as follows. 

2,

1,0

1
2.41189

s
r

s
r

T
Lim dr

s T

 
  

 
 .                                       (24) 

The final result of the linearization coefficients 
obtained by GLOMSEC to be 

2 2 22.41189 ,  .xk c                                       (25) 

Use (22) and let r  , one obtains the linearization 

coefficients as defined by the classical GEL 
2 2 23 ,  xk c                                                 (26) 

For the purpose of evaluating error of solutions 
obtained by GLOMSEC and the classical GEL while 
the exact solution of the considered original system 
does not exists, a rather accurate solution obtained by 
the energy balance method [4,7] is used. Following 
this method, the mean square differences of potential 
and dissipative energy between the governed 
nonlinear system and its equivalent linear one should 
be minimized. The potential function and dissipative 
function are defined by the following form  

 
0

( )  U g d



    .                                                  (27) 

Where,  g  is the stiffness element causing the 

potential energy, or the damping element causing the 
dissipative energy. Apply (27) for the nonlinear system 
(21) and its equivalent linear system (7), one gets the 
respective potential functions and dissipative 
functions. The energy balance method requires 
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 
22

2 4 2
2 3 2

0 0

2 2
2 2

0 0

2 4 2

min, min. 
2 2

x x

x x

k c

x x x
x x dx kxdx k

x x
xdx cxdx c

    
             

    

   
         

  

 

 

  

                                                                                (28) 

The necessary conditions for (28) to be true are   
2

2 4 2
2

2
2 2

0,
2 4 2

0.
2 2

x x x
k k

x x
c c

  
        

  

 
     
 

                       (29) 

Expand (29) and note that 2 2  xx    the linearization 

coefficients by the energy balance method to be 
2 2 22.5 ,  . xk c                                             (30) 

Combine in pairs each (25), (26), (30) with (11) 
resulting in the closed equation pairs that enable 

obtaining solutions by GLOMSEC ( 2

,x G ), the classical 

GEL ( 2

,x C ), the energy balance method ( 2

,x E ), 

respectively. It should be that such equation pairs will 
give multi-solution, in which just real and positive one 
is taken. Consider the system with parameters 

2 2, , , , 1fS      meanwhile   varies. The results are 

presented in TABLE I. Denote %Err the relative 

errors of solutions compared to ones by the energy 
balance method. 

TABLE I.  THE MEAN SQUARE RESPONSES OF THE CONSIDERED 

SYSTEM WITH 
2 2 1fS         AND   VARIES. 

  2

,x E  2

,x C  %Err  2

,x G  %Err  

0.1 

1 

10 

100 

1.86038 

0.66376 

0.16687 

0.03720 

1.75024 

0.60015 

0.14855 

0.03296 

5.920 

9.583 

10.979 

11.398 

1.88195 

0.67688 

0.17072 

0.03809 

1.159 

1.977 

2.307 

2.392 

The relative errors indicate that in considered system, 
the solutions given by GLOMSEC are closer to the 
ones given by the energy balance method over the 
classical GEL, especially the nonlinearity is strong. 

B. Duffing oscillator with nonlinear damping 
under narrow-band excitation  

The equation of oscillator is described by  
3 3z z z z f                                                     (31) 

Where, , ,   are positive parameters, 

  3 3,g z z z z z      is a nonlinear function of ,z z  , 

and f is a narrow-band excitation that has the same 

description as the previous example. The original 
nonlinear oscillator (31) is also replaced by the 
equivalent linear oscillator as described by (7). Apply 

(19) and the appendix (a.5-a.7) to find ( ), ( )k r c r by 

LOMSEC, the results as follows. 

   

 

3 4

2 2

2
2

2, 0, 2,2

2
1,1, 0,

2 4 3

2 2

2
2

2, 0, 2,2

2
1,1, 0,

( , )
( )

2 2
,

2 2

( , )
( )

2 2
.

2 2

r r r

rr r

r r r

rr r

xx x x xg x x x
k r

x x

T x T T
x

TT x T

x x x xg x x x
c r

x x

T x T T
x

TT x T

          
  

      

   

              
  

      

      

         (32) 

Apply (20) to find the linearization coefficients by 

GLOMSEC and note that 2 2 2 2,x xx x   

2,2

1,0 0

2,2

1,0 0

1 1
( ) ( ) ,

1 1
( ) ( ) .

s s
r

x
s s

r

s s
r

x
s s

r

T
k k r Lim k r dr Lim dr

s s T

T
c c r Lim c r dr Lim dr

s s T

 

 

  
       

   

  
       

   

 

 

   (33) 

Where, 
, ( 1,2)n rT n and the limitation value are defined 

the same as the previous example. The final result of 
the linearization coefficients obtained by GLOMSEC:  

2 22.41189 , 2.41189x xk c                                 (34) 

Use (32) and let r , one obtains the linearization 

coefficients as defined by the classical GEL 
2 23 , 3x xk c                                                       (35) 

The energy balance method requires 
2 2

4 2
3

0 0

min,
4 2

x x

k

x x
x dx kxdx k

   
        

  
   

 
2 2

2 4 2
3

0 0
2 4 2

min.

x x

c

x x x
x x dx cxdx c

   
         

  



       (36) 

The necessary conditions for (36) to be true are   
2 2

4 2 2 4 2

0, 0.
4 2 2 4 2

x x x x x
k k c c

   
             
   

                

                                                                                (37) 

Expand (37), one gets the linearization coefficients by 
the energy balance method to be 

2 22.5 , 2.5 .x xk c                                              (38) 

Combine in pairs each (34), (35), (38) with (11) 
resulting in the closed equation pairs that enable 

obtaining solutions by GLOMSEC ( 2

,x G ), the classical 

GEL ( 2

,x C ), the energy balance method ( 2

,x E ), 

respectively. Just real and positive solution from each 
equation pair is taken. Consider the system with two 

cases of parameter set to be 2, , , , 1,fS      varies, 

and 2, , , , 1,fS      varies. 

The results are presented in TABLE II and TABLE III, 
respectively. 
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TABLE II.  THE MEAN SQUARE RESPONSES OF THE CONSIDERED 

SYSTEM WITH
2 1fS   AND  VARIES. 

  2

,x E  2

,x C  %Err  2

,x G  %Err  

0.1 

1 

10 

100 

2.40633 

0.74346 

0.18583 

0.03968 

2.14097 

0.65974 

0.16413 

0.03502 

 11.028 

 11.261 

 11.677 

 11.744 

2.46218 

0.76111 

0.19043 

0.04067 

   2.321 

   2.374 

   2.475 

   2.495 

TABLE III.  THE MEAN SQUARE RESPONSES OF THE CONSIDERED 

SYSTEM WITH
2 1fS   AND  VARIES. 

  2

,x E  2

,x C  %Err  2

,x G  %Err  

0.1 

1 

10 

100 

0.86998 

0.74346 

0.53843 

0.36799 

0.77228 

0.65974 

0.47760 

0.32617 

 11.230 

 11.261 

 11.298 

 11.364 

0.89053 

0.76111 

0.55128 

0.37683 

   2.362 

   2.374 

   2.387 

   2.402 

The relative errors indicate that for both the cases, the 
solutions given by GLOMSEC are closer to the ones 
given by the energy balance method over the classical 
GEL at any nonlinearity. 

IV. CONCLUSION  

Based on GLOMSEC was proposed for nonlinear 
oscillators under white noise random excitation [15], 
[16], the paper presents an extension of this criterion 
with the input to be narrow band excitation. The 
obtained results indicate two main outstanding 
achievements of GLOMSEC: The first, GLOMSEC 
allows obtaining significant improvement on the 
accuracy of solution over the classical GEL, especially 
in many cases when nonlinearity is strong. The 
second, GLOMSEC does not require given values of 
integration domain used in LOMSEC, consequently it 
becomes a more reliable and effective technique for 
analysis of nonlinear stochastic systems under not 
only white noise excitation but also narrow band 
excitation which widely exists in practice.  

ACKNOWLEDGMENT  

This research is funded by Vietnam National 
Foundation for Science and Technology Development 
(NAFOSTED) under grant number 107.04-2015.36. 

APPENDIX 

Assume that x  and x  are zero mean Gaussian 

independent random processes, denote [.] the local 
mean values of random variables which are taken as 
follows. 

     
0 0

0 0

. . ,

x x

x x

P x x dxdx

 

 

                                             (a.1) 

Where, 0 0,x x are given positive values;  ,P x x  is their 

normal joint probability density function (PDF) that can 

be separated into two independent single PDFs:  

2 2 2 22 2

( , ) ( ) ( ),

1 1
( ) , ( ) .

2 2

x xx x

x x

P x x P x P x

P x e P x e
   



 
 

            (a.2) 

Where, x and x are the normal deviations of the 

random variables x  and x , respectively. The 

expected integrations in (a.1) can be transformed to 

non-dimensional variables by 0 0,x xx r x r     with r  

is a given positive value: 

     . . ,
x x

x x

r r

r r

P x x dxdx

   

   

                                           (a.3) 

As known that for a zero mean Gaussian random 
variable, all odd-order means are null, all higher even-
order means can be expressed in terms of second 
order mean of the respective variable. By replacing 

variables xx t  , xx t   and using formulas (a.2), 

(a.3), the higher even-order local means 2 2,n nx x        

when using LOMSEC can be expressed in terms of 

second order global means 2 2,x x , respectively.  

For the variable x :   

2 2 2 2 2 2

2 2

2 2

2 22 2

2 2 2 2

0 0

( ) ( )

1 1

2 2

1 1
2 2

2 2

x x

x x

x x x x

r r

n n

r r

r r

t tn n

x x x

r rx x

r r

n n t t

x

x x P x dx P x dx

t e dt e dt

t e dt e dt

   

   

     

 

 

    

  
           

  
   

   

 

 

 

                                                                              (a.4) 

Where, n is a natural number.  

Introduce 2 2
n

n

x x  since x  is a zero mean 

Gaussian random process, and the following 
replacements

2 2 2

, 0,

0 0

1
( ) , ( ) , ( )

2

r r

t n

n r rt e T t t dt T t dt     


          (a.5) 

Thus, formula (a.4) can be rewritten as follows 

2 2 2

, 0,( ) ( ) 2 2
x x

x x

r r
n

n n

n r r

r r

x x P x dx P x dx T x T

   

   

            (a.6) 

Where, 2 2

, 0,( ) 2 , ( ) 2 .
x x

x x

r r
n

n

n r r

r r

x P x dx T x P x dx T

   

   

    

By the same way, we obtain the similar formula to 

(a.6) for the variable x : 

2 2 2

, 0,( ) ( ) 2 2
x x

x x

r r
n

n n

n r r

r r

x x P x dx P x dx T x T

   

   

            (a.7) 

Where, 2 2

, 0,( ) 2 , ( ) 2 .
x x

x x

r r
n

n

n r r

r r

x P x dx T x P x dx T

   

   

    
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When r  , the formulas (a.6) and (a.7) give the 

respective results for the classical criterion as follows. 

 

2 2 2 2

,

2

( ) ( ) 2

2 1 !!

n
n n n

n

n

x x x P x dx P x dx T x

n x

 



 

    

 

 
 (a.8) 

Where,

2

2

2 2 2 2 2

,

0

2

0

1
( ) 2 2 ,

2

1
( ) 2 1.

2

n
n n n t

x n

t

x P x dx t e dt T x

P x dx e dt

 






 





  


 


 

 

 

 

2 2 2 2

,

2

( ) ( ) 2

2 1 !!

n
n n n

n

n

x x x P x dx P x dx T x

n x

 



 

    

 

 
 (a.9) 

Where,

2

2

2 2 2 2 2

,

0

2

0

1
( ) 2 2 ,

2

1
( ) 2 1.

2

n
n n n t

x n

t

x P x dx t e dt T x

P x dx e dt

 






 





  


 


 

 
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