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Abstract—This study proposes path loss 
prediction models based on Soft Computing 
Techniques, for a tropical metropolitan 
environment, using Abuja, the federal capital 
territory of Nigeria, as case study. The two Soft 
Computing networks considered are the Adaptive 
Neuro-Fuzzy Inference System (ANFIS) and the 
Generalized Regression Neural network (GRNN). 
Prediction models based on these networks were 
created, trained and tested for path loss prediction 
using path loss data recorded at 1800MHz from 
multiple Base Transceiver Stations (BTSs) 
distributed across the city. Results indicate that 
the ANFIS and GRNN based models gave 
predictions with Root Mean Squared Error (RMSE) 
values of 5.76dB and 5.17dB respectively. A 
comparison of prediction results indicate that on 
the average, the two Soft Computing Techniques 
offer an improvement of about 4.71dB over the 
linear regression based methods comprising of the 
COST 231 Hata and COST 231 Walfisch-Ikegami 
models. 

I. INTRODUCTION 

Radio signals propagating from a transmitter to a 
receiver are usually accompanied by loss of power. 
This loss of power is referred to as path loss. Path 
loss is not only dependent on operating frequency, 
transmitter height and transmitter-receiver separation, 
but also on the nature of the terrain. Path loss usually 
results from reflections, diffraction, refractions, 
scattering, free space loss, etc. Since path loss is 
quite an essential factor in radio link characterization, 
there is need for accurate path loss prediction so that 
the radio link can be optimally engineered for 
acceptable delivery of service. Empirical and 
deterministic models are some of the most widely 
used means of predicting path loss in a given terrain. 
Unfortunately, existing empirical models though easier 
to implement, are less sensitive to the environment's 
physical and geometrical structures and not so 
accurate while the deterministic models which though 
are more accurate are computationally inefficient and 
require more detailed site-specific information which is 
often difficult to come by [1].  

Recent approaches to path loss prediction are 
based on the application of soft computing 
techniques. As described by [2], Soft Computing is an 
emerging approach to computing which parallels the 
remarkable ability of the human mind to reason and 
learn in an environment of uncertainty and 
imprecision. Soft Computing is a term that 
encompasses a collection of computing 
methodologies, which include artificial neural 
networks, genetic algorithms, fuzzy sets, neuro-fuzzy 
systems, etc. Soft Computing is aimed at exploiting 
the tolerance for imprecision, uncertainty, approximate 
reasoning and partial truth in order to achieve 
tractability, robustness and low-cost solutions [3]. 
Hence, these techniques are quite efficient in finding 
acceptable solutions to complex real world problems 
such as pattern recognition, speech processing, 
function approximation, signal processing, forecasting, 
etc.  

Since the problem of path loss prediction is viewed 
as a function approximation problem this study is 
aimed at exploiting the remarkable abilities of Soft 
Computing techniques to handle such tasks. This 
study presents path loss prediction models for Abuja, 
the federal capital territory of Nigeria, based on two 
Soft Computing networks: the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) and the Generalized 
Regression Neural Network (GRNN). The prediction 
results of the two Soft Computing networks are 
compared with those of the COST 231 Hata and the 
COST 231 Walfisch-Ikegami models, which are widely 
deemed suitable for urban path loss prediction.  

II. ADAPTIVE NEURO-FUZZY INFERENCE 
SYSTEMS  

An Adaptive Neuro-Fuzzy Inference System 
(ANFIS) is a hybrid system created by combining 
different soft computing techniques in order to exploit 
the properties of the different techniques. It is a fusion 
of an Artificial Neural Network (ANN) with a Fuzzy 
Inference System (FIS). ANFIS was first proposed by 
[2] to combine the learning ability of NNs with the 
ability of fuzzy systems to interpret imprecise 
information, and it was based on the first-order 
Takagi–Sugeno (TS) model. ANFIS is an intelligent 
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adaptive system capable of solving complex non-
linear problems. ANNs are quite useful in modelling 
systems where there is no mathematical relationship 
between input and output patterns. This stems from 
the fact that, as systems that mimic the human brain, 
ANNs can be trained using input patterns and target 
output, and then used to predict a result given new set 
of inputs. Based on the concepts of fuzzy set theory, 
fuzzy if-then rules, and fuzzy reasoning, FIS, on the 

other hand, is a computational network capable of 
modelling human knowledge and reasoning.  

The ANFIS model considered in this study is based 
on the model proposed by [4], referred to as the First 
Order Sugeno Fuzzy Model (or simply TS Model) 
shown in Fig 1. ANFIS architecture based on the TS 
model is presented in Fig. 2, with two inputs, x and y 
and one output which is a function of the inputs.  

 
Fig. 1: First Order Sugeno Model (Liang et al, 2012) 

 

Fig. 2: The Architecture of an Adaptive Neuro-Fuzzy Inference System 

 

Based on the TS Model, the two if-then-else rules 
are as follows: 

i) If (x is A1) and y is B1, THEN f1 = p1 x + q1 y + 
r1 

ii) If ( x is A2) and y is B2, THEN f2 = p2 x + q2 y + 
r2 

The linguistic labels Ai and Bi are fuzzy sets 
associated with the input nodes x and y respectively, 

and fi is a non-fuzzy function which depends on the 
inputs x and y. 

As shown in Fig. 2, the ANFIS architecture 
comprises of five layers and each layer is defined by 
specific nodes, which can either be fixed or adaptive. 
A fixed node is denoted by a circle while a square 
represents an adaptive node.  

Layer 1 : In this layer, every node is an adaptive 
node with a node function given by (1) and (2): 
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 (1) 

 (2) 

These functions are defined by Membership 
Functions (MF) which can either be Bell, Gaussian or 
Triangular. The most widely used MF is the Bell MF 
given by (3). 
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Layer 2: This layer comprises of fixed nodes and 
the output of every node is the product of all the 
incoming signals into the node as given by (4). These 
node outputs are the firing strengths of the rules. 
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Layer 3: This layer also comprises of fixed nodes, 
which are denoted by N. This is the normalization 
layer where the ratio of the firing strength of each rule 
is calculated with respect to the sum of the firing 
strengths of all rules, using (5). Hence, the outputs of 
this layer are referred to as normalized firing 
strengths.  
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Layer 4: The nodes in this layer are adaptive 
nodes. The output of each node is the product of the 
normalized firing strength and a first order polynomial 
(for the first order TS model), given by (6): 

)( iiiiii ryqxpwfw   (6) 

The parameters pi, qi and ri are called consequent 
parameters. 

Layer 5 This is the output layer and it has a single 
fixed node labeled ∑. The layer computes the overall 
output as the summation of all incoming signals, to 
produce a crisp output given by (7). 
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According [2], ANFIS uses a hybrid learning 
algorithm comprising of gradient descent back-
propagation and the least-squares approximation 
method. During network training the back-propagation 
algorithm determines the premise parameters while 
the least-squares approximation method determines 
the consequent parameters.  

III. THE GENERALIZED REGRESSION 
NEURAL NETWORK 

The Generalized Regression Neural Network 
(GRNN), proposed by [5] is type of Artificial Neural 
Network (ANN) that is capable of approximating 
virtually any function given sufficient data. In contrast 
to back-propagation neural networks, which may 
require a large number iterations to converge to the 
desired output, the GR-NN does not require iterative 
training, and usually requires a fraction of the training 
samples a back-propagation neural network would 
need [5]. The GRNN is used to solve a variety of 
problems such as prediction, control, plant process 
modeling or general mapping problems [6]. As shown 
in Fig. 3, the GRNN comprises of four layers: 

 

Figure 3: Generalized Regression Neural Network 
Architecture [7] 

Input layer: This is the first layer and it is 
responsible for sending inputs to the next layer called 
the pattern layer 

Pattern layer: This layer computes the Euclidean 
distance between input and training data, and also the 
activation function. 

Summation layer: This layer comprises of two 
parts: the Numerator and the Denominator. The 
Numerator sums up products of training data and 
activation function, while the Denominator sums up 
activation functions. 

Output layer: The single neuron contained in this 
layer generates the output through division of the 
Numerator by the Denominator obtained from the 
previous layer.  

The general regression as described by [5] is as 
follows: given a vector random variable, x, and a 
scalar random variable, y, and assuming X is a 
particular measured value of the random variable y, 
the regression of y on X is given by (8) 

𝐸[𝑦|𝑋] =
∫ 𝑦𝑓(𝑋,𝑦)𝑑𝑦
∞
−∞

∫ 𝑓(𝑋,𝑦)𝑑𝑦
∞
−∞

 (8) 

If the probability density function 𝑓(𝑥, 𝑦)  is 
unknown, it is estimated from a sample of 
observations of x and y. The probability 

estimator𝑓(𝑋, 𝑌), given by (9) is based upon sample 

values Xi  and Yi  of the random variables x and y, 
where n is the number of sample observations and 𝑝 
is the dimension of the vector variable x. 
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𝑓(𝑋, 𝑌) =

1

(2𝜋)(𝑝+1)/2𝜎(𝑝+1)/𝑛
.
1

𝑛
∑ exp [

(X−Xi )
T
(X−Xi )

2σ2
] . exp [

(Y−Yi)2

2σ2
]𝑛

𝑖=1  

(9) 

A physical interpretation of the probability 

estimate𝑓(𝑋, 𝑌), is that it assigns a sample probability 
of width 𝜎 (called the spread constant or smoothing 

factor) for each sample Xi and Yi , and the probability 
estimate is the sum of those sample probabilities.  

The scalar function Di
2 is given by (10) 

𝐷𝑖
2 = (𝑋 − 𝑋𝑖)𝑇(𝑋 − 𝑋𝑖) (10) 

Combining equations (8) and (9) and interchanging 
the order of integration and summation yields the 

desired conditional mean 𝑌́(𝑋), given by (11) 

𝑌́(𝑋) =
∑ 𝑌𝑖𝑒𝑥𝑝(−

Di
2

2σ2
)𝑛

𝑖=1

∑ 𝑒𝑥𝑝(−
Di
2

2σ2
)𝑛

𝑖=1

 (11)  

The only free network parameter is the smoothing 
parameter. Neural network training involves finding 
the optimal value of the smoothing parameter, for 
which the mean squared error is minimum. As a key 
advantage over standard feed-forward neural nets, 
the GNN always converges to a global minimum and 
hence, has no issues with local minima. It is further 

stated in [5] that when the smoothing parameter 𝜎 is 
made large, the estimated density is forced to be 
smooth and in the limit becomes a multivariate 

Gaussian with covariance σ2 . On the other hand, a 
smaller value of 𝜎  allows the estimated density to 
assume non-Gaussian shapes, but with the hazard 
that wild points may have too great an effect on the 
estimate. 

IV. THE COST 231 HATA MODEL 

The COST 231 Hata Model was formulated from 
the Hata Model by the European Cooperative for 
Scientific and Technical research, to suit the 
European environments taking into consideration a 
wide range of frequencies (500MHz to 200MHz). The 
Hata model in turn is an extension of the Okumura 
Model. As a result of its proven suitability path loss 
prediction in urban, semi-urban, suburban and rural 
areas, it is one of the most widely used models. The 
model expression is given by (12) 

𝐿 = 46.3 + 33.9𝑙𝑜𝑔𝑓 − 13.82𝑙𝑜𝑔ℎ𝐵 − 𝑎(ℎm) +
(44.9 − 6.55𝑙𝑜𝑔ℎ𝐵)𝑙𝑜𝑔𝑑 + 𝐶 (12)  

Where,  

- L = Median path loss in Decibels (dB) 

- C=0 for medium cities and suburban areas 

- C=3 for metropolitan areas 

- f = Frequency of Transmission in Megahertz 
(MHz)(500MHz to 200MHz) 

- hB = Base Station Transmitter height in 
Meters (30m to 100m) 

- d = Distance between transmitter and receiver 
in Kilometers (km) (up to 20kilometers) 

- hm = Mobile Station Antenna effective height 
in Meters (m) (1 to 10metres) 

- a(hm) = Mobile station Antenna height 
correction factor as described in the Hata Model for 
Urban Areas. 

- For urban areas, a(hm) = 
3.20(log10(11.75hr))

2
−4.97, for f > 400 MHz  

For sub-urban and rural areas, a(hR) = (1.1log(f) - 
0.7)hR - 1.56log(f) -0.8 

V. THE COST 231 WALFISCH-IKEGAMI 
MODEL 

The COST-Walfisch-Ikegami Model is a semi-
empirical propagation model created on the bases of 
the models from J. Walfisch and F. Ikegami [8] and 
further developed by the COST 231 project. The 
model is suitable for path loss prediction in urban 
environments because it considers multiple diffraction 
losses over rooftops of buildings in the vertical plane 
between the Base and Mobile Stations. However, the 
model does not take into account path loss due to 
multiple reflections. The Model is valid for the 
following parameters: 

- Frequency Range: 500 MHz to 2000 MHz 

- Transmitter Height (hb): 4m to 50 m 

- Link distance: 0.02km to 5km 

- Mobile Station (MS) height (hm): 1m to 3m 

- Mean height of buildings (hroof) 

- Mean Street Width (w) 

- Mean building separation (b) 

The Line of Sight (LOS) path loss equation is given 
by (13) 

𝑃𝐿 = 42.64 + 20𝑙𝑜𝑔𝑓 + 26𝑙𝑜𝑔𝑑 (13) 

However, when there is No Line of Sight (NLOS) 
the equation is (14) 

𝑃𝐿 = 𝐿𝐹𝑆 + 𝐿𝑅𝑇𝑆 + 𝐿𝑀𝑆𝐷 (14)  

Where, 

 LFS is free-space path loss and is expressed as 
(15):  

𝐿𝐹𝑆 = 32.45 + 20𝑙𝑜𝑔𝑓 + 20𝑙𝑜𝑔𝑑 (15)  

LRTS is path loss due to rooftop to street diffraction 
and is expressed as (16):  

 𝐿𝑅𝑇𝑆 = −16.9 − 10𝑙𝑜𝑔𝑤 + 10𝑙𝑜𝑔𝑓 + 20 𝑙𝑜𝑔( ℎ𝑏 −
ℎ𝑚) + 𝐿𝑜𝑟𝑖 (16) 

Lori in (16) is path loss due to orientation angle φ (in 
degrees), between incident wave and street, 
expressed as (17):  
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𝐿𝑜𝑟𝑖 = {

−10 + 0.354𝜑 𝑓𝑜𝑟 0 ≤ 𝜑 < 35

2.5 + 0.075(𝜑 − 35) 𝑓𝑜𝑟 35 ≤ 𝜑 < 55

4 − 0.114(𝜑 − 55) 𝑓𝑜𝑟 55 ≤ 𝜑 < 90
 (17)  

LMSD is path loss due to multi-screen diffraction, 
and is expressed as (18): 

𝐿𝑀𝑆𝐷 = 𝐿𝐵𝑆𝐻 + 𝑘𝑎 + 𝑘𝑑𝑙𝑜𝑔𝑑 + 𝑘𝑓𝑙𝑜𝑔𝑓 − 9 𝑙𝑜𝑔 𝑏 (18)  

Where, 

𝐿𝐵𝑆𝐻 = {
−18 𝑙𝑜𝑔(1 + ℎ𝑏 − ℎ𝑟𝑜𝑜𝑓)  𝑓𝑜𝑟 ℎ𝑏 > ℎ𝑟𝑜𝑜𝑓 

0 𝑓𝑜𝑟 ℎ𝑏 ≤ ℎ𝑟𝑜𝑜𝑓
  

𝑘𝑎 =

{
 

 
54 𝑓𝑜𝑟 ℎ𝑏 > ℎ𝑟𝑜𝑜𝑓

54 − 0.8(ℎ𝑏 − ℎ𝑟𝑜𝑜𝑓) 𝑓𝑜𝑟 𝑑 ≥ 0.5𝑘𝑚 𝑎𝑛𝑑 ℎ𝑏 ≤ ℎ𝑟𝑜𝑜𝑓 

54 −
0.8(ℎ𝑏−ℎ𝑟𝑜𝑜𝑓)

0.5
 𝑓𝑜𝑟 𝑑 < 0.5𝑘𝑚 𝑎𝑛𝑑 ℎ𝑏 ≤ ℎ𝑟𝑜𝑜𝑓

  

𝑘𝑑 = {
18 𝑓𝑜𝑟 ℎ𝑏 > ℎ𝑟𝑜𝑜𝑓 

18 − 15(ℎ𝑏 − ℎ𝑟𝑜𝑜𝑓) 𝑓𝑜𝑟 ℎ𝑏 ≤ ℎ𝑟𝑜𝑜𝑓
 

𝑘𝑓 = {
−4 + 0.7 (

𝑓

925
− 1)  𝑓𝑜𝑟 𝑚𝑒𝑑𝑖𝑢𝑚 𝑠𝑖𝑧𝑒 𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 𝑠u𝑏𝑢𝑟𝑏𝑎𝑛 𝑎𝑟𝑒𝑎 

−4 + 1.5 (
𝑓

925
− 1)  𝑓𝑜𝑟 𝑚𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑡𝑎𝑛 𝑎𝑟𝑒𝑎 (𝑖. 𝑒. 𝑙𝑎𝑟𝑔𝑒 𝑐𝑖𝑡𝑦)

 

VI. MATERIALS AND METHODS 

A. Received Power Measurement and Path 
Loss Computation 

Received power measurements were recorded 
from multiple Base Transceiver Stations (BTSs) 
situated within the Central Business District, Maitama 
and Wuse areas of Abuja, the federal Capital Territory 
of Nigeria. The Base Stations belong to the mobile 
network service provider, Mobile Telecommunications 
Network (MTN), Nigeria. The instrument used was a 
Cellular Mobile Network Analyser (SAGEM OT 290) 
capable of measuring signal strength in decibel 
milliwatts (dBm). Received power (PR) readings were 
recorded beyond the computed Fraunhofer far field 
radius of 48meters, within the 1800MHz frequency 
band at intervals of 0.05km away from the Base 
Station, after an initial separation of 0.05 kilometer. 
Corresponding path loss values (LP), were computed 
using (19). 

 LP=EIRP - PR (19)  

Where,  

EIRP is the Effective Isotropic Radiated Power, 
determined from (20)  

EIRP=PT-LF+GT (20) 

Where,  

- PT - Transmitted power 
- LF - Feeder Loss 
- GT – Transmitter gain 

Mobile Network Parameters obtained from the 
Network Provider (MTN) include Mean Transmitter 
Height of 28 meters and Mean Effective Isotropic 
Radiated Power (EIRP) of 43dBm. 

B. Path loss Prediction Procedure 

Path loss prediction using the considered Soft 
Computing networks is based on two distinct 
approaches. The first involves separately analyzing 
each BTS data by splitting the data into 60% training, 
10% validation and 30% testing. This is to ensure that 
the computational networks are trained for optimum 
performance. The second approach splitting path loss 
obtained from all BTSs into two sets: 50% training 
(BTSs 1 to 5) and 50% testing (BTSs 6 to 10). In 
performance evaluation, the geometric mean is 
preferred to the arithmetic mean because it is less 
sensitive to extreme values [9]. Hence, the Geometric 
Mean (GM) of the training set values at each receiver-
transmitter separation is obtained from the training set 
using equation (21), and then used to train the 
network based models. The trained networks are then 
tested with data from the testing set.  

GM=√𝑋1. 𝑋2. 𝑋3,. , 𝑋𝑛
𝑛  (21)  

In both cases, the network based models are 
simultaneously compared for path loss prediction with 
the COST 231 Hata and the COST-Walfisch-Ikegami 
models. 

The statistical indices for model performance 
evaluation are based on the following: 

i) Root Mean Squared Error (RMSE) given by 
(22) 

𝑅𝑀𝑆𝐸 = √∑
(𝑀− 𝑃)2

𝑁−1
𝑁
𝑖=1  (22)  

Where, M is the Measured received power, P the 
Predicted received power and N the Number of paired 
values.  

ii) The coefficient of determination (R
2
), also 

called the square of the multiple correlation 
coefficients or the coefficient of multiple 
determinations, given by (23): 

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)
2𝑁

𝑖=1
 (23) 

 
VII. RESULTS AND DISCUSSION 

Based on the first comparative approach, Fig. 4a) 
and Fig. 4b) depict the performance of the network 
based predictors relative to the empirical models on 
BTS1 and BTS2 respectively. It can be observed that 
the network based models exhibit a much closer 
prediction than the empirical models. Prediction 
results in Table 1 show that this performance trend is 
sustained across all the BTSs. Geometric Mean 
performance across all the BTSs shows that the 
GRNN based model is the most accurate with an 
RMSE value of 4.54dB. The ANFIS based model with 
an RMSE value of 5.52bB is about 1dBm less 
accurate than the GRNN. The COST 231 Hata and 
the COST-Walfisch-Ikegami models with 12.24dB and 
9.08dB respectively, are simply outperformed by the 
network based counterparts.  

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 4 Issue 10, October - 2017 

www.jmest.org 

JMESTN42351753 8303 

  

a) BTS1 Analysis       b) BTS 2 Analysis 

Fig. 4: 60% training, 10% validation and 30% testing 

 

Table 1: Splitting data into 60% training, 10% validation and 30% testing 

MODEL STAT. 
BST 

1 
BST 

2 
BST 

3 
BST 

4 
BST 

5 
BST 

6 
BST 

7 
BST 

8 
BST 

9 
BST 
10 

GEOM. MEAN 

ANFIS 
RMSE(dB) 4.99 8.30 5.29 4.49 2.87 4.75 8.06 6.99 4.90 7.13 5.52 

R
2
 0.46 0.44 0.22 0.69 0.69 0.60 0.45 0.48 0.67 0.08 0.41 

GRNN 
 

RMSE(dB) 2.02 5.97 4.60 3.75 4.93 3.52 6.61 5.11 4.36 7.01 4.54 

R
2
 0.91 0.71 0.41 0.78 0.08 0.78 0.63 0.72 0.74 0.11 0.46 

COST 231 Hata 
RMSE(dB) 18.06 15.17 13.97 12.63 8.33 8.94 17.17 12.46 8.26 11.84 12.24 

R
2
 -1.11 0.13 0.06 0.41 0.73 0.64 -0.91 0.28 0.71 0.13 0.11 

COST 231 W-I 
RMSE(dB) 14.41 11.07 11.09 9.69 6.56 5.80 13.22 8.64 5.63 9.09 9.08 

R
2
 -0.35 0.54 0.41 0.65 0.83 0.85 -0.13 0.65 0.87 0.49 0.48 

 

Based on the second approach, Fig. 5a) depicts a scenario where the network based models are trained with 
the geometric mean and tested with BTS6 data, while in Fig. 5b), testing is with BTS7 data. In both cases, the 
network based models exhibit more accurate predictions. Again, geometric mean performance indices in Table 2 
show that the network based models outperform their empirical counterparts. It can be observed that the GRNN 
only slightly outperforms the ANFIS based model. Table 2 also shows that the COST-Walfisch-Ikegami out 
performs the COST 231 Hata by about 3dB.  
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a) Testing with BTS 6 data      b) Testing with BTS 7 data 

Fig. 5: Training with geometric mean and testing with BTS6 and BTS7 data 

 
Table 2: Splitting entire data into 50% training and 50% testing. 

MODEL STAT. 
GM / 
BST6 

GM/ 
BST7 

GM/ 
BST8 

GM/ 
BST9 

GM/ 
BST10 

GEOM. 
MEAN 

ANFIS 
RMSE(dB) 4.88 5.90 7.64 5.61 6.43 6.02 

R
2
 0.89 0.77 0.73 0.87 0.74 0.80 

GRNN 
RMSE(dB) 4.95 4.90 7.00 6.43 6.53 5.89 

R
2
 0.89 0.84 0.77 0.82 0.74 0.81 

COST 231 Hata 
 

RMSE(dB) 8.94 17.17 12.46 8.26 11.84 11.33 

R
2
 0.64 -0.91 0.28 0.71 0.13 0.17 

COST 231  
Walfisch-Ikegami  

RMSE(dB) 5.80 13.22 8.64 5.63 9.09 8.05 

R
2
 0.85 -0.13 0.65 0.87 0.49 0.54 

 

A combined performance assessment based on 
the two approaches shows that on the geometric 
mean, the same performance trend is sustained with 
the GRNN model being the overall best predictor with 
an RMSE value of 5.17dB. With an RMSE value of 
5.76dB, the ANFIS based model is less accurate by 
about 0.59dB. As further proof of its performance 
superiority, the GRNN based model has the highest 
R

2
 value of 0.61, giving it the best fit, resulting from 

the highest correlation. Again, the COST-Walfisch-
Ikegami with 8.55dB outperforms the COST 231 Hata 
by about 3.22dB, making the COST 231 Hata the 
least accurate. 

VIII. CONCLUSION 

Path loss prediction models for the metropolitan 
city of Abuja, Nigeria, created on the bases of two Soft 
Computing networks, were trained and tested with 
path loss data recorded at an operating frequency of 
1800MHz from multiple Base Transceiver Stations 
situated across the city. The two networks considered 
were the Adaptive Neuro-Fuzzy Inference System 
(ANFIS) and the Generalized Regression Neural 
network (GRNN). Results indicate that the GRNN 
based predictor with an RMSE value of 5.17dB gave a 
more accurate prediction than the ANFIS based model 
which has 5.76dBm. A comparison of prediction results 

indicate that on the average, the two Soft Computing 
Techniques offer an improvement of about 4.71dB 
over the linear regression based methods comprising 
of the COST 231 Hata and COST 231 Walfisch-
Ikegami models. 
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