
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 10, October - 2016

www.jmest.org

JMESTN42351715 5611

Design and Simulation of Rate One-Third
Convolutional Codes with Viterbi Algorithm

based Hidden Markov Model for Digital
Communications

Do Duy Tan
a
 and Yeon-Mo Yang

b*

a
Electrical and Electronic Eng., Ho Chi Minh City University of Tech. and Education, Vietnam

b
School of Electronic Eng. Kumoh National Inst. of Tech., Korea

a
tandd@hcmute.edu.vn,

 b
yangym@vivaldi.kumoh.ac.kr

*Correspondence: yangym@vivaldi.kumoh.ac.kr

Abstract— Convolutional codes are a type of

channel coding used in numerous applications in
order to achieve reliable data transfer, including
digital video, radio, mobile communications and
satellite communications. In this paper, we review
some basic concepts of convolutional codes and
their implementation in practical digital
communication systems. We then describe the
design of a convolutional decoder based on a
Viterbi algorithm under the hidden Markov model
(HMM). The paper specifically describes the main
points of rate one-third convolutional code and its
implementation in the encoder and decoder. We
evaluate the performance of Viterbi decoding
through simulation for both soft and hard-
decision coding and by comparison with an
uncoded theoretical case. Simulation results show
that the system with convolutional coding obtains
better quality Bit Error Rate (BER) than uncoded
code words.

Keywords— Channel coding, Coding gain,
Convolutional code, Hidden Markov model, Viterbi
decoding, Bit Error Rate, Soft and Hard Decision.

I. INTRODUCTION

Error control coding plays an important role in the
protection of information delivery from a source to a
destination with minimal errors. There are several
general techniques for the control of errors. They are
chosen based on the nature of the data and the user’s
requirements, as well as the complexity required for
error-free reception [1]. Figure 1 represents key
elements in a digital communication system where an
information channel exists between source and
destination.

The codes for error control are divided into two
categories: block codes and trellis codes.
Convolutional codes belong to the trellis codes
category. Many applications in telecommunications
have used convolutional codes because of their ability
to deliver significant coding gains over the additive
white Gaussian noise (AWGN) channel [2-4]. In this
paper, we review some features of convolutional codes
and an example implementation with an encoder and
decoder through a Viterbi decoding algorithm based on

the hidden Markov model (HMM)[16]. Furthermore, we
analyze the differences between soft-decision and
hard-decision decoding in the system model as
compared to the uncoded theoretical case. Moreover,
the paper presents the effect of the coding model on
system resources [5-7].

Fig. 1. Basic key elements of a digital communication
system in coding and decoding

The remainder of this paper is organized as follows:
In section II, the convolutional code concept is
described through an example; parameters from this
example will be used in a subsequent chapter for
decoder and simulation. Section III presents a method
for convolutional decoding using a Viterbi Algorithm.
To estimate the performance of decoding models,
some simulations for encoding and decoding are
discussed in Section IV. Section V concludes with the
simulation results and developments.

II. CONVOLUTIONAL CODE IMPLEMENTATION

Convolutional codes are part of a family of codes
called trellis codes. A linear trellis code is a
convolutional code. We describe the encoder used for
convolutional coding through a simple example. These
parameters will be used in the decoder implementation
in a subsequent step. Figure 2 illustrates a typical
example of a rate one-third convolution encoder [1], [7-
11].

A. Encoder

 Some notations for convolutional encoder:

• Input bits - k, the number of bits taken into the

encoder at once.

• Output bits - n, the number of bits output from the

encoder at once.

http://www.jmest.org/
mailto:atandd@hcmute.edu.vn
mailto:byangym@vivaldi.kumoh.ac.kr
mailto:yangym@vivaldi.kumoh.ac.kr

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 10, October - 2016

www.jmest.org

JMESTN42351715 5612

• Constraint length - K, the total number of shift

register stages in the encoder.

• Code rate - k/n, ratio input bits and output bits.

• Generator polynomial - G(n), respectively input,

relation between shift register and output.

Fig. 2. An example of a rate one-third convolutional encoder

We chose parameters for convolutional encoder as
follows:

• Input : k =1

• Output : n = 3

• Constraint length: K = 4

• Code rate: k/n = 1/3

• Generator Polynomial:

B. State Diagram

The states represent the possible content of the
right-most K-1 stages of the shift register (in this case
K-1 is D1-D2-D3). The state diagram shows transitions
from each state, corresponding to input bits. This
specific example contains 8 states that come from K−1
= 3 bits. In Figure 3, we see that each input bit is 0 or 1,
the state diagram changes from this value to another
value, and an output code word, labeled respectively.

Fig. 3. State transition diagram, labeled according to each
input and output for each state

C. Input/Output for Current and Next State

Figure 4 describes the relationship between input
bits and output bits through states of the shift register.
The outcome is a combination of the input bit and a
generator polynomial. We have a 3-bit output from a 1-
bit input. Figure 4 reflects the relationship between
current states and outputs consider the next state.

Fig. 4. Input/output for current and next states

D. Trellis Diagram

In drawing the trellis diagram, we use the same
convention that we introduced with the state diagram.
The solid line denotes the output generated by an
input bit, zero, and the dashed line denotes the output
generated by an input bit, one. The trellis diagram
contains states like the state diagram, but adds the
time dimension. Each of the states can transition to
one of two states. There are two outgoing branches;
one corresponds to an input bit, zero, and the other
corresponds to an input bit, one. Therefore, one
transition from the current state to the next state will
produce one output bit with one corresponding input bit.

Figure 5 shows the trellis diagram for our example
through t1-t9. We refer to this time as the start time
and label it as t1. The length of the trellis is referred to
as the decoding window to protect a converging point
for the decoding algorithm [1].

Fig. 5. Trellis Diagram, labeled with inputs for each path

2 3(0) [1111] 1G D D D
2 3(1) [1011] 1G D D

3(2) [1101] 1G D D

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 10, October - 2016

www.jmest.org

JMESTN42351715 5613

E. Minimum Distance by Mason Equation

Minimum distance or free distance can be
interpreted as the minimal length of an erroneous
"burst" at the output of a convolutional decoder. Figure
6 presents the computation of free distance starting
with the state diagram. First, we label the branches of
the state diagram with an exponent, where the
exponent D denotes the Hamming distance from the
branch word of that branch to the all-zeros branch. The
number of exponents for each branch is the number of
one bits at the output. All paths originating at a=000
and terminating at i=000 can be traced on the modified
state diagram. The transfer function, T(D), is called the
generating function of the code expressed as the ratio
between X (at terminating transition) and X (at starting
transition).

Fig. 6. State transfer function

Table 1 shows the state transition equation for each
node. The exponent of D represents the cumulative
number of ones in the path. In evaluating distance
properties, the transfer function, T(D), cannot be used
for long constraint lengths because the complexity of
T(D) increases exponentially with constraint length.

TABLE I. STATE TRANSITION EQUATION AMONG NODES

Let: a=000, b=001, c=010, d=011, e=100, f=101, g=110,

h=111, i=000. Re-write the state equation as:

Xe = D3Xa + Xb

Xb = D2Xc + DXd

XC=D2Xe+DXf

Xf=D2Xc+D2Xd

Xd=D2Xg+DXh

Xg=DXe+DXf

Xh=DXg+D2Xh

Xi=D3Xb

where, Xa, ...,Xi are dummy variable for the partial paths to

the inter mediate nodes. T(D)=Xi/Xa is the generating

function of the code. By solving the state equation above:
10

10

2
()

1 2 5

i

a

X D
T D D

X D D

Where, free distance df of the coded is given by df = 10.

F. Tail-biting Method

• Zero-tailing method: append a "tail" of M zeros

(memory depth of the encoder) to the message

sequence, so that at the end, the encoder memory
contains only zeros and the encoder is at the all-zero
state. The method is simple to implement, but due to
the addition of the extra bits, the effective coding rate
is reduced to l/(l+M) (where l is the length of the actual
message sequence).

• Tail-biting method: initially set the encoder to a state

that is identical to its final state rather than to the all-
zero state. At the end of encoding, the same M bits
terminate the encoder at the same initial state. The
coding rate is retained. The price to pay is the increase
of decoder complexity.

III. VITERBI DECODING ALGORITHM

Convolutional decoding is the process of searching
for the path that an encoder has traversed. There are
three main schemes for convolutional decoding:
sequential decoding, majority-logic decoding, and
Viterbi decoding. Sequential decoding, as the first
practical decoding technique for convolutional codes,
uses the Fano algorithm (sequential decoding) and the
stack algorithm. The threshold-based majority-logic
decoding scheme appeared some time later. The
Viterbi decoding algorithm, based on HMM is optimal
in the maximum-likelihood sense, and has quickly
become the most widely used convolutional decoding
algorithm in practice due to its reduced computational
complexity and satisfactory performance [3]. In this
study, we utilize Viterbi’s algorithm for convolutional
decoding as the most popular in these applications. In
this section, we perform convolutional coding through
soft-decision/hard-decision coding then compare
performance with the uncoded theoretical case.

A. Soft-Decision and Hard-Decision Decoding

• For the hard-decision case, the binary phase-shift

keying (BPSK) demodulator produces hard decisions
at the receiver and passes them on to the decoder.
(Binary Symmetric Channel - the received sequence is
binary)

• For the soft-decision case, the BPSK demodulator

produces soft decisions at the receiver using the log
likelihood ratio. These soft outputs are 3-bit quantized
and passed on to the decoder where the received
sequence is a real value.

B. Viterbi Algorithm

We can choose an arbitrary node (S,t) in the trellis
diagram of a code and look at all of the paths going
into it. We find that there is always a path that has a
shorter distance between the received sequence and
the code sequence than all other paths. Relying on the
definition of maximum likelihood, the path with the
least difference is called the local survivor path, or
survivor.

• BM: Branch Metric - based on the distance between

theory code word and received value depending on
soft/hard decision.

• PM: Path Metric - the accumulation of the branch

metric on the path from the beginning of the trellis up

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 10, October - 2016

www.jmest.org

JMESTN42351715 5614

to the current decoding point (Add Compare and
Select).

In Figure 7 we can see that two metrics are used in the
Viterbi algorithm: a branch metric, and a path metric.
At state i, it may come from two previous states. Each
of them has a metric to become state i, path metric at
previous state, and the distance between received
codeword and a theoretical codeword. At state i, the
path metric is the shortest branch metric of those two
paths. The survivor path is the path that has the
absolute shortest path metric at state i.

Fig. 7. Base Metric Computation

IV. EXPERIMENTAL RESULTS

A. Block Diagram

Figure 8 depicts the overall configuration of the
simulation environment for evaluating the proposed
coding scheme [11-15]. Some parameters need to be
setup for simulation, as follows: [Number of Data Bits,
Traceback Window/ Queue Sizes, Shift Register,
Generation Polynomial, Number of Output, Initial table
for guess input from current state and previous state
(based on the state diagram), Path Metric calculation
(based on the state diagram), and Compare received
bits after decoding with stored bits and counting errors].

Fig. 8. Block diagram of simulation experiments

When using the Viterbi decoding algorithm, an
important issue that needs to be taken care of is the
width of the sliding window, or decoding depth. We
cannot decide the outcome sequence of the decoding
after only one and some state’s changes because the
result will be not be exact. The decoding error caused
by insufficient decoding depth is called truncation
error. A recommended value for this parameter should
be equal to, or greater than 5 times the constraint
length. In these simulations, we chose a length that is
five times greater than the constraint length for the
decoding depth.

The simulation starts with setting one level for
Signal-to-Noise Ratio (SNR) at the transmitter. A large
sequence of input bits is pushed into the encoder and
BPSK modulated. The transmitted data is affected by

channel noise before accessing the receiver. At the
receiver side, we have two kinds of detection, one for
hard-decision decoding, and the other for soft-
decision decoding. The concepts of hard/soft-decision
coding are mentioned in the previous section. The
primary difference between them is the quantization
levels, the method used to solve code distance, and
complexity in the receiver. After decoding (based on
decoding depth), the decoded data is stored and
compared with the original sequence at transmitter to
calculate bit-error rate (BER). Models are similar for C
and Matlab. The flowchart for implementation of
Viterbi decoding is shown in Figure 9.
1) Increase time by 1.
2) Branch Metric Computation: Compute BM for each
branch.
3) Path Metric Update: Perform ACS for each current
state, and store the survivor path together with its PM;
discard the other(s).
4) If the end of the traceback or trellis is reached, map
the global optimum path to the decode sequence and
output. Otherwise go back to step 1.

Fig. 9. Flow chart of Viterbi decoding

With each received bit, the algorithm calculates the
branch metric and path metric for this step. After some
steps, decoding depth (or traceback), a decision will
be made, and the output decoded sequence is
obtained. The operation continues until the end of the
transmitted sequence. Similar processes repeat for
other values of SNR. In these simulations, we setup
10 SNR levels and the length of sequence was
1,000,000 bits for each SNR level.

B. Simulation in C under Cygwin

In this study, we set up two simulations (Cygwin
and Matlab) to evaluate the performance of Viterbi
decoding and the associated system cost. The first
one, C Cygwin, is Red Hat Linux-based software, but
run on Windows in a virtual environment. It helps
improve computer resources and speed of simulation.
In these simulations, we took into account not only the
performance of the decoding algorithm, but also
system resources and convergence speed for each of
them when changing experiment conditions, such as
decoding depth and queue size.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 10, October - 2016

www.jmest.org

JMESTN42351715 5615

• Results of the simulation showed that the BER in

the case of soft Viterbi decoding has a lower value
than hard Viterbi decoding and the uncoded theoretical
case.

• The size of the traceback window and queue size

have an effect on the performance of convolutional
coding and decoding. When the queue size increases,
BER decreases. However, it requires more memory
and simulation speed suffers. Under Cygwin, Figure 10
shows the screen shot for bit error rate(BER)
probability changes versus different values of Eb/N0
when TB=20. Figure 11 plots the BER when TB=50.

Fig. 10. Screen shot under traceback = 20, queue Size = 300
in Cygwin

Fig. 11. Screen shot under traceback = 50, queue size = 300
in Cygwin

C. Simulation in Matlab

The second simulation is implemented with Matlab.
Targets of this simulation are similar to C, but also take
care of comparison with outcomes from C. The fact is
that even though it is really versatile and flexible in
designing and modifying the coding algorithm under
Matlab, the simulations require much greater system
resources and the simulation times are longer.

• Obtained the result after 45 minutes (10 times

longer than simulation by C) for case TB = 20, Queue
Size = 50.

• BER also decreases when SNR increases; BER

in using soft-decision decoding is smallest when
compared with hard-decision decoding and theoretical
uncoded communication.

• In the case of larger TB (TB=50) and Queue Size,

time increases and error probability decreases. It takes
more time for the simulation in Matlab than C with
Cygwin.

Under Matlab, Figure 12 and 13 show BER
probability changes versus different values of Eb/N0
for hard and soft Viterbi decoding different traceback
size.

Fig. 12. Performance evaluation for hard and soft Viterbi
decoding under traceback = 20, queue size = 100

Fig. 13. Performance evaluation for hard and soft Viterbi
decoding under traceback = 30, queue size = 100

V. CONCLUSION AND FURTHER STUDIES

Error control coding increases performance of the
communication channel at the receiver. Bit Error Rate
(BER) is much better than in the case of unused error
control coding because error control coding helps the
receiver recognize and decide more precisely what the
transmitted sequence is at the transmitter. Moreover, it

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 10, October - 2016

www.jmest.org

JMESTN42351715 5616

can also fix some errors based on the algorithms and
characteristics of a generator polynomial.

In this paper, we present a performance evaluation
for rate one-third convolutional code with a sample
encoder/decoder using a Viterbi decoding algorithm
based on the hidden Markov model (HMM). The paper
describes the main features of the convolutional
coding concept and how to implement it in a decoder
using a Viterbi decoding algorithm. The results show
that a significantly higher performance for BER
calculation is attained. However, it requires additional
complexity in both the transmitter and receiver to
implement this algorithm. Moreover, the coding
performance depends on the type of quantization, and
whether hard-decision, or soft-decision decoding is
used. These models have a significant effect on the
results of coding and decoding.

In order to increase the performance of digital
communication systems, we can utilize an encoder
with longer constraint lengths, but with higher
complexity. In addition, modulation techniques other
than BPSK modulation/demodulation (e.g., Quadrature
Phase Shift Keying (QPSK), Quadrature Amplitude
Modulation (QAM), and Trellis Coded Modulation
(TCM)) could be deployed to study the effects on
performance and system resource requirements.

X. ACKNOWLEDGMENT

“This paper was supported by Research Fund,

Kumoh National Institute of Technology.”

REFERENCES

[1] B. Sklar, Digital Communications: Fundamentals &
Applications, 2nd ed., Prentice Hall, 2001.

[2] Sweeney P. Error control coding: from theory to
practice, Wiley, 2002.

[3] Yuan Jing, A Practica [4] A. El-Sherif and K. Liu,
“Cooperation in random access networks: Protocol
design and performance analysis,” IEEE Journal on
Selected Areas in Communications, vol. 30, no. 9, pp.
1694 –1702, October 2012

[4] Soreng B. and Kumar S., "Efficient implementation
of Convolution Encoder and Viterbi Decoder" ICCPCT,
2013

[5] Bin Khalid, F., Masud, S. and Uppal, M., "Design
and implementation of an ML decoder for tail-biting
convolutional codes," IEEE Symposium on ISCAS,
2013

[6] Junil C., Chance, Z., Love, D.J. and Madhow, U,
"Noncoherent Trellis Coded Quantization: A Practical
Limited Feedback Technique for Massive MIMO
Systems," IEEE Transactions on Communications,
Vol. 61, (12), 2013

[7] F. Dewanta and Y.-M. Yang, "Experimental Study
on Performance Analysis of Viterbi Algorithm based

on Hidden Markov Model considering Soft Decision
Decoding," IJAER, Vol. 11, (17), pp 9185-9190, 2016

[8] Shuang F., Jie Y and Kwon, H.M, "Blind Relay
Network with Viterbi Detection," IEEE MILCOM, 2014

[9] Kun Han and Deliang Wang, "Neural Network
Based Pitch Tracking in Very Noisy Speech"
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, Vol. 22, (12), 2014,

[10] Dongdong L. and Jun Y., "Efficient
implementation of the decoder for tail biting
convolutional codes" IEEE ICSPCC, 2014

[11] Ramteke, S., Kakde, S., Suryawanshi, Y. and
Meshram, M., "Performance analysis of Turbo
decoder using Soft Output Viterbi Algorithm," IEEE
Communications and Signal Processing, 2015

[12] Muhammad Hassan Masood, "Convolutional
Encoder and Hard Decision Viterbi Decoder," Matlab
Central, 2015

[13] Krishna Sankar, "Bit Error Rate (BER) for BPSK
modulation," http://www.dsplog.com, 2016

[14] Ingle and Proakis, Digital Signal Processing
Using MATLAB, 4th Ed., Cengage Learning, 2017

[15] Harry Perros, Computer Simulation Techniques-
The Definitive Introduction, http://www4.ncsu.edu/~hp,
NCSU, 2016

[16] E. Fosler-Lussier, "Markov Models and Hidden
Markov Models A Brief Tutorial," International
Computer Science Institute, UC Berkeley, 1998

http://www.jmest.org/
http://www4.ncsu.edu/~hp

