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Abstract—In a review article demonstrated effi-
ciency of an use of Debye and Debye-type poten-
cials for a solution of a three-dimensional prob-
lems of a diffraction and a propagation for elasic 
bodies ( isotropic and anisotropic) of analytical 
and non-analytical forms. Analytical solutions are 
performed computer calculations. are performed 
computer calculations.  
 Keywords—diffraction, propagation, radiation, 
sound wave, boundary conditions, elastic body, 
integral equation, Debye potential. 
 

1. INTRODUCTION 
 

This work shows how to  use potentials Debye and 
Debye-type are solved following three-dimensional 
dynamic elasticity problems: a sound diffraction at 
elastic bodies of spheroidal and cylindrical forms (iso-
tropic and anisotropic); a sound diffraction at elastic 
bodies of a non-analytical form (a Green’s functions 
method); a calculation of phase velocities of three-
dimensional elastic waves in cylindrical bars and 
shells (isotropic and anisotropic). Originally Debye 
potentials were used in three-dimensional diffraction 
problems of electromagnetic waves on different bod-
ies. The purpose of this study – to show that Debye 
and Debye – type potentials are essential in the dy-
namic theorie of elasticity. 
 

2. A SOUND DIFFRACTION  AT  ELASTIC 
BODIES OF SPHEROIDAL AND CY- 

LINDRICAL FORMS (ISOTROPIC AND 
ANISOTROPIC) 
 
       Debye first proposed expanding the vector po-

tential  A in scalar potentials U and V in his publica-
tion [1] devoted in studying the behavior of light 
waves near the local point or focal line. Later this ap-
proach was used in solving diffraction problems for 
the cases of electromagnetic wave diffraction by a 
sphere, a circular disk and a paraboloid of revolution 
[2 – 7], as well as for the diffraction of longitudinal 
and transverse waves by spheroidal and cylindrical 
bodies [8, 9].  
     As applied to problems based on the dynamic 
elasticity theory the introduction of the Debye poten-

tials occurs as follows. The displacement vector u  of 

an elastic isotropic medium obeys the  
Lame equation: 

2( ) ,graddivu curlcurlu u      
    (1) 

      
where   and   are  Lame constans,   is the 

density of the isotropic medium and   is the circular 

frequency of  harmonic vibrations. According to the 

Helmholtz theorem, the displace- ment vector u  is 

expressed through  scalar   and vector A  poten-
tials: 

u grad curl A  
 …………………………(2) 

 
    Substituting Eq. (2) in Eq. (1), we obtain two 
Helmholtz equations, which include one scalar equa-

tion for   and one vector equation for A : 
 

2 0,h                                                   (3) 

2

2 0.A k A                                                    (4) 

 

Here 1/h c  is the wavenumber of the longitudi-

nal elastic wave, 1c  is the velocity of this wave, 

2 2/k c  is the wavenumber of the transverse 

elastic wave and 2c  is the velocity of the transverse 

wave. 
     In the three-dimensional case,  variables involved 
in scalar equation (3) can be separated into 11 coor-
dinate systems. As for Eq. (4), in the three-
dimensional problem, this equation yields three inde-
pendent equations for each of  components of the 

vector function A  in Cartesian coordinate system 
alone. To overcome this difficulty, one can use  De-

bye’s potentials U  and V , which obey the Helm-

holtz scalar equation 
 

2

2 0;V k V     
2

2 0.U k U                        (5) 

 

     Vector potential A  (according to Debye) is ex-

panded in potentials V  and U  as 

 

2( ) ( ),A curlcurl RU ik curl RV                   (6) 

 

where R  is the radius vector of a point of the elastic 
body or the elastic medium. 
      Representation (6) for the vector potential is not 
the only possible one. Let us consider two other rep-
resentations that the Debye-type potentials. First , 
they include the potentials proposed by Buchwald 
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[10] in his study of the behavior of a Rayleigh wave in 
a transversaly iso-tropic medium. Displacement vec-
tor in a transversaly isotropic medium is represented 
in the form [10]: 
 , 

,u grad curl grad                                (7) 

 

Here, it is assumed that vector potential has only 
one nonzero component, namely the component 

z , in addition, potentials  and z  are func-

tions of the x and y coordinates, while potential  is a 

function of the z coordinate. 
       Second, there are the Debye-type  potentials 

proposed in [11]. In this case, vector potential A


in 

expressed through the Debye-type potentials χ and ψ 
as follows 
 

  ,z zA e a сurl e                                       (8) 

where ze is the unit vector in the direction of the  Z 

axis and  a is the radius of the transversely isotropic 
circular cylindrical bar placed in an elastic medium. 
       Using Debye potentials [expression (6)] were 
solved three-dimensiunal problems of diffraction on 
spheroidal scatterers (Fig. 1) and on cylindrical shell 
radiated by a point source [9].  

 
Fig. 1. Elastic spheroidal shell in a plane harmonic 
wave field. 
 
       Fig. 2 shows relative backscattering cross 
sections of prolate spheroidal scatterers, fig. 3 -  of 
oblate spheroidal spheroids. 

 
Fig. 2. Relative backscatterings cross sections of pro-
late spheroidal scatterers. 
 
 

 
        Fig. 3. Relative backscattering cross sections of 
oblate spheroids. 
 
        With a help Debye-type potentials [expression 
(8)] were solved thre-dimensional problems of dif-
fraction on a cylindrical shell radiated by a plane 
sound wave (Fig. 4) [9] and on a transversely iso-
tropic bar (Fig. 5) [11]. 
 

 
 
                        Fig. 4. The cylindrical shell radiated by 
the plane sound wave. 
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                Fig. 5. The transversely isotropic bar radi-
ated by the plane sound wave [11]. 
 
       On  fig. 6 and 7 show normalized amplitudes of a 
backscatter of a polarized shear wave for a trans-
versely isotropic bar. 
 

  
   Fig. 6. The normalized amplitude of the axially po-
larized shear wave backscatter. 
 
 

 
 
 
    Fig. 7.  The normalized amplitude of the polarized 
in the plane r shear wave backscatter.

 
  

3. A SOUND DIFFRACTION AT ELASTIC 
BODIES OF A NON-ANALYTICAL  

FORM (A GREEN’S FUNCTIONS METHOD)   
 
      Refering to the method of Green's functions [9, 
12 – 15], which was developed for solving problems 
of diffraction by bodies with mixed boundary condi-
tions. In  this work, this approach is used in study  
sound scattering by elastic bodies of non-analytical 
forms [16]. As non-analytical bodies whose surfaces 
cannot be assigned to the class of coordinate sys-
tems with separated variables in the scalar Helmholtz 
equation. We study such a non-analytical scatterer in 

the form of a finits length circular cylindrical elastic 
shell bounded at the ends by the two halves of a pro-
late spheroidal shell (Fig. 8).   
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Fig. 8. Non-analytical elastic shell consisting of cylin-
drical and spheroidal parts. 
    
      First, we consider the diffraction problem for the 
case of oblique incidence of a sound wave on an infi-
nite hollow cylindrical elastic shell [9, 11, 17]. The 
geometry of the problem is shown  
in fig. 4. We transform the representation (8) given in 

[11] for the vector potential A  by introdu-cing an ad-
ditional curl operator so that in automatically satisfies 

the calibration div A =0 [16]. 
The three-dimensional diffraction problem is solved 
using the Debye potentials U and V [the ex-pression 
(6)] [9, 14].  

            For the  model shown in fig. 8, we calculated 
the absolute value of the angular characteristic  

(θ)D  for 
0

0θ θ 90   within the wave interval  

0 0.053 0.581.kR   In the calculations, the  model 

given in fig. 8 was assumed following parameters  

1 200.51L   m.; 100.0L   m.; 0 50.0h   m.; 

0 5.04R   m.; 1 5.01R   m.;  0ξ 1.005075;  

1ξ 1.005.  The shell material was as-sumed in  the 

steel.  Under these conditions, 
0(90 )D     within  

0.49 – 18.46 [16]. 
     Along with the non-analytical scatterer shown in 
fig. 8 we consider a compound elastic shell formed 
by a finite cylindrical shell whose ends are closed by 
two hemispherical shells of the sa-me diameter (Fig. 
9). 
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Fig. 9. Non-analytical elastic shell consisting of cylin-
drical and spherical parts. 
 
       To apply the Green’s function method, it is nec-
essary in take the solution to the axisymmetric prob-
lem of plane wave diffraction by an elastic spherical 
shell in terms of dynamic elasticity theory [18 – 20] 
and transform this solution to the three-dimensional 
version. The resulting so-lution little differs from the 
obtained above for the three-dimensional problem of 
diffraction by a spheroidal elastic shell [9, 14, 17, 21]. 

In the caseunderconsideration the vector finction A   
is expressed through the Debye potentials U and V 
[expression (6)] and its spherical compo-nents repre-
sented in the spherical coordinate system have the 
form [22 – 24]:  

                                         

2
2

22
( )( );RA k RU

R


 


                                                            

(9) 

                                

1

2
1 1

θ 2 1

1

( ) (sinθ ) ;
θ φ

V
A R RU ik

R

  
 

  
                                           

(10) 

                                     
2

1

φ 1 2

1

( sinθ ) ( ) .
φ θ

V
A R RU ik

R

  
 

        

                                                    

(11)                                                      
       Figures 10 and 11 show the absolute values of 

the angular characteristic (φ)D  (in the  XOY plane,  

by 
0

0θ 90 ) for a non-analytical elastic scatterer in 

the form a cylindrical shell connected with two spher-
ical shells  (Fig. 9)  with following parameters: 

0.523ka    (Fig. 10) and  0.941ka   (Fig. 11) and 

/ 2 11.9.l a   

 
 

k
D( )


 

                  Fig. 10. Absolute values of the angular 
scattering characteristic. 
 

k
D( )

  
                Fig. 11. Absolute values of the angular 
scattering characteristic. 
 

4. A CALCULATION OF PHASE VELOCITIES 
OF THREE-DIMENSIONAL  

ELASTIC WAVES IN CYLINDRICAL BARS AND 
SHELLS 
 
       First Debye potentials were applied [25] in the 
study of a flexural waves in an isotropic cylindrical 
bar. The novelty of this approach is calculation of the 
phase velocities of isotropic bars and shells with the 
use of a rigorous method based on equations of dy-
namic elasticity theory and Debye  or Debye-type 
potentials. Using Debye potentials [expression (6)] or 
Debye-type po-tentials [expression (8)] [25, 26], ar-
rive at a third-order determinant [17, 21, 25, 26]: 
 

11 12 13

21 22 23

31 32 33

0

a a a

a a a

a a a

                                         (12)    

        
     Determinant (12) proves to be a same for a 

cases of using Debye potentials and Debye-type po-
tentials. This result indirectly confirms a correctness 
of a method chosen for solving a problem of interest. 
Setting determinant (12) equal to zero, which en-
sures a nontrivial solution , and assuming that a bar 
radius is a = 1,0, we obtain a characteristic equation 
for determining a wavenumbers of three-dimensional 
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flexural waves. Figure 12 shows phase velocities of 
first three modes of a flexural wave.   

                                                                                                                                                                                                                                       

                    Fig. 12. Phase velocities of first three 
modes of flexural wave.  
 
        Untile a case of a bar a flexural wave propagat-
ing in a cylindrical shell can be three-dimen-sional or 
two-dimensional (axisymmetric). Figure 13 schemati-
cally illustrates a deformation of a cylindrical shell for 
cases of propagation of (a) flexural and (b) longitudi-
nal axisymmetric waves. To study a three-
dimensional flexural wave propagating in an isotropic 
cylindrical shell , we apply a same mathematical ap-
proach (with an use of Debye potentials or Debye-
type po-tentials) as that used for studyng flexural 
waves in a bar. However, in this case,  an inclusion 
of a second (inner) boundary surface leads to a 
greate r number of unknowns and a greater number 
of boundary conditions. Figures 14 and 15 represent 
a splution to the characteristic equation for     
 
                                            (a) 

 
          

                                                
                                             (b) 
                    

 
 

Fig. 13. Deformations of cylindrical shell for propaga-
tion of (a) flexural and (b) longitudinal axi-symmetric 
waves.  
 

 
Fig. 14. Phase velocities of three-dimensional flexural 
waves in steel shell. 
 

 
Fig. 15. Phase velocities of three-dimensional flexural 
waves in aluminum shell.   
steel and aluminum shells of different thicknesses. 
     Debye-type potentials [expression (7)] (with a 
transformation of Cartesian coordinates to circular 
cylindrical ones) were used in [27] to study phase 
velocities of elastic waves in a trans-versely isotropic 
cylindrical bar. Figures 16 and 17 represent phase 
velocities of longitudinal  
waves (Fig. 16) and flexural waves (Fig. 17) [27].   
                         

 
Fig. 16. Phase velocities of longitudinal waves in 
transversally isotropic bar. 
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Fig. 17. Phase velocities of flexural waves in trans-
versally isotropic bar. 
 
   5. СONCLUSIONS        
        The paper is a review of articles and mono-
graphs on the use of Debye potentials and De-bye-
type potentials in three-dimensional problems on dif-
fraction and propagation of elastic waves in isotropic 
and anisotropic mediums and bodies. 
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