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Abstract— Convolutional codes are a type of 

channel coding used in numerous applications in 
order to achieve reliable data transfer, including 
digital video, radio, mobile communications and 
satellite communications. In this paper, we review 
some basic concepts of convolutional codes and 
their implementation in practical digital 
communication systems. We then describe the 
design of a convolutional decoder based on a 
Viterbi algorithm under the hidden Markov model 
(HMM). The paper specifically describes the main 
points of rate one-third convolutional code and its 
implementation in the encoder and decoder. We 
evaluate the performance of Viterbi decoding 
through simulation for both soft and hard-
decision coding and by comparison with an 
uncoded theoretical case. Simulation results show 
that the system with convolutional coding obtains 
better quality Bit Error Rate (BER) than uncoded 
code words. 

Keywords— Channel coding, Coding gain, 
Convolutional code, Hidden Markov model, Viterbi 
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I.  INTRODUCTION 

Error control coding plays an important role in the 
protection of information delivery from a source to a 
destination with minimal errors. There are several 
general techniques for the control of errors. They are 
chosen based on the nature of the data and the user’s 
requirements, as well as the complexity required for 
error-free reception [1]. Figure 1 represents key 
elements in a digital communication system where an 
information channel exists between source and 
destination.  

The codes for error control are divided into two 
categories: block codes and trellis codes. 
Convolutional codes belong to the trellis codes 
category. Many applications in telecommunications 
have used convolutional codes because of their ability 
to deliver significant coding gains over the additive 
white Gaussian noise (AWGN) channel [2-4]. In this 
paper, we review some features of convolutional codes 
and an example implementation with an encoder and 
decoder through a Viterbi decoding algorithm based on 

the hidden Markov model (HMM)[16]. Furthermore, we 
analyze the differences between soft-decision and 
hard-decision decoding in the system model as 
compared to the uncoded theoretical case. Moreover, 
the paper presents the effect of the coding model on 
system resources [5-7]. 

 

Fig. 1. Basic key elements of a digital communication 
system in coding and decoding 

The remainder of this paper is organized as follows: 
In section II, the convolutional code concept is 
described through an example; parameters from this 
example will be used in a subsequent chapter for 
decoder and simulation. Section III presents a method 
for convolutional decoding using a Viterbi Algorithm. 
To estimate the performance of decoding models, 
some simulations for encoding and decoding are 
discussed in Section IV. Section V concludes with the 
simulation results and developments. 

II. CONVOLUTIONAL CODE IMPLEMENTATION 

Convolutional codes are part of a family of codes 
called trellis codes. A linear trellis code is a 
convolutional code. We describe the encoder used for 
convolutional coding through a simple example. These 
parameters will be used in the decoder implementation 
in a subsequent step. Figure 2 illustrates a typical 
example of a rate one-third convolution encoder [1], [7-
11]. 

A. Encoder 

 Some notations for convolutional encoder: 

• Input bits - k, the number of bits taken into the 

encoder at once. 

• Output bits - n, the number of bits output from the 

encoder at once. 

http://www.jmest.org/
mailto:atandd@hcmute.edu.vn
mailto:byangym@vivaldi.kumoh.ac.kr
mailto:yangym@vivaldi.kumoh.ac.kr


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 10, October - 2016 

www.jmest.org 

JMESTN42351715 5612 

• Constraint length - K, the total number of shift 

register stages in the encoder. 

•  Code rate - k/n, ratio input bits and output bits. 

• Generator polynomial - G(n), respectively input, 

relation between shift register and output. 

 

Fig. 2. An example of a rate one-third convolutional encoder 

We chose parameters for convolutional encoder as 
follows: 

• Input : k =1 

• Output : n = 3 

• Constraint length: K = 4 

• Code rate: k/n = 1/3 

• Generator Polynomial: 

 

 

 

B. State Diagram 

The states represent the possible content of the 
right-most K-1 stages of the shift register (in this case 
K-1 is D1-D2-D3). The state diagram shows transitions 
from each state, corresponding to input bits. This 
specific example contains 8 states that come from K−1 
= 3 bits. In Figure 3, we see that each input bit is 0 or 1, 
the state diagram changes from this value to another 
value, and an output code word, labeled respectively. 

 

Fig. 3. State transition diagram, labeled according to each 
input and output for each state 

C. Input/Output for Current and Next State 

Figure 4 describes the relationship between input 
bits and output bits through states of the shift register. 
The outcome is a combination of the input bit and a 
generator polynomial. We have a 3-bit output from a 1-
bit input. Figure 4 reflects the relationship between 
current states and outputs consider the next state. 

 

Fig. 4. Input/output for current and next states 

D. Trellis Diagram 

In drawing the trellis diagram, we use the same 
convention that we introduced with the state diagram. 
The solid line denotes the output generated by an 
input bit, zero, and the dashed line denotes the output 
generated by an input bit, one. The trellis diagram 
contains states like the state diagram, but adds the 
time dimension. Each of the states can transition to 
one of two states. There are two outgoing branches; 
one corresponds to an input bit, zero, and the other 
corresponds to an input bit, one. Therefore, one 
transition from the current state to the next state will 
produce one output bit with one corresponding input bit. 

Figure 5 shows the trellis diagram for our example 
through t1-t9. We refer to this time as the start time 
and label it as t1. The length of the trellis is referred to 
as the decoding window to protect a converging point 
for the decoding algorithm [1]. 

 

Fig. 5. Trellis Diagram, labeled with inputs for each path 

2 3(0) [1111] 1G D D D    
2 3(1) [1011] 1G D D   

3(2) [1101] 1G D D   
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E. Minimum Distance by Mason Equation 

Minimum distance or free distance can be 
interpreted as the minimal length of an erroneous 
"burst" at the output of a convolutional decoder. Figure 
6 presents the computation of free distance starting 
with the state diagram. First, we label the branches of 
the state diagram with an exponent, where the 
exponent D denotes the Hamming distance from the 
branch word of that branch to the all-zeros branch. The 
number of exponents for each branch is the number of 
one bits at the output. All paths originating at a=000 
and terminating at i=000 can be traced on the modified 
state diagram. The transfer function, T(D), is called the 
generating function of the code expressed as the ratio 
between X (at terminating transition) and X (at starting 
transition). 

 

Fig. 6. State transfer function 

Table 1 shows the state transition equation for each 
node. The exponent of D represents the cumulative 
number of ones in the path. In evaluating distance 
properties, the transfer function, T(D), cannot be used 
for long constraint lengths because the complexity of 
T(D) increases exponentially with constraint length. 

TABLE I.  STATE TRANSITION EQUATION AMONG NODES 

Let: a=000, b=001, c=010, d=011, e=100, f=101, g=110, 

h=111, i=000. Re-write the state equation as: 

Xe = D3Xa + Xb 

Xb = D2Xc + DXd 

XC=D2Xe+DXf 

Xf=D2Xc+D2Xd 

Xd=D2Xg+DXh 

Xg=DXe+DXf 

Xh=DXg+D2Xh 

Xi=D3Xb 

where, Xa, ...,Xi are dummy variable for the partial paths to 

the inter mediate nodes. T(D)=Xi/Xa is the generating 

function of the code. By solving the state equation above: 
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Where, free distance df of the coded is given by df  = 10. 

F. Tail-biting Method 

•  Zero-tailing method: append a "tail" of M zeros 

(memory depth of the encoder) to the message 

sequence, so that at the end, the encoder memory 
contains only zeros and the encoder is at the all-zero 
state. The method is simple to implement, but due to 
the addition of the extra bits, the effective coding rate 
is reduced to l/(l+M) (where l is the length of the actual 
message sequence). 

•  Tail-biting method: initially set the encoder to a state 

that is identical to its final state rather than to the all-
zero state. At the end of encoding, the same M bits 
terminate the encoder at the same initial state. The 
coding rate is retained. The price to pay is the increase 
of decoder complexity. 

III. VITERBI DECODING ALGORITHM 

Convolutional decoding is the process of searching 
for the path that an encoder has traversed. There are 
three main schemes for convolutional decoding: 
sequential decoding, majority-logic decoding, and 
Viterbi decoding. Sequential decoding, as the first 
practical decoding technique for convolutional codes, 
uses the Fano algorithm (sequential decoding) and the 
stack algorithm. The threshold-based majority-logic 
decoding scheme appeared some time later. The 
Viterbi decoding algorithm, based on HMM is optimal 
in the maximum-likelihood sense, and has quickly 
become the most widely used convolutional decoding 
algorithm in practice due to its reduced computational 
complexity and satisfactory performance [3]. In this 
study, we utilize Viterbi’s algorithm for convolutional 
decoding as the most popular in these applications. In 
this section, we perform convolutional coding through 
soft-decision/hard-decision coding then compare 
performance with the uncoded theoretical case. 

A. Soft-Decision and Hard-Decision Decoding 

• For the hard-decision case, the binary phase-shift 

keying (BPSK) demodulator produces hard decisions 
at the receiver and passes them on to the decoder. 
(Binary Symmetric Channel - the received sequence is 
binary) 

• For the soft-decision case, the BPSK demodulator 

produces soft decisions at the receiver using the log 
likelihood ratio. These soft outputs are 3-bit quantized 
and passed on to the decoder where the received 
sequence is a real value. 

B. Viterbi Algorithm 

We can choose an arbitrary node (S,t) in the trellis 
diagram of a code and look at all of the paths going 
into it. We find that there is always a path that has a 
shorter distance between the received sequence and 
the code sequence than all other paths. Relying on the 
definition of maximum likelihood, the path with the 
least difference is called the local survivor path, or 
survivor. 

• BM: Branch Metric - based on the distance between 

theory code word and received value depending on 
soft/hard decision. 

• PM: Path Metric - the accumulation of the branch 

metric on the path from the beginning of the trellis up 
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to the current decoding point (Add Compare and 
Select).  

In Figure 7 we can see that two metrics are used in the 
Viterbi algorithm: a branch metric, and a path metric. 
At state i, it may come from two previous states. Each 
of them has a metric to become state i, path metric at 
previous state, and the distance between received 
codeword and a theoretical codeword. At state i, the 
path metric is the shortest branch metric of those two 
paths. The survivor path is the path that has the 
absolute shortest path metric at state i. 

 

Fig. 7. Base Metric Computation 

IV. EXPERIMENTAL RESULTS 

A. Block Diagram 

Figure 8 depicts the overall configuration of the 
simulation environment for evaluating the proposed 
coding scheme [11-15]. Some parameters need to be 
setup for simulation, as follows:  [Number of Data Bits, 
Traceback Window/ Queue Sizes, Shift Register, 
Generation Polynomial, Number of Output, Initial table 
for guess input from current state and previous state 
(based on the state diagram), Path Metric calculation 
(based on the state diagram), and Compare received 
bits after decoding with stored bits and counting errors]. 

 

Fig. 8. Block diagram of simulation experiments 

When using the Viterbi decoding algorithm, an 
important issue that needs to be taken care of is the 
width of the sliding window, or decoding depth. We 
cannot decide the outcome sequence of the decoding 
after only one and some state’s changes because the 
result will be not be exact. The decoding error caused 
by insufficient decoding depth is called truncation 
error. A recommended value for this parameter should 
be equal to, or greater than 5 times the constraint 
length. In these simulations, we chose a length that is 
five times greater than the constraint length for the 
decoding depth.  

The simulation starts with setting one level for 
Signal-to-Noise Ratio (SNR) at the transmitter. A large 
sequence of input bits is pushed into the encoder and 
BPSK modulated. The transmitted data is affected by 

channel noise before accessing the receiver. At the 
receiver side, we have two kinds of detection, one for 
hard-decision decoding, and the other for soft-
decision decoding. The concepts of hard/soft-decision 
coding are mentioned in the previous section. The 
primary difference between them is the quantization 
levels, the method used to solve code distance, and 
complexity in the receiver. After decoding (based on 
decoding depth), the decoded data is stored and 
compared with the original sequence at transmitter to 
calculate bit-error rate (BER). Models are similar for C 
and Matlab. The flowchart for implementation of 
Viterbi decoding is shown in Figure 9. 
1) Increase time by 1. 
2) Branch Metric Computation: Compute BM for each 
branch. 
3) Path Metric Update: Perform ACS for each current 
state, and store the survivor path together with its PM; 
discard the other(s). 
4) If the end of the traceback or trellis is reached, map 
the global optimum path to the decode sequence and 
output. Otherwise go back to step 1. 
 

 

Fig. 9. Flow chart of Viterbi decoding 

With each received bit, the algorithm calculates the 
branch metric and path metric for this step. After some 
steps, decoding depth (or traceback), a decision will 
be made, and the output decoded sequence is 
obtained. The operation continues until the end of the 
transmitted sequence. Similar processes repeat for 
other values of SNR. In these simulations, we setup 
10 SNR levels and the length of sequence was 
1,000,000 bits for each SNR level. 

B. Simulation in C under Cygwin 

In this study, we set up two simulations (Cygwin 
and Matlab) to evaluate the performance of Viterbi 
decoding and the associated system cost. The first 
one, C Cygwin, is Red Hat Linux-based software, but 
run on Windows in a virtual environment. It helps 
improve computer resources and speed of simulation. 
In these simulations, we took into account not only the 
performance of the decoding algorithm, but also 
system resources and convergence speed for each of 
them when changing experiment conditions, such as 
decoding depth and queue size. 

http://www.jmest.org/
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• Results of the simulation showed that the BER in 

the case of soft Viterbi decoding has a lower value 
than hard Viterbi decoding and the uncoded theoretical 
case. 

• The size of the traceback window and queue size 

have an effect on the performance of convolutional 
coding and decoding. When the queue size increases, 
BER decreases. However, it requires more memory 
and simulation speed suffers. Under Cygwin, Figure 10 
shows the screen shot for bit error rate(BER) 
probability changes versus different values of Eb/N0 
when TB=20. Figure 11 plots the BER when TB=50. 

 

Fig. 10. Screen shot under traceback = 20, queue Size = 300 
in Cygwin 

 

Fig. 11. Screen shot under traceback = 50, queue size = 300 
in Cygwin 

C. Simulation in Matlab 

The second simulation is implemented with Matlab. 
Targets of this simulation are similar to C, but also take 
care of comparison with outcomes from C. The fact is 
that even though it is really versatile and flexible in 
designing and modifying the coding algorithm under 
Matlab, the simulations require much greater system 
resources and the simulation times are longer. 

• Obtained the result after 45 minutes (10 times 

longer than simulation by C) for case TB = 20, Queue 
Size = 50. 

• BER also decreases when SNR increases; BER 

in using soft-decision decoding is smallest when 
compared with hard-decision decoding and theoretical 
uncoded communication. 

• In the case of larger TB (TB=50) and Queue Size, 

time increases and error probability decreases. It takes 
more time for the simulation in Matlab than C with 
Cygwin. 

Under Matlab, Figure 12 and 13 show BER 
probability changes versus different values of Eb/N0 
for hard and soft Viterbi decoding different traceback 
size. 

 

Fig. 12. Performance evaluation for hard and soft Viterbi 
decoding under traceback = 20, queue size = 100 

 

Fig. 13. Performance evaluation for hard and soft Viterbi 
decoding under traceback = 30, queue size = 100 

V. CONCLUSION AND FURTHER STUDIES 

Error control coding increases performance of the 
communication channel at the receiver. Bit Error Rate 
(BER) is much better than in the case of unused error 
control coding because error control coding helps the 
receiver recognize and decide more precisely what the 
transmitted sequence is at the transmitter. Moreover, it 
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can also fix some errors based on the algorithms and 
characteristics of a generator polynomial. 

In this paper, we present a performance evaluation 
for rate one-third convolutional code with a sample 
encoder/decoder using a Viterbi decoding algorithm 
based on the hidden Markov model (HMM). The paper 
describes the main features of the convolutional 
coding concept and how to implement it in a decoder 
using a Viterbi decoding algorithm. The results show 
that a significantly higher performance for BER 
calculation is attained. However, it requires additional 
complexity in both the transmitter and receiver to 
implement this algorithm. Moreover, the coding 
performance depends on the type of quantization, and 
whether hard-decision, or soft-decision decoding is 
used. These models have a significant effect on the 
results of coding and decoding. 

In order to increase the performance of digital 
communication systems, we can utilize an encoder 
with longer constraint lengths, but with higher 
complexity. In addition, modulation techniques other 
than BPSK modulation/demodulation (e.g., Quadrature 
Phase Shift Keying (QPSK), Quadrature Amplitude 
Modulation (QAM), and Trellis Coded Modulation 
(TCM)) could be deployed to study the effects on 
performance and system resource requirements. 
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