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Abstract—The Katsevich algorithm can obtain 
exact reconstruction image as an exact 
reconstruction method with the filtered back-
projection. However, the intensive computation 
required by this algorithm prohibits its clinical 
use. Optimization of back-projection step is vital 
as it is the most time-consuming. In this paper, a 
novel back-projection based on rotation symmetry 
of adjacent slices is proposed which sets slice 
step size multiple of x-ray source step size on z-
axis first, then calculate back-projection using 
decision boundary to determine integration range. 
The decision boundary calculation can been 
speed up by using rotation matrix derived from 
rotation symmetry. Besides, the graphics 
processing unit(GPU) is used to accelerate the 
algorithm. Both time complexity and space 
complexity of the proposed method are better 
than PI line method. The simulation results show 
that our method actually have better performance 
than PI line based back-projection, especially on 
memory. 
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I.  INTRODUCTION  

Cone-beam Computed Tomography(CBCT) has 
been widely used in stomatology and radiology 
medical diagnosis as it has advantages of scanning 
speed, reconstructed image resolution and utilization 
of x-rays. As a kind of exact CBCT reconstruction 
algorithm, Katsevich algorithm was proposed by 
katsevich in 2002 based on Grangeat theory

[1]
. The 

algorithm is a breakthrough for CBCT reconstruction. It 
improved computing efficiency and accuracy as it 
requires minimal number of scan times under the 
same system environment. Noo et al. in 2003

[2]
 and 

G.Wang et al. in 2004
[3]

 both explained the algorithm 
implementation in detail and summarized the relation 
between image quality and CBCT system parameters. 

Recent years, the Katsevich algorithm acceleration 
based on GPU has been widely studied as GPU has 
higher performance and lower developing difficulty. 
There is no report about acceleration of Katsevich 
algorithm on graphics processing unit(GPU) until 2010 
Yan et al.

[4]
  published their results  in the literature. In 

their research, GPGPU technique and Tam window 
based back-projection method were used. They 

proposed an overscan formula and volume blocking 
method to reconstruct large volume in limited device 
memory. Wu et al.

[5] 
proposed a more precise 

overscan formula and utilized PI line instead of Tam 
window to determine the integration range. The quality 
of the reconstructed images in Wu’s is better than 
Yan’s.  In 2015, Bardino et al.

[6]
 reported that they can 

accelerate both FDK and Katsevich algorithm on GPU 
with different architecture, such as AMD and NVIDIA. 
Their importance is the implementation and integration 
with Python, PyCUDA and PyOpenCL. 

Though the PI line method is more stable and the 
reconstructed image has less artefacts than Tam 
window based method, an array whose size is the 
same as the voxels needs to be maintained to keep 
the PI lines for each voxel and massive no-linear 
equations need to be solved while back-projecting. 
Here, we proposed a novel back-projection method 
which utilizes the rotation symmetry of adjacent slices 
and reconstruct Shepp-Logan model on GPU with the 
new method. 

The first part of the article is the introduction, the 
Katsevich algorithm based on PI line is given in the 
second part, the proposed novel back-projection based 
on rotation symmetry of adjacent slices is described in 
the third part, and the simulation results on GPU are 
presented on the fourth part. The last part is the 
conclusion. 

II. KATSEVICH ALGORITHM BASED PI LINE 

The Katsevich algorithm includes two parts which 
are 1-D shift-invariant filtering of a derivative of the two 
consecutive projections and back-projection

[7]
. The 

general back-projection of Katsevich algorithm utilizes 
PI segment to determine the integration range which 
ensure the projection of the reconstructed voxel 
locates in Tam window. The whole Katsevich 
reconstruction formation can be written as follows: 
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Where x represents the voxel to be reconstructed, 

y(s) is the x-ray source and s is the rotation angle 
between y(s) and the start position. 
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In Katsevich algorithm’s first part, there are five 
steps that are differential, length correction weighting, 
forward height rebinning, 1-D Hilbert transform and 
backward height rebinning. And there are PI segment 
calculation and back-projection accumulation in the 
second part. 

For each voxel x, the coordinate in global system is

1 2 3[ , , ]Tx x x
, and is 3[ cos , sin , ]Tr r x 

 in cylinder 

system, the corresponding PI segment is ( ) [ , ]PI x b tI s s
 

, whose start angle bs  satisfies 
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Also, the bottom of PI segment bs should be in the 
follow interval  
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We can obtain the value of bs  by solving no-linear 

equation (2) and (3), then the top of PI segment ts  can 
been calculated as  
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After getting the PI segment, the reconstructed 
voxel x’s volume density is  
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Where k(s , x)
 is the smooth factor to reduce the 

artifacts caused by the endpoints of PI segment.  

III. BACKPROJECTION BASED ON ROTATION SYMMETRY 

OF ADJACENT SLICES  

During the CBCT reconstruction process, not all 
projections are useful for a slice to be reconstructed. 
For a frame projection, the corresponding valid slices 
range is computable according to the over-scan 
formula

[4]
, also with the valid interval of the fixed x-ray 

source corresponding to one slice. The rays of cone 
beam projecting the Tam window’s top curve and 
bottom curve will intersect with slice plane and we 
name the intersection as decision boundary. The 
decision boundary is illustrated in Fig.1(a). If the 
reconstructed voxel is between the decision boundary 
and the x-ray source, its projection will locate in Tam 
window according to the cone beam cover theroy

[8]
.  

This has the same effect as PI segment. The decision 
boundary can be used to determine if the voxel utilize 
current projection data.  

A. Construct the Rotation Symmetry of Adjacent 
Slices 

The adjacent slices’ gap in z-axis is z  , the step 

size of adjacent x-ray sources is s ,in z-axis direction 

is h .Set *z m h   , m is positive integer.  Slice Zi 
and Zi+1 are adjacent which the subscript i represents 
the i-th slice. And there are corresponding x-ray source 
Sn and Sn+m which the subscript n represents the n-th 
projcetion. The slice Zi is in the cone beam cover of Sn. 
Then the decision boundary formed by Zi and Sn is 
similar to the one formed by Zi+1 and Sn+m, which is 
illustrated in Fig.1(b). We can prove the two decision 
boundary equations are the same in reference system. 
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Fig.1. Decision boundary and rotation symmetry between 
adjacent slices: (a)3-D projection demonstration, (b)2-D 
view 

B. Decision Boundary and Rotation Matrix 

The arbitrary x-ray source’s coordinate in the 
reference system is  
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The rays which intersect with detector forming the 
Tam window’s top curve and bottom curve are the part 

of lines connecting current x-ray source 
 0y s

 and 

other x-ray sources 
 y s

.  represents the line 

passing through 
 0y s

 and 
 y s

, its parameter 
equation is as follow 
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The parameter equtation of reconstructed slice 
plane Z in the reference system is as formula (8) 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 10, October - 2016 

www.jmest.org 

JMESTN42351837 5780 

0
2

h
v z s


 

                                (8) 

The decision boundary is the intersection of  line 
and plane Z, so its formula is  
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Where R is helical radius and h is helical pitch. Let 
s0 denote current x-ray source location. s represents 
other arbitrary point on the helical trajectory and the 
parametric variable. For arbitrary s0, the range of s-s0 
is fixed. So set another parameter variable  α= s- s0. 

In section III, we have set *z m h    and there are 
adjacent slices Zi and Zi+1. X-ray source Sn and Sn+m 
will project decision boundary a and b in slice plane Zi 
and Zi+1 correspondingly. Their parameter equation are 
as follow 
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For adjacent x-ray source, there is  

* / (2 )h s h   
                     (12) 

So, there is derivation  
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Substituting (13) into equtation (11) we can find the 
intersection a and b’s parameter equations are equal. 
This is the main content about rotation symmetry of 
adjacent slices. 

All the above derivations are illustrated in reference 
system. While in the implementation, the decision 
boundary formula should been written in global system 
as formula (14) and (15) to simplify the calculation. 
Using 1-D array to denote the equation’s discretization. 
The array index represents abscissa and 
corresponding value represents ordinate. 
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In addition, the intersection b can been denoted by 
intersection a. There is a rotation between them. The 

abscissa 1ix   has follow relation. 
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Also, the ordinate 1iy   can been denoted as 

1 sin( ) cos( )i i iy m s x m s y    
          (17) 

Let matrix A be the intersection a’s parameter 
equation and matrix B represents intersection b. There 
is a rotation between A and B. Let matrix Y be the 
rotation matrix. Therefore, Y is can been written as 
(18). Based on rotation matrix Y, we can accelerate 
decision boundary calculation. 
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Assume the reconstruction volume is N*N*N, the 
average iteration times for calculate PI segment is n, 
and k frames of projections are needed for 
reconstructing one slice. The time complexity and 
space complexity analysis are illustrated in Table 1.  
Here, the time complexity refer to calculating pi-line 
and decision boundary. In theory, decision boundary 
based method has less time and space complexity 
while the computational complexity of back projection 
accumulation are almost the same. 

TABLE I.  TIME AND SPACE COMPLEXITY COMPARISON 

Method Time Memory 

PI Line nN
3
 2N

3
 

Decision boundary kN
2
 kN

2
 

IV. SIMULATION RESULTS 

First, we set m=1, which represents the slice step 
size and x-ray source step size in z-axis direction are 
equal. Other primary parameter are set as Table 2. 
The simulation is carried on a machine with a 3.6GHz 
Intel i7-4790 CPU, 16GB DDR3 memory and a 2GB 
GeForce GTX 960 graphic card. Both PI line method 
and our method were implemented on GPU to 
reconstruct 256*256*256 volume size. The time and 
memory consuming comparison during back projection 
are shown in Table 3. The memory doesn’t include 
projection frame data. The time unit is second and the 
memory unit is MB. It shows that our method has great 
advantage on memory consumption to reconstruct the 
same size volume. 
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TABLE II.  CBCT SIMULATION PARAMETER 

Parameter PI-line This paper 

FOV in z axes -0.25/-0.22 -0.378/-0.122 

slice step size z  0.00012 0.001 

projections per turn 256 256 

pitch of helix P 0.219 0.256 

source step size h  0.00086 0.001 

 

TABLE III.  TIME AND MEMORY CONSUMPTION 

Volume Method Time Memory 

256
3
 

PI-line 4.536 192 

This paper 4.322 96 

 

                

(a)                                    (b) 

               

(c)                                    (d) 

Fig.2. The reconstruction results and profiles for the white 
line. (a)(c)PI line method (b)(d) our method 

V. CONCLUSION 

In this paper, a novel back-projection method for 
multiple slices reconstruction based on rotation 
symmetry of adjacent slices is proposed. Using 
decision boundary instead of PI segment to determine 
integration range can obtain better performance of 
computation time and memory. A rotation matrix based 
on rotation symmetry is derived to accelerate decision 
boundary computation, therefore accelerate multiple 

slices reconstruction. Our experiment on GPU has 
shown that the algorithm can be applied to practical 
use and reduce time and memory consumption. 
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